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ABSTRACT

The need for customizable and application-speci�c operat-
ing systems has been recognized for many years. A cus-
tomizable operating system is one that can adapt to some
particular circumstance to gain some functional or perfor-
mance bene�ts. Microkernels have attempted to address
this problem, but su�er performance degradation due to
the cost of inter-process protection barriers. Commercial
operating systems that can e�ciently adapt themselves to
changing circumstances have failed to appear, in part due
to the di�culty of providing an interface that is e�cient to
invoke, provides a protection barrier, and can be dynami-
cally recon�gured.

Providing such a safe, e�cient, and dynamic interface
in a concurrent operating system requires an e�ective con-
currency control mechanism to prevent con
icts between
system components proposing to execute specialized com-
ponents, and those components responsible for dynamically
replacing specialized components. This paper outlines our
basic approach to specialization of operating systems, and
details our dynamic replacement mechanism and its con-
currency control features.

1 INTRODUCTION

A key dilemma faced by operating system developers is the
need to produce software that is both general-purpose and
e�cient. Operating systems must execute correctly under
all conditions, but must also exhibit high performance un-
der certain common conditions. The conventional approach
to this dilemma is to write code that is general-purpose, but
optimized for a single anticipated common case. The result
is an implementation with functionality and performance
characteristics that are �xed throughout the lifetime of the
operating system.

The need for con�gurability arises when the anticipated
common case doesn't match the characteristics of some im-
portant application. This situation can arise when the ap-
plication in question was developed after the operating sys-
tem, or when the operating system developer simply failed
to recognize the importance of this application or class of
applications.
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The problem can be serious when the optimizations em-
bedded in the operating system are particularly bad for the
new application. For instance, the usual paging policy pro-
vided by most operating systems is simply not appropriate
for database applications [30]. Mukherjee and Schwan [22]
showed that both spinlocks and blocking locks can provide
superior performance under di�erent circumstances. Thus
it is important to provide operating system facilities that
are appropriate to the application.

Micro-kernels have addressed this problem by provid-
ing a minimal kernel, and encapsulating the rest of OS
functionality in replaceable server processes [5, 6, 10, 11,
17, 24, 29]. Such systems can be customized by replacing
or providing additional servers that implement the desired
policies while making use of existing mechanisms provided
by the micro-kernel. Using this approach, customization is
supported at a coarse granularity, through the replacement
of complete servers.

The customizability that comes from restructuring op-
erating systems as collections of user-level servers is not
free. System calls that previously involved only procedure
calls and accesses to shared data within the kernel now in-
cur the overhead of virtual memory context switches and
thread switches associated with message passing across pro-
tection boundaries.

In view of the fact that performance really matters,
operating system researchers have explored several alter-
natives to the micro-kernel approach. Projects such as
SPIN [4] and the Exokernel [13] provide facilities to allow
applications to incorporate their own variants of OS func-
tionality while moving the traditional microkernel protec-
tion barriers up or down so as to minimize the performance
penalties of dynamic con�guration. Object-oriented oper-
ating systems use objects for con�gurability and to provide
protection.

The Synthetix approach to OS con�guration is to auto-
matically provide specialized implementations of various
OS services. The specialized implementations are tuned
to provide improved OS performance by exploiting invari-
ants that are particular to the application using the service.

By way of example, consider a simpli�ed Unix File Sys-
tem interface in which open takes a path name and returns
an \open �le" object. The operations on that object in-
clude read, write, close, and seek. The method code for
read and write can be specialized, at open time, to read
and write that particular �le, because at that time the sys-
tem knows, among other things, which �le is being read,



which process is doing the reading, the �le type, the �le
system block size, whether the inode is in memory, and if
so, its address, etc. Thus, a lot of the interpretation of �le
system data structures that would otherwise have to go on
at every read can be done once at open time. Performing
this interpretation at open time is a good idea if read is
more common than open, and in our experience with spe-
cializing the Unix �le system, loses only if the �le is opened
for read and then never read.

Exploiting these ideas in an operating system with con-
current processes requires an e�ective concurrency control
mechanism to prevent con
icts between system components
proposing to execute specialized components, and those
components responsible for dynamically replacing special-
ized components. This paper outlines our basic approach
to specialization of operating systems, and details our dy-
namic replacement mechanism and its concurrency control
features.

