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Abstract

Rapid increases in computing and comm unication performance

are exacerbating the long-standing problem of performance-limited

input/output. Indeed, for many otherwise scalable parallel appli-

cations, input/output is emerging as a major performance bottle-

neck. The design of scalable input/output systems depends criti-

cally on the input/output requirements and access patterns for this

emerging class of large-scale parallel applications. However, hard

data on the behavior of such applications is only now becoming

available.

In this paper, we describe the input/output requirements of

three scalable parallel applications (electron scattering, terrain ren-

dering, and quantum chemistry) on the Intel Paragon XP/S. As

part of an ongoing parallel input/output characterization e�ort,

we used instrumented versions of the application codes to capture

and analyze input/output volume, request size distributions, and

temporal request structure. Because complete traces of individual

application input/output requests were captured, in-depth, o�-line

analyses were possible. In addition, we conducted informal inter-

views of the application developers to understand the relation be-

tween the codes' current and desired input/output structure. The

results of our studies show a wide variety of temporal and spatial

access patterns, including highly read-intensive and write-intensive

phases, extremely large and extremely small request sizes, and both

sequential and highly irregular access patterns. W e conclude with

a discussion of the broad spectrum of access patterns and their pro-

found implications for parallel �le caching and prefetching schemes.
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1 Introduction

Recent progress building systems whose aggregate computation and

communication performance can be economically scaled across a wide

range has encouraged application scientists to pursue computational sci-

ence models that were heretofore considered intractable. Unfortunately,

for many scalable parallel applications, the input/output barrier rivals

or exceeds that for computation. In short, high-performance commodity

processors and high-speed networks are necessary but not su�cient to

solve many national challenge problems | scalable parallel secondary

and tertiary storage systems are needed as well.

Distressingly, input/output and �le system research on scalable par-

allel systems is in its infancy. Moreover, commodity storage technology

trends suggest that the disparity between peak processor speeds and

disk transfer rates will continue to increase | the commodity disk mar-

ket favors low cost, low power consumption and high capacity over high

data rates. With commodity disks, only disk arrays [2] can provide the

requisite peak data transfer rates.

When hundreds of disks and disk arrays are coupled with tertiary

storage devices, a multilevel storage management system (e.g., like Uni-

tree), and a broad range of possible parallel �le access patterns, the

space of potential data management strategies is immense, and identi-

fying optimal or even acceptable operating points becomes problematic.

Unfortunately, �le system and storage hierarchy designers have little

empirical data on parallel input/output access patterns and are often

forced to extrapolate from measured access patterns on either traditional

vector supercomputers [17, 21, 22] or Unix workstations [20]. Neither of

these environments re
ects the application usage patterns, diversity of

con�gurations, or economic tradeo�s salient in scalable parallel systems.

The goal of this work is to characterize parallel input/output require-

ments and access patterns, enabling application developers to achieve

a higher fraction of peak input/output performance on existing parallel

systems and system software developers to design better parallel �le sys-

tem policies for future generation systems. We analyze the input/output

behavior of three parallel applications on the Intel Paragon XP/S: an

electron scattering code, a terrain rendering code, and a quantum chem-

istry code.

These applications represent a snapshot of current input/output prac-

tice on scalable parallel machines and re
ect the developers' input/output

design choices based on perceived and actual limitations of available in-

put/output systems. These initial codes are but a small part of the

nascent Scalable Input/Output Initiative's (SIO) code suite [23], and

our initial characterization is a �rst step in a continuing input/output

characterization e�ort.

Our experimental data show that application input/output signa-
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tures di�er substantially, with a wide variety of temporal and spatial ac-

cess patterns, including highly read-intensive and write-intensive phases,

extremely large and extremely small request sizes, and both sequential

and highly irregular access patterns. This data indicates that parallel

input/output systems must deliver high performance across broad di-

versity in application access patterns. Our preliminary experiences with

parallel �le systems [8, 9] suggests that supporting robust performance

requires tuning �le system policies to speci�c access patterns.

The remainder of this paper is organized as follows. In x2{3, we sum-

marize our approach to input/output performance characterization and

its relation to the new Scalable I/O Initiative. This is followed in x4

by a brief description of the three application codes and their high-level

input/output behavior. In x5{7 we analyze the temporal and spatial

input/output patterns of the applications in detail, followed in x8 by

discussion of the implications for parallel �le system policies. Finally,

x9 and x10 describe, respectively, related work on input/output char-

acterization and a brief summary of our experiences and directions for

future research.

2 Background

Though the reasons for input/output in high-performance applications

are varied, they can be broadly classi�ed as compulsory, checkpoint,

or out-of-core [17]. As the name suggests, compulsory accesses are un-

avoidable and arise from reading initialization �les, generating applica-

tion output (e.g., scienti�c data sets or visualizations), or reading input

data sets. A high-performance �le system can reduce the time needed

for these accesses, but they cannot be eliminated by clever cache or

memory management schemes.

Checkpoints are necessary because production runs of scienti�c codes

may span hours or even days, the computing resources are typically

shared among a large user base, and standard operating practice dic-

tates regular down time for system maintenance. In addition, users often

use computation checkpoints as a basis for parametric studies, repeat-

edly modifying a subset of the checkpoint data values and restarting the

computation. The frequency and size of checkpoints is highly applica-

tion dependent, but a high-performance �le system can reduce the cost

of checkpointing by exploiting knowledge of checkpoint input/output

characteristics.

Finally, out-of-core input/output is a consequence of limited primary

memory. Historically, vector supercomputers have, by design, lacked

paged virtual memory, and users have managed the limited primary

memory by staging data to and from secondary storage. Even on scal-

able parallel systems with paged virtual memory, many users eschew the
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convenience of paging for the tight control possible with user-managed

overlays and scratch �les. Larger primary memories can reduce the num-

ber and size of out-of-core scratch �les, but not obviate their need |

many important problems have data structures far too large for primary

memory storage to ever be economically viable.

