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Abstract

Rapid increases in computing and comm unication performance
are exacerbating the long-standing problem of performance-limited
input/output. Indeed, for many otherwise scalable parallel appli-
cations, input/output is emerging as a major performance bottle-
neck. The design of scalable input/output systems depends criti-
cally on the input/output requirements and access patterns for this
emerging class of large-scale parallel applications. However, hard
data on the behavior of such applications is only now becoming
available.

In this paper, we describe the input/output requirements of
three scalable parallel applications (electron scattering, terrain ren-
dering, and quantum chemistry) on the Intel Paragon XP/S. As
part of an ongoing parallel input/output characterization effort,
we used instrumented versions of the application codes to capture
and analyze input/output volume, request size distributions, and
temporal request structure. Because complete traces of individual
application input /output requests were captured, in-depth, off-line
analyses were possible. In addition, we conducted informal inter-
views of the application developers to understand the relation be-
tween the codes’ current and desired input/output structure. The
results of our studies show a wide variety of temporal and spatial
access patterns, including highly read-intensive and write-intensive
phases, extremely large and extremely small request sizes, and both
sequential and highly irregular access patterns. W e conclude with
a discussion of the broad spectrum of access patterns and their pro-
found implications for parallel file caching and prefetching schemes.
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1 Introduction

Recent progress building systems whose aggregate computation and
communication performance can be economically scaled across a wide
range has encouraged application scientists to pursue computational sci-
ence models that were heretofore considered intractable. Unfortunately,
for many scalable parallel applications, the input/output barrier rivals
or exceeds that for computation. In short, high-performance commodity
processors and high-speed networks are necessary but not sufficient to
solve many national challenge problems — scalable parallel secondary
and tertiary storage systems are needed as well.

Distressingly, input /output and file system research on scalable par-
allel systems is in its infancy. Moreover, commodity storage technology
trends suggest that the disparity between peak processor speeds and
disk transfer rates will continue to increase — the commodity disk mar-
ket favors low cost, low power consumption and high capacity over high
data rates. With commodity disks, only disk arrays [2] can provide the
requisite peak data transfer rates.

When hundreds of disks and disk arrays are coupled with tertiary
storage devices, a multilevel storage management system (e.g., like Uni-
tree), and a broad range of possible parallel file access patterns, the
space of potential data management strategies is immense, and identi-
fying optimal or even acceptable operating points becomes problematic.
Unfortunately, file system and storage hierarchy designers have little
empirical data on parallel input/output access patterns and are often
forced to extrapolate from measured access patterns on either traditional
vector supercomputers [17, 21, 22] or Unix workstations [20]. Neither of
these environments reflects the application usage patterns, diversity of
configurations, or economic tradeoffs salient in scalable parallel systems.

The goal of this work is to characterize parallel input/output require-
ments and access patterns, enabling application developers to achieve
a higher fraction of peak input/output performance on existing parallel
systems and system software developers to design better parallel file sys-
tem policies for future generation systems. We analyze the input/output
behavior of three parallel applications on the Intel Paragon XP/S: an
electron scattering code, a terrain rendering code, and a quantum chem-
istry code.

These applications represent a snapshot of current input/output prac-
tice on scalable parallel machines and reflect the developers’ input/output
design choices based on perceived and actual limitations of available in-
put/output systems. These initial codes are but a small part of the
nascent Scalable Input/Output Initiative’s (SIO) code suite [23], and
our initial characterization is a first step in a continuing input/output
characterization effort.

Our experimental data show that application input/output signa-



tures differ substantially, with a wide variety of temporal and spatial ac-
cess patterns, including highly read-intensive and write-intensive phases,
extremely large and extremely small request sizes, and both sequential
and highly irregular access patterns. This data indicates that parallel
input/output systems must deliver high performance across broad di-
versity in application access patterns. Our preliminary experiences with
parallel file systems [8, 9] suggests that supporting robust performance
requires tuning file system policies to specific access patterns.

The remainder of this paper is organized as follows. In §2-3, we sum-
marize our approach to input/output performance characterization and
its relation to the new Scalable I/O Initiative. This is followed in §4
by a brief description of the three application codes and their high-level
input/output behavior. In §5-7 we analyze the temporal and spatial
input/output patterns of the applications in detail, followed in §8 by
discussion of the implications for parallel file system policies. Finally,
89 and §10 describe, respectively, related work on input/output char-
acterization and a brief summary of our experiences and directions for
future research.

2 Background

Though the reasons for input/output in high-performance applications
are varied, they can be broadly classified as compulsory, checkpoint,
or out-of-core [17]. As the name suggests, compulsory accesses are un-
avoidable and arise from reading initialization files, generating applica-
tion output (e.g., scientific data sets or visualizations), or reading input
data sets. A high-performance file system can reduce the time needed
for these accesses, but they cannot be eliminated by clever cache or
memory management schemes.

Checkpoints are necessary because production runs of scientific codes
may span hours or even days, the computing resources are typically
shared among a large user base, and standard operating practice dic-
tates regular down time for system maintenance. In addition, users often
use computation checkpoints as a basis for parametric studies, repeat-
edly modifying a subset of the checkpoint data values and restarting the
computation. The frequency and size of checkpoints is highly applica-
tion dependent, but a high-performance file system can reduce the cost
of checkpointing by exploiting knowledge of checkpoint input/output
characteristics.

Finally, out-of-core input/output is a consequence of limited primary
memory. Historically, vector supercomputers have, by design, lacked
paged virtual memory, and users have managed the limited primary
memory by staging data to and from secondary storage. Even on scal-
able parallel systems with paged virtual memory, many users eschew the



convenience of paging for the tight control possible with user-managed
overlays and scratch files. Larger primary memories can reduce the num-
ber and size of out-of-core scratch files, but not obviate their need —
many important problems have data structures far too large for primary
memory storage to ever be economically viable.