Section 2 elaborates on the Synthetix notions of spe-
cialization. Section 3 describes our experiments exploiting
specialization in systems. Section 4 details our mechanism
for safe, concurrent replacement of specialized modules, a
process we call replugging. Section 5 describes related
work. Finally Section 6 discusses our conclusions and fu-
ture work.

2 SPECIALIZATION

The Synthetix project seeks to de�ne a systematic approach
to dynamic customization of an operating system. We be-
gin with a high-level speci�cation of customization require-
ments using invariants. A true invariant, like a classical
invariant, is a state property of the system that is guaran-
teed to be true at all times. A quasi-invariant is a state
property that is momentarily true, but may be falsi�ed at
some future point in time.

Once invariants have been established, specialized
modules can be prepared to replace their generic coun-
terparts in the system. A specialized module can either
be a specialization of mechanism or of policy. A special-
ized mechanism is a more e�cient implementation of the
same functionality, optimized using partial evaluation
with respect to the invariants. A specialized policy module
provides the same interface as its generic counterpart, but
changes the behavior of the module to provide improved
performance to the application, e.g. a specialized �le pre-
fetching policy.

Quasi-invariants can be falsi�ed, potentially making
their corresponding specialized modules either ine�cient
or invalid. Thus quasi-invariants must be guarded. A
guard is a test placed at a location in the system where
a quasi-invariant might be invalidated: if execution of that
point invalidates the quasi-invariant, then the guard re-
plugs all the specialized modules that depend on it with
less specialized modules that do not depend on the falsi�ed
quasi-invariant. Because a specialized module that depends
on quasi-invariants can be removed, possibly even before it
is used, we refer to the use of such specialized modules as
optimistic specialization.

Specialized modules can be installed when ever the ap-
propriate set of invariants and quasi-invariants is discovered
to be true. Discovering that an invariant is true requires the
same set of checks as discovering that an invariant is false,

and so the aforementioned guards can be used to instan-
tiate the use of specialized modules, allowing the operat-
ing system to infer the specializations that should be used.
Sometimes, however, invariants are discovered to be true at
di�erent points in time. In that case, the specialized mod-
ule may be replaced with one that is more specialized than
the current module. We call this incremental specializa-
tion. Section 3.1 describes an experimental modi�cation of
the HP-UX operating system to exploit the techniques of
optimistic and incremental specialization.

The HP-UX experiment is an example of mechanism
specialization. An example of policy specialization is il-
lustrated by a �ne-grained specialization technique called
software feedback. Software feedback proposes that in
a system containing producer and consumer processes, the
consumer feed back properties of it's input to the producer
so as to balance and optimize the data 
ow. Section 3.2
describes our distributed video/audio player that uses soft-
ware feedback to dynamically adapt to the changing band-
width provided by the Internet. This example serves to
illustrate two concepts: The feedback messages produced
by the consumer explicitly change the behavior of the sys-
tem, thus feedback constitutes a policy specialization rather
than a mechanism specialization.

Software feedback re-specializes the behavior of the sys-
tem between individual invocations of the system call to
fetch data. Thus software feedback is a much �ner-grained
example of specialization than has previously been dis-
cussed; instead of replacing a module once and for all, as
in a microkernel, or once a specialization opportunity is
discovered, as in our HP-UX experiment, software feed-
back continuously re-specializes the system. None the less,
software feedback can still be modeled using the Synthetix
model for specialization: the consumer describes the prop-
erties of its input data stream as quasi-invariants, and when
these quasi-invariants are violated, a feedback message is
sent to the producer to correct the data stream so that the
quasi-invariant will again be true.

3 SPECIAL EXPERIENCES

We have experimentally validated the performance bene-
�ts of specialization. This section reviews these experi-
ments. Subsection 3.1 describes optimistic and incremen-
tal mechanism specialization in the HP-UX operating sys-
tem. Subsection 3.2 describes �ne-grained policy specializa-
tion through software feedback in a distributed multimedia
player.

3.1 OPTIMISTIC AND INCREMENTAL

SPECIALIZATION IN HP-UX

The experiment in [26] sought to evaluate the e�ectiveness
of mechanism specialization in a commercial operating sys-
tem. Previous work [20, 28] had already shown that special-
ized mechanism could provide performance bene�ts of up to
a factor of 56 [19], but this work did not clearly distinguish
between the bene�ts provided by specialized mechanisms
and bene�ts provided by other means, such as a kernel
hand-coded in assembler.