Within these broad input/output classes, there are wide variations

in �le access patterns, and such variations have deep performance im-

plications for parallel �le systems. Moreover, there are circular depen-

dences between parallel �le system e�ciency and parallel program ac-

cess patterns. Parallel �le systems are designed based on the system

developers' knowledge of extant �le access patterns. Often, these pat-

terns are historical artifacts, themselves based on application develop-

ers' exploitation of the idiosyncrasies of previous generation �le systems.

Consequently, it is critical to both quantify current access patterns and

understand the reasons for these patterns. Simply put, are the observed

access patterns intrinsic to the application algorithms, or are they ar-

tifacts of the current software environment? While de�nitive answers

may in general be unobtainable, frank conversations with code devel-

opers and analysis of similar applications on di�erent parallel platforms

provide a good basis for insight.

Understanding extant parallel �le access patterns and developing

more e�ective �le system policies is the goal of the Scalable I/O Ini-

tiative, a broad-based, multi-agency group that involves academic re-

searchers, government laboratories, and parallel system vendors.1 The

initiative seeks to develop the technology base needed to support high-

performance parallel input/output on future scalable parallel systems.

It includes �ve research working groups: applications, performance char-

acterization (of which the authors are a part), compiler technology, oper-

ating systems, and software integration. The three parallel applications

described in x4 were obtained from application working group partici-

pants.

3 Experimental Methodology

An ideal input/output characterization of an application code includes

access patterns and performance data from the application, input/output

library, �le system, and device drivers. Application �le accesses are the

logical input/output stimuli; their sizes, temporal spacing, and spatial

patterns (e.g., sequential or random) constrain possible library and �le

system optimizations (e.g., by prefetching or caching). The physical

patterns of input/output at the storage devices are the ultimate sys-

1See http://www.ccsf.caltech.edu/SIO/SIO.html

for details. The initial results of the I/O characterization e�ort is available from

http://www-pablo.cs.uiuc.edu/Projects/IO/io.html
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tem response. Minimizing their number and maximizing their e�ciency

(e.g., by disk arm scheduling and request aggregation) is the �nal re-

sponsibility of the �le system and device drivers.

Given performance data from the application and all system lev-

els, one can correlate input/output activities at each level and identify

bottlenecks. However, a complete input/output instrumentation of all

system levels is a major undertaking that requires in-depth knowledge

of operating system structure and access to operating system source.

As a prelude to a more detailed instrumentation of system software as

part of the Scalable I/O Initiative, we have developed a suite of applica-

tion input/output software instrumentation and characterization tools.

This suite, an extension of the Pablo performance environment [26, 25],

brackets invocations of input/output routines with instrumentation soft-

ware that captures the parameters and duration of each invocation.

3.1 Pablo Input/Output Instrumentation

The Pablo performance environment consists of (a) an extensible per-

formance data metaformat and associated library that separates the

structure of performance data records from their semantics, (b) an in-

strumenting parser capable of generating instrumented SPMD source

code, (c) extensible instrumentation libraries that can capture times-

tamped event traces, counts, or interval times and reduce the captured

performance data on the 
y, and (d) a group of graphical performance

data display and soni�cation tools, based on the data metaformat and

coarse-grain graphical programming, that support rapid prototyping of

performance analyses.

To capture and analyze input/output performance data, we have ex-

tended the Pablo environment to capture the parameters of application

input/output calls on a variety of single processor and parallel systems.2

To minimize potential input/output perturbations due to performance

data extraction, the Pablo instrumentation software supports real-time

reduction of input/output performance data in addition to capture of

detailed event traces. The former trades computation perturbation for

input/output perturbation. Measurements show that the instrumenta-

tion overhead is modest for input/output data capture and is largely

independent of the choice of real-time data reduction or trace output

for post-mortem analysis.

Pablo's real-time input/output performance data reductions include

any combination of three summaries: �le lifetime, time window, and �le

region. File lifetime summaries include the number and total duration

of �le reads, writes, seeks, opens, and closes, as well as the number

of bytes accessed for each �le, and the total time each �le was open.

2This software is available at http://www-pablo.cs.uiuc.edu.
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Time window summaries contain similar data, but allow one to specify

a window of time; this window de�nes the granularity at which data

is summarized. File region summaries are the spatial analog of time

window summaries; they de�ne a summary over the accesses to a �le

region. Finally, general input/output statistics computed o�-line from

event traces provide means, variances, minima, maxima, and distribu-

tions of �le operation durations and sizes.

3.2 Intel Paragon XP/S

Using the Pablo performance instrumentation software, we measured

application input/output performance on the Intel Paragon XP/S [27]

at the Caltech Concurrent Supercomputing Facility (CCSF). At the

time our experiments were conducted, the system had 512 computation

nodes and 16 I/O nodes, each with a RAID-3 disk array composed of 5

1.2GB disks. The software environment consisted of several versions of

Intel OSF/1 1.2 with PFS, Intel's parallel �le system.

PFS stripes �les across the I/O nodes in units of 64 KB, with stan-

dard RAID-3 striping on each disk array. In addition to �le striping,

PFS supports six parallel �le access modes:

� M UNIX: each node has an independent �le pointer,

� M LOG: all nodes share a �le pointer, node accesses are �rst come

�rst serve, and input/output operations are variable length,

� M SYNC: all nodes share a �le pointer and accesses are in node num-

ber order,

� M RECORD: each node has an independent �le pointer, access is �rst

come �rst serve and input/output operations are �xed length,

� M GLOBAL: all nodes share a �le pointer, perform the same opera-

tions and access the same data, and

� M ASYNC: each node has an independent �le pointer, access is unre-

stricted and variable size, and operation atomicity is not preserved.