Within these broad input/output classes, there are wide variations
in file access patterns, and such variations have deep performance im-
plications for parallel file systems. Moreover, there are circular depen-
dences between parallel file system efficiency and parallel program ac-
cess patterns. Parallel file systems are designed based on the system
developers’ knowledge of extant file access patterns. Often, these pat-
terns are historical artifacts, themselves based on application develop-
ers’ exploitation of the idiosyncrasies of previous generation file systems.
Consequently, it is critical to both quantify current access patterns and
understand the reasons for these patterns. Simply put, are the observed
access patterns intrinsic to the application algorithms, or are they ar-
tifacts of the current software environment? While definitive answers
may in general be unobtainable, frank conversations with code devel-
opers and analysis of similar applications on different parallel platforms
provide a good basis for insight.

Understanding extant parallel file access patterns and developing
more effective file system policies is the goal of the Scalable I/O Ini-
tiative, a broad-based, multi-agency group that involves academic re-
searchers, government laboratories, and parallel system vendors.? The
initiative seeks to develop the technology base needed to support high-
performance parallel input/output on future scalable parallel systems.
It includes five research working groups: applications, performance char-
acterization (of which the authors are a part), compiler technology, oper-
ating systems, and software integration. The three parallel applications
described in §4 were obtained from application working group partici-
pants.

3 Experimental Methodology

An ideal input/output characterization of an application code includes
access patterns and performance data from the application, input/output
library, file system, and device drivers. Application file accesses are the
logical input/output stimuli; their sizes, temporal spacing, and spatial
patterns (e.g., sequential or random) constrain possible library and file
system optimizations (e.g., by prefetching or caching). The physical
patterns of input/output at the storage devices are the ultimate sys-

1See http://www.ccsf.caltech.edu/SI0/SI0.html
for details. The initial results of the I/O characterization effort is available from
http://www-pablo.cs.uiuc.edu/Projects/I0/io.html



tem response. Minimizing their number and maximizing their efficiency
(e.g., by disk arm scheduling and request aggregation) is the final re-
sponsibility of the file system and device drivers.

Given performance data from the application and all system lev-
els, one can correlate input/output activities at each level and identify
bottlenecks. However, a complete input/output instrumentation of all
system levels is a major undertaking that requires in-depth knowledge
of operating system structure and access to operating system source.
As a prelude to a more detailed instrumentation of system software as
part of the Scalable I/O Initiative, we have developed a suite of applica-
tion input/output software instrumentation and characterization tools.
This suite, an extension of the Pablo performance environment [26, 25],
brackets invocations of input /output routines with instrumentation soft-
ware that captures the parameters and duration of each invocation.

3.1 Pablo Input/Output Instrumentation

The Pablo performance environment consists of (a) an extensible per-
formance data metaformat and associated library that separates the
structure of performance data records from their semantics, (b) an in-
strumenting parser capable of generating instrumented SPMD source
code, (c) extensible instrumentation libraries that can capture times-
tamped event traces, counts, or interval times and reduce the captured
performance data on the fly, and (d) a group of graphical performance
data display and sonification tools, based on the data metaformat and
coarse-grain graphical programming, that support rapid prototyping of
performance analyses.

To capture and analyze input/output performance data, we have ex-
tended the Pablo environment to capture the parameters of application
input/output calls on a variety of single processor and parallel systems.?
To minimize potential input/output perturbations due to performance
data extraction, the Pablo instrumentation software supports real-time
reduction of input/output performance data in addition to capture of
detailed event traces. The former trades computation perturbation for
input/output perturbation. Measurements show that the instrumenta-
tion overhead is modest for input/output data capture and is largely
independent of the choice of real-time data reduction or trace output
for post-mortem analysis.

Pablo’s real-time input/output performance data reductions include
any combination of three summaries: file lifetime, time window, and file
region. File lifetime summaries include the number and total duration
of file reads, writes, seeks, opens, and closes, as well as the number
of bytes accessed for each file, and the total time each file was open.

2This software is available at http://www—pablo.cs.uiuc.edu.



Time window summaries contain similar data, but allow one to specify
a window of time; this window defines the granularity at which data
is summarized. File region summaries are the spatial analog of time
window summaries; they define a summary over the accesses to a file
region. Finally, general input/output statistics computed off-line from
event traces provide means, variances, minima, maxima, and distribu-
tions of file operation durations and sizes.

3.2 Intel Paragon XP/S

Using the Pablo performance instrumentation software, we measured
application input/output performance on the Intel Paragon XP/S [27]
at the Caltech Concurrent Supercomputing Facility (CCSF). At the
time our experiments were conducted, the system had 512 computation
nodes and 16 I/O nodes, each with a RAID-3 disk array composed of 5
1.2GB disks. The software environment consisted of several versions of
Intel OSF/1 1.2 with PFS, Intel’s parallel file system.

PFS stripes files across the I/O nodes in units of 64 KB, with stan-
dard RAID-3 striping on each disk array. In addition to file striping,
PFS supports six parallel file access modes:

e M_UNIX: each node has an independent file pointer,

e M_LOG: all nodes share a file pointer, node accesses are first come
first serve, and input/output operations are variable length,

e M_SYNC: all nodes share a file pointer and accesses are in node num-
ber order,

e M_RECORD: each node has an independent file pointer, access is first
come first serve and input/output operations are fixed length,

e M_GLOBAL: all nodes share a file pointer, perform the same opera-
tions and access the same data, and

e M_ASYNC: each node has an independent file pointer, access is unre-
stricted and variable size, and operation atomicity is not preserved.