In this experiment we produced a specialized implemen-
tation of the read system call mechanism. The special-
ized read implementation exploits several true invariants
and quasi-invariants to produce a simpler and faster read



mechanism. For instance, the generic read mechanism is
forced to interpret numerous data structures that describe
the type of the object being read (�le, socket, etc.), the
type of the �le system (local or network), and the param-
eters of the �le system (block size, etc.). However, once
a speci�c �le is opened, these values all become �xed as
true invariants. Thus a faster implementation of the read
mechanism can be created that does not check these pa-
rameters, but instead hard-codes them into the specialized
read mechanism.

The generic read mechanism also acquires several con-
currency locks on kernel data structures to protect against
errors that may occur if more than one process concur-
rently accesses these data structures. However, it is possi-
ble to determine at open time whether there are any con-
current processes accessing the �le. If there are not, then
it is a quasi-invariant that the �le is not shared, and the
acquisition of the concurrency locks can be omitted from
the specialized read mechanism. This is an important sav-
ings, because concurrency locks can be quite slow on shared
memory multiprocessors [3].

Non-sharing of �les is a quasi-invariant, because at any
time another process may open the �le and access it. To
protect against this possibility, guards are placed in all loca-
tions in the kernel where �les may be opened (open, creat,
etc.). If it is detected that the �le being opened has been
\specialized", i.e. is being accessed by a specialized im-
plementation of read, then the quasi-invariant has been
violated, and the specialized read mechanism is replaced
with a more generic mechanism that does not depend on
the \non-shared" quasi-invariant.

Applications are designed around the fact that OS sys-
tem calls are expensive to use because of high software over-
head, and thus system calls such as read are usually used
to read large blocks of data. Our experiments show that
a specialized implementation can reduce the software over-
head of the read system call by more than a factor of three.
Such a reduction in system call overhead not only improves
application performance, it also enables a more 
exible use
of OS system calls.

3.2 POLICY SPECIALIZATION THROUGH

SOFTWARE FEEDBACK

Two of the hottest topics in current computer systems are
the Internet and multimedia. Unfortunately, they don't
work well together: multimedia presentations demand real-
time performance, while the bandwidth and latency charac-
teristics of the Internet are highly variable and impossible
to control. It is therefore necessary for distributed multi-
media systems to adapt to the changing conditions found
in a distributed network. This experiment showed how the
use of feedback to make multimedia presentations adap-
tive enables video to be played across an irregular network
such as the Internet without bene�t of resource reserva-
tions [9].

We use software feedback [20, 27], reminiscent of
hardware feedback, to adapt multi-media presentations to
the changing conditions of the Internet. Our video player
has a distributed client-server architecture. The client mea-
sure various properties of its video stream its receiving from
the network, and feeds them back to the server, allowing
both the client and the server to adapt to changing Internet
conditions.

Software feedback takes the form of quasi-invariants
and guards. If a quasi-invariant is true, then the present
state is within tolerance, and no feedback is required. If
the quasi-invariant is violated, then some property has ex-
ceeded tolerance, and some form of feedback action is nec-
essary. Guards detect the violation of the quasi-invariants,
and induce feedback events which undertake to make the
quasi-invariant again true.

For instance, it is desirable that the server only send as
many frames per second as the network can support; send-
ing additional frames just wastes bandwidth, because these
frames are either dropped by the network, or discarded by
the client because they arrived to late to be useful. Thus
we use a quasi-invariant that the server's frame transmis-
sion rate is within � of the client's frame display rate. If a
guard detects that this quasi-invariant has been violated,
then a feedback message is sent to tell the server to adjust
it's frame transmission rate so that the client and server's
frame rates will again be within � tolerance of one another.

The invariants and guards used in software feedback are
similar to those used in mechanism specialization. How-
ever, the actions taken by the guards that detect violations
of quasi-invariants are di�erent. Rather than replacing one
mechanism with another, the guards take explicit actions
that cause components of the system to change their oper-
ational behavior, e�ectively changing the component's pol-
icy. Thus software feedback is a form of policy specializa-
tion.

The guards are also triggered much more frequently,
and the corrective actions they take are much cheaper than
replacing one mechanism with another. Thus software feed-
back is much �ner-grained than mechanism specialization.
However, it is not always the case that policy specializa-
tion is �ne-grained. In future research, we will examine
the prospects for larger-scale policy specializations in an
operating system, such as paging policy, or �le system pre-
fetching policy.