We will return to these modes in x5{7 when discussing their use in

application codes.

4 Application Code Suite

As we noted earlier, one of the primary goals of the new national Scal-

able I/O Initiative is analyzing the input/output patterns present in a

large suite of scienti�c and engineering codes. These span a broad range

of disciplines, including biology, chemistry, earth sciences, engineering,
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graphics, and physics [23]. Despite large di�erences in their underly-

ing algorithms, the codes share two features. First, each code runs on

one or more scalable parallel systems, permitting cross-machine compar-

isons of input/output performance. Second, all codes have both high

input/output and computational requirements. In short, they typify

large-scale scienti�c and engineering computing.

We have selected three codes from this suite as an initial focus of

our input/output characterization e�ort. In the following subsections

we brie
y describe the algorithms underlying the three applications, the

code structure, and its input/output organization. In x5{7, we examine

the input/output patterns in greater detail and discuss their implica-

tions for �le system design.

4.1 Electron Scattering (ESCAT)

The study of low-energy electron-molecule collisions is of interest in

many contexts, including aerospace applications, atmospheric studies,

and the processing of materials using low-temperature plasmas (e.g.,

semiconductor fabrication). The Schwinger multichannel (SMC) method

is an adaptation of Schwinger's variational principle for the scattering

amplitude that makes it suitable for calculating low-energy electron-

molecule collisions [30]. The scattering probabilities are obtained by

solving linear systems whose terms include a Green's function which

has no analytic form and is evaluated by numerical quadrature. Gener-

ation of the quadrature data is compute-intensive, and the size of the

data set is highly variable depending on the nature of the problem. The

quadrature is formulated to be energy independent so it can be used to

solve the scattering problem at many energies.

ESCAT is a parallel implementation of the Schwinger multichannel

method written in a combination of C, FORTRAN, and assembly lan-

guage. From an input/output perspective, there are four distinct ex-

ecution phases. First, a compulsory read loads the problem de�nition

and some initial matrices. Next, all nodes participate in the calcula-

tion and storage of the requisite quadrature data set, with each node

processing a di�erent set of integrals. This phase is compute-intensive

and is composed of a series of compute/write cycles with the write steps

synchronized among the nodes. Memory limitations and the desire to

checkpoint the quadrature data set for reuse in later executions prompt

the writes during this phase. The third phase involves calculations that

depend on the collision energy. In it, energy-dependent data structures

are generated and combined with the reloaded quadrature data set to

form the system of linear equations. In the last phase, the linear system

matrices are written to disk for later solution on another machine.
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Figure 1: Rendering algorithm organization

4.2 Terrain Rendering (RENDER)

NASA's deep space imaging and Earth observation satellites have ob-

tained multi-spectral data of Mars and Venus, as well as earth. Combin-

ing satellite imagery with terrain elevation data can produce intuitive,

three-dimensional perspective views of the planetary surfaces. By gener-

ating these views in real-time, it is possible to conduct a \virtual 
yby"

of the planetary surface where scientists can interactively examine false

color terrains from a variety of positions and orientations, supporting

rapid exploration of large data sets. A parallel ray-identi�cation algo-

rithm [15] distributes terrain data among processing nodes, decomposing

via the natural data parallelism, and exploiting positional derivatives to

vary rendering resolution. Together these techniques achieve several

frames per second on gigabyte data sets, approaching the ten frames

per second needed for real-time animation.

The RENDER code is a hybrid control and data parallel implemen-

tation of the ray identi�cation rendering algorithm; Figure 1 shows its

high-level structure. A single gateway node manages a group of paral-

lel rendering processes and begins by reading the initial data set. The

initial read is followed by a read-render-write cycle for each of the sub-

sequent view perspectives (frames). In this loop, the gateway inputs

view perspective requests, directs rendering tasks to produce the view,

collects rendered views from the group of rendering tasks, and outputs

frames to either secondary storage or a HiPPi frame bu�er. Thus, REN-

DER's input/output activity consists of a compulsory read of the initial

data set, a series of reads of view coordinates, and corresponding writes

of the rendered frames.

4.3 Hartree Fock (HTF)

Ab initio chemistry calculations are the key to a detailed understanding

of bond strengths and reaction energies for chemical species. More-

over, they allow chemists to study reaction pathways that would be too

hazardous or too expensive to explore experimentally. This version of

the Hartree Fock algorithm calculates the non-relativistic interactions
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among atomic nuclei, electrons in the presence of other electrons, and

electrons interacting with nuclei. Basis sets derived from the atoms and

the relative geometry of the atomic centers are the initial inputs. Atomic

integrals are calculated over these basis functions and are used to ap-

proximate molecular density. This density and the previously calculated

integrals are used to compute the interactions and to form a Fock ma-

trix. A self consistent �eld (SCF) method is used until the molecular

density converges to within an acceptable threshold.

The Hartree Fock implementation we studied consists of three dis-

tinct programs totaling roughly 25K lines of Fortran. The three pro-

grams operate as a logical pipeline, with the second and third accepting

�le input from the previous one. The �rst program, psetup, reads the

initial input, performs any transformations needed by the later compu-

tational phases, and writes its result to disk. The next program, pargos,

calculates and writes to disk the one and two-electron integrals. The

�nal program, pscf, reads the integral �les multiple times (they are too

large to retain in memory) and solves the SCF equations. In subsequent

sections, we refer to these three programs as initialization, integral cal-

culation, and self-consistent �eld calculations.

With these brief descriptions of the electron scattering, parallel ren-

dering, and Hartree Fock codes, in x5{7 we examine the detailed pat-

terns of input/output present in each and discuss the implications for

�le systems design.

5 Electron Scattering Behavior

To accurately assess the input/output patterns of the electron scattering

code, we used a data set large enough to capture typical behavior but

small enough to permit parametric studies of di�erent code versions.