We will return to these modes in §5-7 when discussing their use in
application codes.

4 Application Code Suite

As we noted earlier, one of the primary goals of the new national Scal-
able I/O Initiative is analyzing the input/output patterns present in a
large suite of scientific and engineering codes. These span a broad range
of disciplines, including biology, chemistry, earth sciences, engineering,



graphics, and physics [23]. Despite large differences in their underly-
ing algorithms, the codes share two features. First, each code runs on
one or more scalable parallel systems, permitting cross-machine compar-
isons of input/output performance. Second, all codes have both high
input/output and computational requirements. In short, they typify
large-scale scientific and engineering computing.

We have selected three codes from this suite as an initial focus of
our input/output characterization effort. In the following subsections
we briefly describe the algorithms underlying the three applications, the
code structure, and its input/output organization. In §5-7, we examine
the input/output patterns in greater detail and discuss their implica-
tions for file system design.

4.1 Electron Scattering (ESCAT)

The study of low-energy electron-molecule collisions is of interest in
many contexts, including aerospace applications, atmospheric studies,
and the processing of materials using low-temperature plasmas (e.g.,
semiconductor fabrication). The Schwinger multichannel (SMC) method
is an adaptation of Schwinger’s variational principle for the scattering
amplitude that makes it suitable for calculating low-energy electron-
molecule collisions [30]. The scattering probabilities are obtained by
solving linear systems whose terms include a Green’s function which
has no analytic form and is evaluated by numerical quadrature. Gener-
ation of the quadrature data is compute-intensive, and the size of the
data set is highly variable depending on the nature of the problem. The
quadrature is formulated to be energy independent so it can be used to
solve the scattering problem at many energies.

ESCAT is a parallel implementation of the Schwinger multichannel
method written in a combination of C, FORTRAN, and assembly lan-
guage. From an input/output perspective, there are four distinct ex-
ecution phases. First, a compulsory read loads the problem definition
and some initial matrices. Next, all nodes participate in the calcula-
tion and storage of the requisite quadrature data set, with each node
processing a different set of integrals. This phase is compute-intensive
and is composed of a series of compute/write cycles with the write steps
synchronized among the nodes. Memory limitations and the desire to
checkpoint the quadrature data set for reuse in later executions prompt
the writes during this phase. The third phase involves calculations that
depend on the collision energy. In it, energy-dependent data structures
are generated and combined with the reloaded quadrature data set to
form the system of linear equations. In the last phase, the linear system
matrices are written to disk for later solution on another machine.
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Figure 1: Rendering algorithm organization

4.2 Terrain Rendering (RENDER)

NASA’s deep space imaging and Earth observation satellites have ob-
tained multi-spectral data of Mars and Venus, as well as earth. Combin-
ing satellite imagery with terrain elevation data can produce intuitive,
three-dimensional perspective views of the planetary surfaces. By gener-
ating these views in real-time, it is possible to conduct a “virtual flyby”
of the planetary surface where scientists can interactively examine false
color terrains from a variety of positions and orientations, supporting
rapid exploration of large data sets. A parallel ray-identification algo-
rithm [15] distributes terrain data among processing nodes, decomposing
via the natural data parallelism, and exploiting positional derivatives to
vary rendering resolution. Together these techniques achieve several
frames per second on gigabyte data sets, approaching the ten frames
per second needed for real-time animation.

The RENDER code is a hybrid control and data parallel implemen-
tation of the ray identification rendering algorithm; Figure 1 shows its
high-level structure. A single gateway node manages a group of paral-
lel rendering processes and begins by reading the initial data set. The
initial read is followed by a read-render-write cycle for each of the sub-
sequent view perspectives (frames). In this loop, the gateway inputs
view perspective requests, directs rendering tasks to produce the view,
collects rendered views from the group of rendering tasks, and outputs
frames to either secondary storage or a HiPPi frame buffer. Thus, REN-
DER’s input/output activity consists of a compulsory read of the initial
data set, a series of reads of view coordinates, and corresponding writes
of the rendered frames.

4.3 Hartree Fock (HTF)

Ab initio chemistry calculations are the key to a detailed understanding
of bond strengths and reaction energies for chemical species. More-
over, they allow chemists to study reaction pathways that would be too
hazardous or too expensive to explore experimentally. This version of
the Hartree Fock algorithm calculates the non-relativistic interactions



among atomic nuclei, electrons in the presence of other electrons, and
electrons interacting with nuclei. Basis sets derived from the atoms and
the relative geometry of the atomic centers are the initial inputs. Atomic
integrals are calculated over these basis functions and are used to ap-
proximate molecular density. This density and the previously calculated
integrals are used to compute the interactions and to form a Fock ma-
trix. A self consistent field (SCF) method is used until the molecular
density converges to within an acceptable threshold.

The Hartree Fock implementation we studied consists of three dis-
tinct programs totaling roughly 25K lines of Fortran. The three pro-
grams operate as a logical pipeline, with the second and third accepting
file input from the previous one. The first program, psetup, reads the
initial input, performs any transformations needed by the later compu-
tational phases, and writes its result to disk. The next program, pargos,
calculates and writes to disk the one and two-electron integrals. The
final program, pscf, reads the integral files multiple times (they are too
large to retain in memory) and solves the SCF equations. In subsequent
sections, we refer to these three programs as initialization, integral cal-
culation, and self-consistent field calculations.

With these brief descriptions of the electron scattering, parallel ren-
dering, and Hartree Fock codes, in §5-7 we examine the detailed pat-
terns of input/output present in each and discuss the implications for
file systems design.

5 Electron Scattering Behavior

To accurately assess the input/output patterns of the electron scattering
code, we used a data set large enough to capture typical behavior but
small enough to permit parametric studies of different code versions.
On 128 nodes with this data set, the ESCAT code executed for roughly
one and three quarter hours. Production data sets generate similar
behavior, but with ten to twenty hour executions on 512 processors.

Succinctly, the dominant input/output behavior in the current ver-
sion of the ESCAT code is small writes, and most of the time is spent
computing. During initialization, a single node uses the M_UNIX mode
to read the initialization data and broadcast it to the other nodes. In
the major execution phase, each node repeatedly seeks and then writes
quadrature data to intermediate staging files. Near the end of execution,
the nodes reload the previously written data, with each node rereading
the same quadrature data that it wrote. As we shall see in §5.2, this soft-
ware organization is largely due to the constraints system performance
places on the application developers — not only would they prefer a
different program organization, the problem they wish to solve requires
dramatically greater input/output performance.



Operation | Operation | Volume | Node Time | Percentage

Count (Bytes) (Seconds) | I/O Time
AILT/O 26,418 | 60,983,136 38,788.95 100.00
Read 560 | 34,226,048 81.19 0.21
Write 13,330 | 26,757,088 16,268.50 41.94
Seek 12,034 - 20,884.11 53.84
Open 262 - 1179.06 3.04
Close 262 - 376.06 0.97

Table 1: Number, size, and duration of I/O operations (ESCAT)

‘ Operation ‘ Operation Size ‘
<4KB | <64 KB | <25 KB | > 256 KB
Read 297 3 260 0
Write 13,330 0 0 0

Table 2: Read/write sizes (ESCAT)

5.1 Experimental Data

Tables 1-2 are a high-level summary of the input/output behavior of
the ESCAT code. During the roughly 6,000 seconds of execution, the to-
tal volume of input /output data is only 60M bytes, or 10K bytes/second.
Read operations represent 56 percent of the input/output volume, but
only two percent of the operations and 0.2 percent of the input/output
time. As Figure 2 and Table 2 show, read sizes are bimodal, with roughly
equal numbers of small and large read requests. The overheads for writes
and seeks dominate other input/output operations, representing almost
96 percent of the total input/output time.

As we noted earlier, the ESCAT code has four distinct read/write
phases. These phases are clearly visible in Figures 2-3, which show
timelines of the ESCAT reads and writes. In the first phase, the initial
data is read from three files by node zero and broadcast to the remaining
nodes. During the second phase, all nodes repeatedly compute, synchro-
nize, and then write 2 K bytes of quadrature data to two intermediate
staging files — one file for each of the two possible collision outcomes
contained in our test data. To simplify reloading of the data in the next
phase, each node seeks to a calculated offset dependent on the node
number, iteration, and PFS stripe size before writing the data. Intel’s
M_UNIX file mode is used for these writes.

In the third input/output phase, the previously written quadrature

10
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files are read by all the nodes using the Intel M_.RECORD mode.? Finally,
in the last input/output phase, data is sent to node zero by all other
nodes and written to three output files.

As can be seen in Figure 2, read operations occur only in the first
and third phases. The first spike in Figure 2 is the initial, compulsory
data input; the phase three read operations at the far right of the figure
are the staging of the previously computed quadrature data. Figure 3
shows the initial input phase in greater detail, capturing the variety of
access sizes and temporal irregularity of the requests.

The tight clustering of the quadrature data writes by all the proces-
sors is evident in Figure 4. The temporal spacing of the groups decreases
as the quadrature calculation phase proceeds, ranging from roughly 160
seconds near the beginning of the phase to half that near the end. Ta-

3Recall that in this mode each node has a separate file pointer, but the nodes
must read fixed size records in first-come-first-serve order.
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ble 1 shows that seek overhead is a major contributor to the temporal
dispersion of each group.

Finally, Figure 5 shows when each of the input and output files was
accessed during the ESCAT execution. In the figure, diamonds denote
reads, and crosses denote writes. Three files with the identifiers 9, 10,
and 11 contain the initial input data, two other files with identifiers 7
and 8 are used for staging the quadrature data, and the final output is
written to the files with identifiers 3, 4, and 5.

5.2 Discussion

The implementation and input/output behavior of the ESCAT electron
scattering code highlight the disparity between the ideal and current
practice. At first glance, it appears that the input/output is inefficient,
but seemingly of little import because the code is heavily computation
bound. Indeed, for current data sets, this is true. However, the com-

12



plexity of the quadrature data volume grows as O(N?), where N is the
number of electron scattering outcomes. Conversations with McKoy et
al reveal that for current problems, with N ~ 10, computation domi-
nates. This reflects their pragmatic need to attack only solvable prob-
lems, Their research goal is N =~ 50, or two orders of magnitude more
data. In short, research practice and the behavior of this code would
change dramatically were higher performance input/output possible.

Not only is the current problem size constrained by input/output
limitations, the ESCAT code’s input/output behavior is constrained as
well. Although the initial data is needed by all processors, the applica-
tion developers discovered by experimentation that it was more efficient
for a single node to read the initial data and then use the communication
network to broadcast the data than it was for each node to indepen-
dently read the initialization data. More efficient support for parallel
reading of complete files would simplify the application, eliminating the
need to write data distribution code.