On 128 nodes with this data set, the ESCAT code executed for roughly

one and three quarter hours. Production data sets generate similar

behavior, but with ten to twenty hour executions on 512 processors.

Succinctly, the dominant input/output behavior in the current ver-

sion of the ESCAT code is small writes, and most of the time is spent

computing. During initialization, a single node uses the M UNIX mode

to read the initialization data and broadcast it to the other nodes. In

the major execution phase, each node repeatedly seeks and then writes

quadrature data to intermediate staging �les. Near the end of execution,

the nodes reload the previously written data, with each node rereading

the same quadrature data that it wrote. As we shall see in x5.2, this soft-

ware organization is largely due to the constraints system performance

places on the application developers | not only would they prefer a

di�erent program organization, the problem they wish to solve requires

dramatically greater input/output performance.
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Operation Operation Volume Node Time Percentage

Count (Bytes) (Seconds) I/O Time

All I/O 26,418 60,983,136 38,788.95 100.00

Read 560 34,226,048 81.19 0.21

Write 13,330 26,757,088 16,268.50 41.94

Seek 12,034 - 20,884.11 53.84

Open 262 - 1179.06 3.04

Close 262 - 376.06 0.97

Table 1: Number, size, and duration of I/O operations (ESCAT)

Operation Operation Size

< 4 KB < 64 KB < 256 KB � 256 KB

Read 297 3 260 0

Write 13,330 0 0 0

Table 2: Read/write sizes (ESCAT)

5.1 Experimental Data

Tables 1{2 are a high-level summary of the input/output behavior of

the ESCAT code. During the roughly 6,000 seconds of execution, the to-

tal volume of input/output data is only 60M bytes, or 10K bytes/second.

Read operations represent 56 percent of the input/output volume, but

only two percent of the operations and 0.2 percent of the input/output

time. As Figure 2 and Table 2 show, read sizes are bimodal, with roughly

equal numbers of small and large read requests. The overheads for writes

and seeks dominate other input/output operations, representing almost

96 percent of the total input/output time.

As we noted earlier, the ESCAT code has four distinct read/write

phases. These phases are clearly visible in Figures 2{3, which show

timelines of the ESCAT reads and writes. In the �rst phase, the initial

data is read from three �les by node zero and broadcast to the remaining

nodes. During the second phase, all nodes repeatedly compute, synchro-

nize, and then write 2 K bytes of quadrature data to two intermediate

staging �les { one �le for each of the two possible collision outcomes

contained in our test data. To simplify reloading of the data in the next

phase, each node seeks to a calculated o�set dependent on the node

number, iteration, and PFS stripe size before writing the data. Intel's

M UNIX �le mode is used for these writes.

In the third input/output phase, the previously written quadrature
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Figure 3: Read operation detail (ESCAT)

�les are read by all the nodes using the Intel M RECORD mode.3 Finally,

in the last input/output phase, data is sent to node zero by all other

nodes and written to three output �les.

As can be seen in Figure 2, read operations occur only in the �rst

and third phases. The �rst spike in Figure 2 is the initial, compulsory

data input; the phase three read operations at the far right of the �gure

are the staging of the previously computed quadrature data. Figure 3

shows the initial input phase in greater detail, capturing the variety of

access sizes and temporal irregularity of the requests.

The tight clustering of the quadrature data writes by all the proces-

sors is evident in Figure 4. The temporal spacing of the groups decreases

as the quadrature calculation phase proceeds, ranging from roughly 160

seconds near the beginning of the phase to half that near the end. Ta-

3Recall that in this mode each node has a separate �le pointer, but the nodes

must read �xed size records in �rst-come-�rst-serve order.
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ble 1 shows that seek overhead is a major contributor to the temporal

dispersion of each group.

Finally, Figure 5 shows when each of the input and output �les was

accessed during the ESCAT execution. In the �gure, diamonds denote

reads, and crosses denote writes. Three �les with the identi�ers 9, 10,

and 11 contain the initial input data, two other �les with identi�ers 7

and 8 are used for staging the quadrature data, and the �nal output is

written to the �les with identi�ers 3, 4, and 5.

5.2 Discussion

The implementation and input/output behavior of the ESCAT electron

scattering code highlight the disparity between the ideal and current

practice. At �rst glance, it appears that the input/output is ine�cient,

but seemingly of little import because the code is heavily computation

bound. Indeed, for current data sets, this is true. However, the com-
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plexity of the quadrature data volume grows as O(N3), where N is the

number of electron scattering outcomes. Conversations with McKoy et

al reveal that for current problems, with N � 10, computation domi-

nates. This re
ects their pragmatic need to attack only solvable prob-

lems, Their research goal is N � 50, or two orders of magnitude more

data. In short, research practice and the behavior of this code would

change dramatically were higher performance input/output possible.

Not only is the current problem size constrained by input/output

limitations, the ESCAT code's input/output behavior is constrained as

well. Although the initial data is needed by all processors, the applica-

tion developers discovered by experimentation that it was more e�cient

for a single node to read the initial data and then use the communication

network to broadcast the data than it was for each node to indepen-

dently read the initialization data. More e�cient support for parallel

reading of complete �les would simplify the application, eliminating the

need to write data distribution code.

The decision to use the Intel M UNIX mode to write the quadrature

data, rather than the M RECORDmode, was driven by the desire to reduce

the time needed to read the data. On writes, the M RECORD mode gen-

erates a sequence of �xed size records that appear to have been written

in node order (i.e., for N nodes, the �le consists of groups of N records,

with each group written in node order). However, in ESCAT, the data

written by a given node is later read by that same node, requiring it

to be contiguous if the node is to read it e�ciently with a single large

access. To e�ciently support accesses of this type, either a richer set of

�le modes is needed, or the application must be redesigned.

Finally, because the input/output in this application is dominated

by small writes, read prefetching would bene�t little. In contrast, write

request aggregation and write behind could dramatically reduce the out-

put cost. To quantify these e�ects, we ported the ESCAT code to PPFS,

our portable parallel �le system [8], and con�gured the �le system with

write behind and global request aggregation policies. This combination

of policies e�ectively eliminated the behavior seen in Figure 4. In our

experience, this type of optimization (i.e., choosing �le policies based

on access pattern knowledge), is the key to maximizing input/output

performance.

6 Terrain Rendering Behavior

To assess the input/output behavior of the terrain rendering code, we

used a full production data set (Mars 
yby data from the Viking mis-

sion), but abbreviated the run by limiting the number of frames ren-

dered. Beyond this point in the computation, the RENDER code per-

forms periodic output of frames, of �xed size and at nearly �xed time

13



intervals. In addition, in actual production use, all of this output would

be directed to a HiPPi frame bu�er, not the �le system. On 128 nodes,

the production data set required roughly eight minutes to initialize and

output one hundred views (frames). Full production runs consist of 5000

or more frames and execute for approximately thirty minutes. These

production runs generate identical initial input/output requirements,

extending only the reading of views to render and output views.

Overall, the dominant �le input/output requirement of the current

version of RENDER is the initial read of a gigabyte data set, followed by

compute-limited rendering phases. During initialization, a single node

uses the M UNIX �le mode to read the entire data set and broadcast it to

the rest of the nodes. During the major computation phase (rendering),

view coordinates are retrieved from a control �le (small reads), and the

rendering of each view produces a single large write of the rendered im-

age to the HiPPi frame bu�er. As we shall see in x6.2, the input/output

structure is the product of restrictions on the �le system input/output

modes; the developers would like to exploit �le system features, but they

cannot.

6.1 Experimental Data

Tables 3 and 4 contain a high-level summary of the input/output behav-

ior of RENDER. Over the 470 seconds of execution, the total volume

of input/output is nearly one gigabyte, dominated by the read of the

initial data set.

Read operations dominate the input/output, accounting for 89 per-

cent of the input/output volume and 64 percent of the input/output

requests. The read tra�c is dominated by asynchronous reads both in

volume and in the number of requests. However, the read requests take

only a small fraction of the input/output time { reads and asynchronous

reads account for 0.17 and 4.6 percent of the input/output time respec-

tively. For asynchronous reads, the measured time is only the cost of

issuing the read, some of the input time may be overlapped | the part

not overlapped appears as iowait time. In this code, the iowait time

is the major fraction of the I/O time. Read sizes are again bimodal,

clustered below 4K bytes and above 256K bytes. Large reads dominate

both in number of requests and in volume. The writes account for nearly

20 percent of the input/output time, though accounting for only a small

fraction of the input/output volume.

The RENDER code has two basic phases, initialization and render-

ing. These phases are not only distinguished computationally, they have

dramatically di�erent input/output patterns as shown in Figures 6 and

7, timelines of RENDER read and write requests. In the �rst phase, the

terrain data is read in from four �les by the gateway node using M UNIX

mode. These requests are extremely large, clustered at 3 megabytes and
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Operation Operation Volume Time Percentage

Count (Bytes) (Seconds) I/O Time

All I/O 1504 979,162,982 164.75 100.00

Read 121 8457 0.17 .10%

AsynchRead 436 880,849,125 4.60 2.79

I/O Wait 436 - 88.44 53.68

Write 300 98,305,400 31.76 19.28

Seek 4 0 .13 0.08

Open 106 - 32.78 19.90

Close 101 - 6.87 4.17

Table 3: Number, size, and duration of I/O operations (RENDER)

Operation Operation Size

< 4 KB < 64 KB < 256 KB � 256 KB

Read 121 0 0 436

Write 200 0 0 100

Table 4: The sizes of reads and writes in RENDER.

1.5 megabytes. The input data is then broadcast to the other 128 nodes

which form the renderer, each selecting an appropriate subset of the

data. The initial phase ends around 210 seconds into the run, and the

rendering phase begins. The gateway node reads views from a control

�le, directing the renderer to produce the requisite image. The data for

each view (640x512 24-bit color image, approximately one megabyte) is

collected by the gateway and output in a single request. In our runs,

this data is written to disk using M UNIXmode, but in a production run,

this data would be sent directly to a HiPPi frame bu�er.

Figure 6 clearly shows the large read request sizes generated by the

initialization phase. The �rst set of read requests are 3 megabytes,

then the size decreases to 1.5 megabytes. At 210 seconds, there is a

pronounced transition to the render phase, and the only read requests

are small requests to read the view coordinates. Figure 7 shows the

write behavior of RENDER, and also re
ects the phase structure of the

code. There is no write tra�c in the initialization phase, and in the

rendering phase, write requests consist exclusively of the writes of the

one megabyte color images.

Figure 8 shows the �le activity for RENDER, and also clearly re
ects

the two phase structure of the RENDER code. The critical read initial-

ization phase accesses primarily four �les (the data set). The control �le
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Figure 6: Read operation timeline (RENDER)
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Figure 7: Write operation timeline (RENDER)
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(views) is accessed in both phases, but heavily in the rendering phase.

The output �les are each accessed only once (written in their entirety)

accounting for the staircase structure.

6.2 Discussion

The RENDER code illustrates how scalable parallel systems can enable

new classes of applications which in turn engender new challenges for

system designers. Increased computational power and memory capac-

ity enable interactive visualization of multi-gigabyte data sets, which

introduces the complexity of real-time requirements and on-line output,

streaming to a frame bu�er. The RENDER input/output pattern �ts a

classic scienti�c computing input/output stereotype: large initial read,

followed by the writing of output results.