The decision to use the Intel M UNIX mode to write the quadrature
data, rather than the M_RECORD mode, was driven by the desire to reduce
the time needed to read the data. On writes, the M. RECORD mode gen-
erates a sequence of fixed size records that appear to have been written
in node order (i.e., for N nodes, the file consists of groups of N records,
with each group written in node order). However, in ESCAT, the data
written by a given node is later read by that same node, requiring it
to be contiguous if the node is to read it efficiently with a single large
access. To efliciently support accesses of this type, either a richer set of
file modes is needed, or the application must be redesigned.

Finally, because the input/output in this application is dominated
by small writes, read prefetching would benefit little. In contrast, write
request aggregation and write behind could dramatically reduce the out-
put cost. To quantify these effects, we ported the ESCAT code to PPFS,
our portable parallel file system [8], and configured the file system with
write behind and global request aggregation policies. This combination
of policies effectively eliminated the behavior seen in Figure 4. In our
experience, this type of optimization (i.e., choosing file policies based
on access pattern knowledge), is the key to maximizing input/output
performance.

6 Terrain Rendering Behavior

To assess the input/output behavior of the terrain rendering code, we
used a full production data set (Mars flyby data from the Viking mis-
sion), but abbreviated the run by limiting the number of frames ren-
dered. Beyond this point in the computation, the RENDER code per-
forms periodic output of frames, of fixed size and at nearly fixed time

13



intervals. In addition, in actual production use, all of this output would
be directed to a HiPPi frame buffer, not the file system. On 128 nodes,
the production data set required roughly eight minutes to initialize and
output one hundred views (frames). Full production runs consist of 5000
or more frames and execute for approximately thirty minutes. These
production runs generate identical initial input/output requirements,
extending only the reading of views to render and output views.

Overall, the dominant file input/output requirement of the current
version of RENDER is the initial read of a gigabyte data set, followed by
compute-limited rendering phases. During initialization, a single node
uses the M_UNIX file mode to read the entire data set and broadcast it to
the rest of the nodes. During the major computation phase (rendering),
view coordinates are retrieved from a control file (small reads), and the
rendering of each view produces a single large write of the rendered im-
age to the HiPPi frame buffer. As we shall see in §6.2, the input/output
structure is the product of restrictions on the file system input/output
modes; the developers would like to exploit file system features, but they
cannot.

6.1 Experimental Data

Tables 3 and 4 contain a high-level summary of the input/output behav-
ior of RENDER. Over the 470 seconds of execution, the total volume
of input/output is nearly one gigabyte, dominated by the read of the
initial data set.

Read operations dominate the input/output, accounting for 89 per-
cent of the input/output volume and 64 percent of the input/output
requests. The read traffic is dominated by asynchronous reads both in
volume and in the number of requests. However, the read requests take
only a small fraction of the input/output time — reads and asynchronous
reads account for 0.17 and 4.6 percent of the input/output time respec-
tively. For asynchronous reads, the measured time is only the cost of
issuing the read, some of the input time may be overlapped — the part
not overlapped appears as iowait time. In this code, the iowait time
is the major fraction of the I/O time. Read sizes are again bimodal,
clustered below 4K bytes and above 256K bytes. Large reads dominate
both in number of requests and in volume. The writes account for nearly
20 percent of the input/output time, though accounting for only a small
fraction of the input/output volume.

The RENDER code has two basic phases, initialization and render-
ing. These phases are not only distinguished computationally, they have
dramatically different input/output patterns as shown in Figures 6 and
7, timelines of RENDER read and write requests. In the first phase, the
terrain data is read in from four files by the gateway node using M_UNIX
mode. These requests are extremely large, clustered at 3 megabytes and

14



Operation | Operation | Volume Time Percentage

Count (Bytes) (Seconds) | I/O Time
All I/O 1504 | 979,162,982 164.75 100.00
Read 121 8457 0.17 .10%
AsynchRead 436 | 880,849,125 4.60 2.79
I/O Wait 436 - 88.44 53.68
Write 300 98,305,400 31.76 19.28
Seek 4 0 13 0.08
Open 106 - 32.78 19.90
Close 101 - 6.87 4.17

Table 3: Number, size, and duration of I/O operations (RENDER)

‘ Operation ‘ Operation Size ‘
<4KB | <64 KB | <25 KB | > 256 KB
Read 121 0 0 436
Write 200 0 0 100

Table 4: The sizes of reads and writes in RENDER.

1.5 megabytes. The input data is then broadcast to the other 128 nodes
which form the renderer, each selecting an appropriate subset of the
data. The initial phase ends around 210 seconds into the run, and the
rendering phase begins. The gateway node reads views from a control
file, directing the renderer to produce the requisite image. The data for
each view (640x512 24-bit color image, approximately one megabyte) is
collected by the gateway and output in a single request. In our runs,
this data is written to disk using M_UNIX mode, but in a production run,
this data would be sent directly to a HiPPi frame buffer.

Figure 6 clearly shows the large read request sizes generated by the
initialization phase. The first set of read requests are 3 megabytes,
then the size decreases to 1.5 megabytes. At 210 seconds, there is a
pronounced transition to the render phase, and the only read requests
are small requests to read the view coordinates. Figure 7 shows the
write behavior of RENDER, and also reflects the phase structure of the
code. There is no write traffic in the initialization phase, and in the
rendering phase, write requests consist exclusively of the writes of the
one megabyte color images.

Figure 8 shows the file activity for RENDER, and also clearly reflects
the two phase structure of the RENDER code. The critical read initial-
ization phase accesses primarily four files (the data set). The control file
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(views) is accessed in both phases, but heavily in the rendering phase.
The output files are each accessed only once (written in their entirety)
accounting for the staircase structure.