The RENDER code and data set described are matched to the capa-

bilities of currently available systems; however, such scienti�c visualiza-

tion applications present much larger computational and input/output

challenges. Because RENDER is used for visualizing NASA sensor data,

the resolution of input data sets (and their size) is limited by sensor res-

olution and available data base sizes. Examples include LANDSAT,

Mars (Viking), and Venus (Magellan). These data sets currently range

from 100's of megabytes to 100's of gigabytes, but with increases in sen-

sor resolution and deployment of systems such as the Earth Observa-

tion System, much larger data bases (terabytes) are becoming available.

Larger data bases increase the size of the input burst for initialization,

and terabyte data bases may require the adoption of out-of-core algo-

rithms. Current images are output with a resolution of 640x512 with

24-bit color; with higher resolution data bases and higher output res-

olutions (3000x2000), corresponding increases in the computation and

output are required. Finally, the current system requires several sec-

onds per frame, but higher frame rates (ten or as high as thirty) are

desirable. More directly, higher input/output performance is required

for larger data sets and higher resolution output with this code.

The RENDER code performs only sequential �le access, and all the

input/output is mediated by the gateway node. The gateway node

reads the data set, then broadcasts it. Although the basic data dis-

tribution is block-cyclic, and therefore apparently well-matched to the

PFS M RECORD mode, this mode requires all of the nodes to participate.

The code developers eschewed the use of M RECORD because RENDER

uses nodes asymmetrically (gateway and renderer); not all nodes need to

participate. Hence, use of M RECORDmode would require some additional

code restructuring and data shu�ing regardless.

Using sequential input/output, the code explicitly prefetches initial

�le data by using asynchronous reads and initiates large read requests,

but only achieves a read throughput of approximately 9.5 megabytes/second.
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Parallel access using the M UNIX mode was empirically determined not

to improve code performance. RENDER would bene�t from e�cient

parallel �le access modes that allow node subsets to participate with-

out requiring shared �le pointers. Another approach, eschewed by the

developers, is the use of separate input �les for each node. Though this

might improve input performance, it incurs additional preprocessing

steps, expensive for large data bases, and binds the data base repre-

sentation to the machine con�guration. E�cient parallel access modes

that give the e�ective performance of this change without requiring log-

ical reorganization across �les in the application are desirable. Finally,

while occasionally single frames or collections of frames might be writ-

ten to disk, the typical use for RENDER is to write the output data

to a HiPPi frame bu�er. This presents another dimension of streaming

input/output which has not yet received much attention in the scalable

systems community.

7 Hartree Fock Behavior

As we noted in x4.3, the Hartree Fock (HTF) application is composed of

three codes: an initialization (psetup), an integral calculation (pargos),

and a self-consistent �eld calculation phase (pscf). For our rather small

input data set of 16 atoms, the respective execution times of the three

program components were 127, 1173, and 1008 seconds on 128 nodes

of the Intel Paragon XP/S, with slightly less than 20 percent of that

time consumed by input/output operations. As with the ESCAT code,

we shall see that this is not the desired ratio, merely what is currently

feasible.

The �rst code in the HTF application reads a small initial data �le

and transforms it for use by the later phases. The second, integral

calculation phase creates the �les of integrals that are consumed by the

third, self-consistent �eld calculation phase. The Intel M UNIX �le mode

is used exclusively in all three codes.

7.1 Experimental Data

Tables 5{6 summarize the input/output behavior of the three HTF

application components. During the initialization phase, the reads and

writes are small and occur as initial data is read and transformations

are written for use by the ensuing phases. In the integral calculation

phase, the number of integrals determines the input/output data vol-

ume | quadrature data is written for each integral. Because a Fock

matrix of size N generates O(N2) one electron and O(N4) two electron

integrals [6], the data volume grows dramatically with matrix size and

is substantial even for small matrices. This phase is, therefore, write
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Operation Operation Volume Node Time Percentage

Count (Bytes) (Seconds) I/O Time

HTF Initialization

All I/O 832 7,267,422 55.23 100.00

Read 371 3,522,497 15.34 27.77

Write 452 3,744,872 5.50 9.96

Seek 2 53 0.43 0.78

Open 4 - 31.49 57.02

Close 3 - 2.47 4.47

HTF Integral Calculation

All I/O 17,854 698,992,502 6,398.03 100.00

Read 145 34,393 0.47 0.00

Write 8,535 698,958,109 1996.4 31.20

Seek 130 0 0.14 0.00

Open 130 - 4056.60 63.40

Close 129 - 11.43 0.18

Lsize 128 - 15.27 0.24

For
ush 8,657 - 317.72 4.98

HTF Self-Consistent Field Calculation

All I/O 52832 4,205,483,650 32,800.99 100.00

Read 51499 4,201,634,304 32,263.20 98.36

Write 207 3,849,268 5.88 0.02

Seek 813 3,495,198,798 1.67 0.00

Open 157 - 518.74 1.58

Close 156 - 11.50 0.04

Table 5: Number, size, and duration of I/O operations (HTF)

intensive, which shows clearly in Table 6 and Figure 12. The �nal, self-

consistent �eld calculation phase is quite read intensive, with each node

repeatedly reading the integral �les.

Despite the substantial input/output, the maximum request size is

rather small, only four times the Intel PFS striping factor of 64K bytes.

Moreover, the number of requests smaller than 4K bytes is non-trivial.