6.2 Discussion

The RENDER code illustrates how scalable parallel systems can enable
new classes of applications which in turn engender new challenges for
system designers. Increased computational power and memory capac-
ity enable interactive visualization of multi-gigabyte data sets, which
introduces the complexity of real-time requirements and on-line output,
streaming to a frame buffer. The RENDER input/output pattern fits a
classic scientific computing input/output stereotype: large initial read,
followed by the writing of output results.

The RENDER code and data set described are matched to the capa-
bilities of currently available systems; however, such scientific visualiza-
tion applications present much larger computational and input/output
challenges. Because RENDER is used for visualizing NASA sensor data,
the resolution of input data sets (and their size) is limited by sensor res-
olution and available data base sizes. Examples include LANDSAT,
Mars (Viking), and Venus (Magellan). These data sets currently range
from 100’s of megabytes to 100’s of gigabytes, but with increases in sen-
sor resolution and deployment of systems such as the Earth Observa-
tion System, much larger data bases (terabytes) are becoming available.
Larger data bases increase the size of the input burst for initialization,
and terabyte data bases may require the adoption of out-of-core algo-
rithms. Current images are output with a resolution of 640x512 with
24-bit color; with higher resolution data bases and higher output res-
olutions (3000x2000), corresponding increases in the computation and
output are required. Finally, the current system requires several sec-
onds per frame, but higher frame rates (ten or as high as thirty) are
desirable. More directly, higher input/output performance is required
for larger data sets and higher resolution output with this code.

The RENDER code performs only sequential file access, and all the
input/output is mediated by the gateway node. The gateway node
reads the data set, then broadcasts it. Although the basic data dis-
tribution is block-cyclic, and therefore apparently well-matched to the
PFS M_RECORD mode, this mode requires all of the nodes to participate.
The code developers eschewed the use of M_ RECORD because RENDER
uses nodes asymmetrically (gateway and renderer); not all nodes need to
participate. Hence, use of M_RECORD mode would require some additional
code restructuring and data shuffling regardless.

Using sequential input/output, the code explicitly prefetches initial
file data by using asynchronous reads and initiates large read requests,
but only achieves a read throughput of approximately 9.5 megabytes/second.
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Parallel access using the M_UNIX mode was empirically determined not
to improve code performance. RENDER would benefit from efficient
parallel file access modes that allow node subsets to participate with-
out requiring shared file pointers. Another approach, eschewed by the
developers, is the use of separate input files for each node. Though this
might improve input performance, it incurs additional preprocessing
steps, expensive for large data bases, and binds the data base repre-
sentation to the machine configuration. Efficient parallel access modes
that give the effective performance of this change without requiring log-
ical reorganization across files in the application are desirable. Finally,
while occasionally single frames or collections of frames might be writ-
ten to disk, the typical use for RENDER is to write the output data
to a HiPPi frame buffer. This presents another dimension of streaming
input/output which has not yet received much attention in the scalable
systems community.

7 Hartree Fock Behavior

As we noted in §4.3, the Hartree Fock (HTF) application is composed of
three codes: an initialization (psetup), an integral calculation (pargos),
and a self-consistent field calculation phase (pscf). For our rather small
input data set of 16 atoms, the respective execution times of the three
program components were 127, 1173, and 1008 seconds on 128 nodes
of the Intel Paragon XP/S, with slightly less than 20 percent of that
time consumed by input/output operations. As with the ESCAT code,
we shall see that this is not the desired ratio, merely what is currently
feasible.

The first code in the HTF application reads a small initial data file
and transforms it for use by the later phases. The second, integral
calculation phase creates the files of integrals that are consumed by the
third, self-consistent field calculation phase. The Intel M_UNIX file mode
is used exclusively in all three codes.

7.1 Experimental Data

Tables 5-6 summarize the input/output behavior of the three HTF
application components. During the initialization phase, the reads and
writes are small and occur as initial data is read and transformations
are written for use by the ensuing phases. In the integral calculation
phase, the number of integrals determines the input/output data vol-
ume — quadrature data is written for each integral. Because a Fock
matrix of size N generates O(N?) one electron and O(N*) two electron
integrals [6], the data volume grows dramatically with matrix size and
is substantial even for small matrices. This phase is, therefore, write
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Operation | Operation Volume Node Time | Percentage

Count (Bytes) (Seconds) | I/O Time

HTF Initialization
AllT/O 832 7,267,422 55.23 100.00
Read 371 3,522,497 15.34 27.77
Write 452 3,744,872 5.50 9.96
Seek 2 53 0.43 0.78
Open 4 - 31.49 57.02
Close 3 - 2.47 4.47
HTF Integral Calculation
AILT/O 17,854 | 698,992 502 6,398.03 100.00
Read 145 34,393 0.47 0.00
Write 8,535 698,958,109 1996.4 31.20
Seek 130 0 0.14 0.00
Open 130 - 4056.60 63.40
Close 129 - 11.43 0.18
Lsize 128 - 15.27 0.24
Forflush 8,657 - 317.72 4.98
HTF Self-Consistent Field Calculation

AllT/O 52832 | 4,205,483,650 32,800.99 100.00
Read 51499 | 4,201,634,304 32,263.20 98.36
Write 207 3,849,268 5.88 0.02
Seek 813 | 3,495,198,798 1.67 0.00
Open 157 - 518.74 1.58
Close 156 - 11.50 0.04

Table 5: Number, size, and duration of I/O operations (HTF)

intensive, which shows clearly in Table 6 and Figure 12. The final, self-
consistent field calculation phase is quite read intensive, with each node
repeatedly reading the integral files.

Despite the substantial input/output, the maximum request size is
rather small, only four times the Intel PFS striping factor of 64K bytes.
Moreover, the number of requests smaller than 4K bytes is non-trivial.
In short, the request size distribution of Table 6 is bimodal, though
skewed toward larger requests, the opposite of the size distribution
shown in Table 2 for the ESCAT code

Figures 9-13 and 10-14 show, respectively, read and write request
sizes as a function of time. The write intensities of the integral calcu-
lation phase and read intensity of the self-consistent field computation
phase are striking on this time scale. With this data set, each of the
nodes writes roughly 5M bytes of data during the integral calculation.
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Operation ‘ Operation Size
HTF Initialization

<4 KB | <64 KB | <256 KB | > 256 KB
Read 151 220 0 0
Write 218 234 0 0

HTF Integral Calculation
Read 143 2 0 0
Write 2 1 8,532 0

HTF Self-Consistent Field Calculation

Read 165 109 51225 0
Write 43 158 6 0

Table 6: Read/write sizes (HTF)
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Figure 9: Read operation timeline (HTF initialization)

Figures 15-17 show that each node writes the integral data to a separate
file; the nodes then read this data during the final calculation phase.

7.2 Discussion

Quite clearly, the HTF code has substantial input/output requirements
even for what is, by current computational chemistry standards, a rather
small problem of 16 atoms. In general, though, the input/output pattern
in this code is quite regular, with little but sequential accesses except
in the final calculation phase.

In conversations with the code developers, we discovered that this is
the version of the code they would like to use for larger, more interesting
problems. By precomputing the integrals and reusing the quadrature
data as needed, the computation requirements can be reduced dramat-
ically. Unfortunately, because the input/output requirements grow as
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Figure 11: Read operation timeline (HTF integral calculation)

the number of two electron integrals (i.e., as O(N*)), this is not feasible
with current input/output systems. Instead, the integrals are recom-
puted as needed, substantially increasing the computation requirements
but reducing the input/output costs and, with current input/output
software, the total execution time.

For integral input/output to be preferable to recomputation, read-
ing an integral from secondary storage must take less than the roughly
500 floating point operations needed for integral calculation. For cur-
rent systems, this requires a sustained input/output rate of approxi-
mately 5-10 Mbytes/second per node. With current and projected disk
technology, this implies a system with a disk or disk array directly at-
tached to each processor. Moreover, as processor speeds increase, the
input/output rate must increase commensurately, else recomputation
becomes the preferred alternative. Simply put, this application requires
high storage capacity and high throughput for simple access patterns.
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8 Parallel File System Implications

The most significant observation from our study is that the input/output
requirements of scientific codes (electron scattering, terrain rendering
and quantum chemistry) greatly exceed the capabilities of existing scal-
able systems. Scientific applications have input/output patterns and
requirements more complex than simple stereotypes, and these require-
ments are extremely challenging. The mismatch between desired and
currently available input/output performance has two important conse-
quences for application scientists: it complicates application code struc-
ture, and it reduces the scope of experiments computationally feasible.
For parallel systems vendors and file system designers, it is clear that
improvements in scalable parallel input/output capabilities can enable
or even catalyze advances in science and scientific computing.

All three applications that we studied exhibited a wide variety of
read/write mixes and request sizes, with the latter ranging from a
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tion)

FileID

90 100 110 120
TimeLine

Figure 15: File access timeline (HTF initialization)

few bytes to several megabytes. In short, to provide robust perfor-
mance, parallel file systems must efficiently support a variety of request
size and read/write mixes. However, the performance characteristics of
current input/output systems favor large requests because high band-
widths are achieved through parallelism. Consequently, achieving good
input/output performance for applications that make small requests ad-
mits two basic possibilities: programmers can manually aggregate re-
quests or file systems (and user level libraries) can transform request
streams via caching or prefetching, serving as impedance matchers be-
tween the application access patterns and disk performance character-
istics. The latter approach is promising, and demonstrations of the
effectiveness such approaches are appearing [8].

Even for our set of only three application codes, no simple char-
acterization of input/output request sizes or access patterns is viable.
Further, studies show that the detailed spatial and temporal charac-
teristics of the input/output critically affect input/output performance.
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Figure 17: File access timeline (HTF self-consistent field calculation)

We believe this indicates that the simple synthetic kernels often used
to evaluate new file system ideas may not be good predictors of po-
tential performance on full-scale applications. The impact of file sys-
tem changes on real applications or application mixes depends on much
more complex application structure, suggesting that the development of
larger application skeletons and workload mixes are an essential part of
developing high performance input/output systems.

One characteristic of all three applications is that data files were
generally read or written in their entirety, in many cases by a single
node. This reflects the current inclination of application programmers
to control the mapping of files to disks (for performance) and express in-
put/output in ways that are independent of parallel file system features
(for portability). For example, in several cases, input/output is done by
a single node sequentially, followed by data broadcast through the inter-
connection network. Such I/O patterns could be expressed as collective
operations [1, 5, 11] to allow the filesystem to optimize performance.
In general, these observations point out the importance of developing
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standard parallel file system API’s; not only to provide functional porta-
bility, but also to provide performance portability. Being able to run the
code on several platforms is not enough, performance optimizations on
one platform must be portable to others. This is an important guiding
principle for file system implementors, but a difficult challenge in the
face of the wealth of possible input/output configurations and the rich-
ness of their performance space. In short, parallel file system interfaces
need to become portable and robust if applications are to adopt and
exploit them.