In short, the request size distribution of Table 6 is bimodal, though

skewed toward larger requests, the opposite of the size distribution

shown in Table 2 for the ESCAT code

Figures 9{13 and 10{14 show, respectively, read and write request

sizes as a function of time. The write intensities of the integral calcu-

lation phase and read intensity of the self-consistent �eld computation

phase are striking on this time scale. With this data set, each of the

nodes writes roughly 5M bytes of data during the integral calculation.
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Operation Operation Size

HTF Initialization

< 4 KB < 64 KB < 256 KB � 256 KB

Read 151 220 0 0

Write 218 234 0 0

HTF Integral Calculation

Read 143 2 0 0

Write 2 1 8,532 0

HTF Self-Consistent Field Calculation

Read 165 109 51225 0

Write 43 158 6 0

Table 6: Read/write sizes (HTF)

1

10

100

1000

10000

100000

0 20 40 60 80 100 120

R
e
q
u
e
s
t
 
S
i
z
e

Execution Time in Seconds

Figure 9: Read operation timeline (HTF initialization)

Figures 15{17 show that each node writes the integral data to a separate

�le; the nodes then read this data during the �nal calculation phase.

7.2 Discussion

Quite clearly, the HTF code has substantial input/output requirements

even for what is, by current computational chemistry standards, a rather

small problem of 16 atoms. In general, though, the input/output pattern

in this code is quite regular, with little but sequential accesses except

in the �nal calculation phase.

In conversations with the code developers, we discovered that this is

the version of the code they would like to use for larger, more interesting

problems. By precomputing the integrals and reusing the quadrature

data as needed, the computation requirements can be reduced dramat-

ically. Unfortunately, because the input/output requirements grow as
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Figure 10: Write operation timeline (HTF initialization)
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Figure 11: Read operation timeline (HTF integral calculation)

the number of two electron integrals (i.e., as O(N4)), this is not feasible

with current input/output systems. Instead, the integrals are recom-

puted as needed, substantially increasing the computation requirements

but reducing the input/output costs and, with current input/output

software, the total execution time.

For integral input/output to be preferable to recomputation, read-

ing an integral from secondary storage must take less than the roughly

500 
oating point operations needed for integral calculation. For cur-

rent systems, this requires a sustained input/output rate of approxi-

mately 5{10 Mbytes/second per node. With current and projected disk

technology, this implies a system with a disk or disk array directly at-

tached to each processor. Moreover, as processor speeds increase, the

input/output rate must increase commensurately, else recomputation

becomes the preferred alternative. Simply put, this application requires

high storage capacity and high throughput for simple access patterns.
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Figure 12: Write operation timeline (HTF integral calculation)
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Figure 13: Read operation timeline (HTF self-consistent �eld calcula-

tion)

8 Parallel File System Implications

The most signi�cant observation from our study is that the input/output

requirements of scienti�c codes (electron scattering, terrain rendering

and quantum chemistry) greatly exceed the capabilities of existing scal-

able systems. Scienti�c applications have input/output patterns and

requirements more complex than simple stereotypes, and these require-

ments are extremely challenging. The mismatch between desired and

currently available input/output performance has two important conse-

quences for application scientists: it complicates application code struc-

ture, and it reduces the scope of experiments computationally feasible.

For parallel systems vendors and �le system designers, it is clear that

improvements in scalable parallel input/output capabilities can enable

or even catalyze advances in science and scienti�c computing.

All three applications that we studied exhibited a wide variety of

read/write mixes and request sizes, with the latter ranging from a
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Figure 14: Write operation timeline (HTF self-consistent �eld calcula-

tion)
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Figure 15: File access timeline (HTF initialization)

few bytes to several megabytes. In short, to provide robust perfor-

mance, parallel �le systems must e�ciently support a variety of request

size and read/write mixes. However, the performance characteristics of

current input/output systems favor large requests because high band-

widths are achieved through parallelism. Consequently, achieving good

input/output performance for applications that make small requests ad-

mits two basic possibilities: programmers can manually aggregate re-

quests or �le systems (and user level libraries) can transform request

streams via caching or prefetching, serving as impedance matchers be-

tween the application access patterns and disk performance character-

istics. The latter approach is promising, and demonstrations of the

e�ectiveness such approaches are appearing [8].

Even for our set of only three application codes, no simple char-

acterization of input/output request sizes or access patterns is viable.

Further, studies show that the detailed spatial and temporal charac-

teristics of the input/output critically a�ect input/output performance.
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Figure 16: File access timeline (HTF integral calculation)
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Figure 17: File access timeline (HTF self-consistent �eld calculation)

We believe this indicates that the simple synthetic kernels often used

to evaluate new �le system ideas may not be good predictors of po-

tential performance on full-scale applications. The impact of �le sys-

tem changes on real applications or application mixes depends on much

more complex application structure, suggesting that the development of

larger application skeletons and workload mixes are an essential part of

developing high performance input/output systems.

One characteristic of all three applications is that data �les were

generally read or written in their entirety, in many cases by a single

node. This re
ects the current inclination of application programmers

to control the mapping of �les to disks (for performance) and express in-

put/output in ways that are independent of parallel �le system features

(for portability). For example, in several cases, input/output is done by

a single node sequentially, followed by data broadcast through the inter-

connection network. Such I/O patterns could be expressed as collective

operations [1, 5, 11] to allow the �lesystem to optimize performance.

In general, these observations point out the importance of developing
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standard parallel �le system API's; not only to provide functional porta-

bility, but also to provide performance portability. Being able to run the

code on several platforms is not enough, performance optimizations on

one platform must be portable to others. This is an important guiding

principle for �le system implementors, but a di�cult challenge in the

face of the wealth of possible input/output con�gurations and the rich-

ness of their performance space. In short, parallel �le system interfaces

need to become portable and robust if applications are to adopt and

exploit them.

Another common characteristic of the codes is that most of the data

written eventually was propagated to secondary storage. This charac-

teristic has been observed previously on supercomputing systems, and

di�ers markedly from Unix �le systems where statistics generally record

many small short-lived temporary �les. If all output data survives to

disk, the objective of write caching in the �le system must be to in-

crease the achieved bandwidth of the physical input/output system, not

to reduce the input/output volume to disk. For example, aggregation

of small request to transfer sizes e�cient for disks (or internally parallel

RAID's) is critical to achieving a large fraction of peak performance.