Another common characteristic of the codes is that most of the data
written eventually was propagated to secondary storage. This charac-
teristic has been observed previously on supercomputing systems, and
differs markedly from Unix file systems where statistics generally record
many small short-lived temporary files. If all output data survives to
disk, the objective of write caching in the file system must be to in-
crease the achieved bandwidth of the physical input/output system, not
to reduce the input/output volume to disk. For example, aggregation
of small request to transfer sizes efficient for disks (or internally parallel
RAID’s) is critical to achieving a large fraction of peak performance.
Aggregation is feasible; as an example, the ESCAT code employs mul-
tiple writers into disjoint locations in a shared file. Individually, these
requests would utilize a disk poorly, however they can be combined,
significantly increasing disk efficiency [8]. This experience suggests that
in some cases, two level buffering at compute nodes and input/output
nodes can be beneficial.

Characterization studies are by their nature inductive, covering only
a small sample of the possibilities and attempting to extract more gen-
eral patterns. The three applications we have studied represent but
a few samples from a large space of parallel applications. We believe
they are indicative, though they are by no means an exhaustive descrip-
tion of the parallel input/output requirements or behavior exhibited
by scalable parallel applications. In addition, it is always difficult to
determine how much a code has been influenced by the available tech-
nology. Doubtless our characterization results are conditioned by both
the parallel input/output hardware, system software, and even machine
configurations available. In an attempt to access these dependences, we
are currently broadening our input/output characterization studies to
applications on other hardware platforms.

9 Related Work

The recent, widespread availability of scalable parallel systems has stim-
ulated development of input/output intensive parallel applications and
highlighted the critical need for understanding parallel file access pat-
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terns. Though our understanding of input/output parallelism is still
in its infancy, there is a long history of file access characterization for
mainframes and vector supercomputers.

Much of the early work considered whole file access characteristics,
including file sizes, lifetimes, and reuse intervals. Notable examples
of this work include Lawrie and Randell’s study [14] of automatic file
migration algorithms for the CDC Cyber 175, Stritter’s analysis [29]
of file lifetime distributions, Smith’s study [28] of file access behavior
on IBM mainframes, and Reed and Jensen’s study [10] of accesses to
NCSA’s file archive.

More recently Miller and Katz [17] captured detailed traces of appli-
cation file accesses from a suite of Cray applications from the National
Center for Atmospheric Research (NCAR). They observed that many
access patterns were sequential and cyclic and that input/output oper-
ations could be classified as compulsory, checkpoint, and data staging.
Pasquale and Polyzos [21, 22] considered the static and dynamic file
access characteristics of production vector workloads at the San Diego
Supercomputer Center (SDSC) and concluded that most input/output
intensive applications had regular behavior.

The work by Kotz et al [12, 24] is closest in spirit to our character-
ization effort. Using instrumentation in the input/output libraries of
the Intel iPSC/860 and the Thinking Machines CM-5, they captured
traces of individual file operations and analyzed the data to extract ac-
cess patterns. The concluded that file access parallelism was important,
file caching was important for certain access patterns, and that contrary
to intuition, small requests are quite common in large scientific codes.

Our work differs from all of these in considering traces for individual
application programs at the level of individual file accesses, coupled
with an analysis of the application source code and conversations with
application developers to understand the reasons for the access behavior.
Given the limitations of current parallel file systems, extrinsic knowledge
is critical to understanding if certain access patterns are inherent or file
system artifacts.

Several research groups are now developing parallel file systems and
access policies that can exploit an application developer’s knowledge of
access patterns. PIOUS [18] is a portable input/output system designed
for use with PVM. PASSION [3] supports out-of-core algorithms in a
user-level library, but focuses on a high-level array oriented interface.
PPFS [8] provides user control of file cache sizes and policies, as well
as data placement. Similarly, IBM’s Vesta parallel file system [4] allows
applications to define logical partitions, data distributions, and some
access information. In addition to research efforts, several vendors have
developed parallel file systems, including the Thinking Machines CM-5
Scalable Parallel File System [16, 13], the Intel Concurrent File System
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[7] for the iPSC/2 and iPSC/860 [19], the Intel Parallel File System for
the Pargon XP/S [27], and PIOFS for the IBM SP-2.

10 Conclusions and Future Work

Inefficient and immature input/output subsystems have emerged as a
major performance bottleneck on scalable parallel systems. Unfortu-
nately, file system and storage hierarchy designers have little empirical
data on parallel input/output access patterns and have been forced to
base designs on extrapolations from the access patterns seen on tradi-
tional vector supercomputers. In this paper, we have outlined our
methodology for input/output data capture and reported the results of
an initial application of this methodology to the first three scientific
codes from a much larger application suite.

Our preliminary characterization experiences suggest that there are
large variations in spatial and temporal access patterns and in the distri-
bution of request sizes. As others have noted, the majority of the request
patterns are sequential. Cyclic behavior, with repeated patterns of file
open, access, and close, occur often, but the temporal spacing between
requests across cycles is less regular. Requests tend to be of fixed size,
though both extremely small and extremely large requests are common.

Given the large diversity in access patterns and request sizes, we
believe that design of parallel file systems that rely on a single, system-
imposed file system policy is unlikely to be successful. For example,
small sequential requests are well served by a caching and prefetching
policy, but large and irregular requests are better served by a policy that
directly streams data from storage devices to application code. In short,
exploitation of input/output access pattern knowledge in caching and
prefetching systems is crucial to obtaining a substantial fraction of peak
input/output performance. Inherent in such an adaptive approach is
the need to identify access patterns and choose policies based on access
pattern characteristics.

As we continue to expand our input/output characterization to a
larger suite of codes, we are developing a portable parallel file system
[8] that allows users to advertize expected file access patterns and to
choose file distribution, caching, and prefetch policies. To lessen the
cognitive burden of access specification, we have begun developing gen-
eral, adaptive prefetching methods that can learn to hide input/output
latency by automatically classifying and predicting access patterns.
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