Aggregation is feasible; as an example, the ESCAT code employs mul-

tiple writers into disjoint locations in a shared �le. Individually, these

requests would utilize a disk poorly, however they can be combined,

signi�cantly increasing disk e�ciency [8]. This experience suggests that

in some cases, two level bu�ering at compute nodes and input/output

nodes can be bene�cial.

Characterization studies are by their nature inductive, covering only

a small sample of the possibilities and attempting to extract more gen-

eral patterns. The three applications we have studied represent but

a few samples from a large space of parallel applications. We believe

they are indicative, though they are by no means an exhaustive descrip-

tion of the parallel input/output requirements or behavior exhibited

by scalable parallel applications. In addition, it is always di�cult to

determine how much a code has been in
uenced by the available tech-

nology. Doubtless our characterization results are conditioned by both

the parallel input/output hardware, system software, and even machine

con�gurations available. In an attempt to access these dependences, we

are currently broadening our input/output characterization studies to

applications on other hardware platforms.

9 Related Work

The recent, widespread availability of scalable parallel systems has stim-

ulated development of input/output intensive parallel applications and

highlighted the critical need for understanding parallel �le access pat-
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terns. Though our understanding of input/output parallelism is still

in its infancy, there is a long history of �le access characterization for

mainframes and vector supercomputers.

Much of the early work considered whole �le access characteristics,

including �le sizes, lifetimes, and reuse intervals. Notable examples

of this work include Lawrie and Randell's study [14] of automatic �le

migration algorithms for the CDC Cyber 175, Stritter's analysis [29]

of �le lifetime distributions, Smith's study [28] of �le access behavior

on IBM mainframes, and Reed and Jensen's study [10] of accesses to

NCSA's �le archive.

More recently Miller and Katz [17] captured detailed traces of appli-

cation �le accesses from a suite of Cray applications from the National

Center for Atmospheric Research (NCAR). They observed that many

access patterns were sequential and cyclic and that input/output oper-

ations could be classi�ed as compulsory, checkpoint, and data staging.

Pasquale and Polyzos [21, 22] considered the static and dynamic �le

access characteristics of production vector workloads at the San Diego

Supercomputer Center (SDSC) and concluded that most input/output

intensive applications had regular behavior.

The work by Kotz et al [12, 24] is closest in spirit to our character-

ization e�ort. Using instrumentation in the input/output libraries of

the Intel iPSC/860 and the Thinking Machines CM-5, they captured

traces of individual �le operations and analyzed the data to extract ac-

cess patterns. The concluded that �le access parallelism was important,

�le caching was important for certain access patterns, and that contrary

to intuition, small requests are quite common in large scienti�c codes.

Our work di�ers from all of these in considering traces for individual

application programs at the level of individual �le accesses, coupled

with an analysis of the application source code and conversations with

application developers to understand the reasons for the access behavior.

Given the limitations of current parallel �le systems, extrinsic knowledge

is critical to understanding if certain access patterns are inherent or �le

system artifacts.

Several research groups are now developing parallel �le systems and

access policies that can exploit an application developer's knowledge of

access patterns. PIOUS [18] is a portable input/output system designed

for use with PVM. PASSION [3] supports out-of-core algorithms in a

user-level library, but focuses on a high-level array oriented interface.

PPFS [8] provides user control of �le cache sizes and policies, as well

as data placement. Similarly, IBM's Vesta parallel �le system [4] allows

applications to de�ne logical partitions, data distributions, and some

access information. In addition to research e�orts, several vendors have

developed parallel �le systems, including the Thinking Machines CM-5

Scalable Parallel File System [16, 13], the Intel Concurrent File System
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[7] for the iPSC/2 and iPSC/860 [19], the Intel Parallel File System for

the Pargon XP/S [27], and PIOFS for the IBM SP-2.

10 Conclusions and Future Work

Ine�cient and immature input/output subsystems have emerged as a

major performance bottleneck on scalable parallel systems. Unfortu-

nately, �le system and storage hierarchy designers have little empirical

data on parallel input/output access patterns and have been forced to

base designs on extrapolations from the access patterns seen on tradi-

tional vector supercomputers. In this paper, we have outlined our

methodology for input/output data capture and reported the results of

an initial application of this methodology to the �rst three scienti�c

codes from a much larger application suite.

Our preliminary characterization experiences suggest that there are

large variations in spatial and temporal access patterns and in the distri-

bution of request sizes. As others have noted, the majority of the request

patterns are sequential. Cyclic behavior, with repeated patterns of �le

open, access, and close, occur often, but the temporal spacing between

requests across cycles is less regular. Requests tend to be of �xed size,

though both extremely small and extremely large requests are common.

Given the large diversity in access patterns and request sizes, we

believe that design of parallel �le systems that rely on a single, system-

imposed �le system policy is unlikely to be successful. For example,

small sequential requests are well served by a caching and prefetching

policy, but large and irregular requests are better served by a policy that

directly streams data from storage devices to application code. In short,

exploitation of input/output access pattern knowledge in caching and

prefetching systems is crucial to obtaining a substantial fraction of peak

input/output performance. Inherent in such an adaptive approach is

the need to identify access patterns and choose policies based on access

pattern characteristics.

As we continue to expand our input/output characterization to a

larger suite of codes, we are developing a portable parallel �le system

[8] that allows users to advertize expected �le access patterns and to

choose �le distribution, caching, and prefetch policies. To lessen the

cognitive burden of access speci�cation, we have begun developing gen-

eral, adaptive prefetching methods that can learn to hide input/output

latency by automatically classifying and predicting access patterns.
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