4 THE REPLUGGING FACILITY

The replugging facility exists to support the dynamic re-
placement of specialized functions, while concurrently al-
lowing them to be executed. The two main concerns for a
replugging facility are e�ciency in the invocation of special-
ized functions, and concurrency control among specialized
and replugging threads during replugging. This section de-
scribes a replugging facility that addresses these issues.

Supporting mechanism specialization, as in the HP-UX
experiment in Subsection 3.1, basically requires a simple
indirect jump, as in a C function pointer that can be ad-
justed to point to various versions of the function. However,
an adaptive operating system that is using optimistic and
incremental specialization must also deal with concurrency
problems. Concurrency errors may occur in the following
circumstances:

� A guard triggers replugging of a specialized function
concurrent with another process attempting to exe-
cute that specialized function.

� A guard triggers replugging of a specialized function
while another process is blocked inside that special-
ized function, e.g. waiting for disk I/O.

� Two or more guards concurrently trigger replugging
of the same specialized function.



The system must correctly handle each of the above
events. Furthermore, it is imperative that the execution of
specialized functions not be signi�cantly slowed down by
the concurrency control of the replugging system, or else
the bene�ts of specialization will be lost.

Policy specialization, as described in the software feed-
back experiment in Subsection 3.2, can also be supported
using indirect jumps. However, software feedback may only
require the changing of some parameters, rather than re-
placing implementation modules. Nonetheless, the same
concurrency errors may occur if the parameters are con-
currently used by an executing process and changed by a
replugging action. The same performance constraints also
apply: executing specialized modules must not su�er delay
due to acquiring concurrency locks.

Subsection 4.1 describes the API to our dynamic linking
system. Subsection 4.2 describes the algorithm to support
this interface. Subsection 4.3 discusses some of the issues
of distributed replugging, and Subsection 4.4 provides per-
formance data.

4.1 API FOR CONCURRENT REPLUGGING

To e�ect fast, concurrent replugging while maintaining
safety, we replace the indirect function pointers used in a
non-concurrent environment with data structures that con-
tain su�cient state to achieve the desired concurrency con-
trol, called a replugging point. The fundamental goal
of concurrency control with respect to dynamic function
replacement is that function replacement should not be at-
tempted while another thread is executing within the func-
tion. In particular, we have the following rules:

� If foo() is currently being replaced, callers to foo()
must block until replacement is complete.

� If foo() is currently being executed by one or more
threads, then replacement of foo() must block until
foo() is not being executed.

� If foo() becomes blocked for a large or indeterminate
amount of time, then foo() can be replaced if replace-
ment can be achieved such that new invocations get
the new version of foo(), but the blocked execution
of foo() completes normally when it unblocks.

� The check performed prior to executing foo() must
be as quick as possible, even at the expense of slowing
down the check performed prior to replacing foo().

Various concurrency control mechanisms can be em-
ployed to achieve this e�ect, but it is critical that they
be very fast, especially the admission test for executing
replaceable functions. Because low-latency concurrency
primitives are not consistent across architectures, we pro-
vide a library for concurrency control, and devise appro-
priate mechanisms to implement the macros on a per-
architecture basis. The algorithm presented in Subsec-
tion 4.2 is generic to processor architectures in which con-
currency locks are relatively slow.

The library functions are as follows. In each instance,
the argument x is a replugging point. The kernel devel-
oper is responsible for assigning lock objects to processes,
functions, �le descriptors, etc., such that appropriate ex-
clusivity is preserved. The arbitrary mapping is necessary
to allow for di�erent kernel structures that may or may
not provide an isomorphism between processes and their
associated specialized functions.

executor start(x) Invoke the current ver-
sion of the function asso-
ciated with x.

executor block(x) Indicate that the process
using the function associ-
ated with x has blocked.

executor unblock(x) Indicate that the process
using the function associ-
ated with x has resumed
execution.

executor end(x) Indicate that the process
using the function asso-
ciated with x has com-
pleted execution of the
function.

replug start(x) Indicate that the function
associated with x is to be
replaced.

replug end(x) Indicate that replace-
ment of the function as-
sociated with x has been
completed.

At a semantic level, these primitives can be viewed as
concurrency locks. However, by explicitly naming them
in such a way as to identify which are to be used by the
invoking processes, and which are to be used by the replac-
ing process, they allow asymmetric optimizations to en-
sure that the executor* functions are fast. In particular,
the non-blocking case of the executor start() primitive
must be as fast as possible, while the non-blocking case of
the replug start() primitive may be an order of magni-
tude slower without imposing a substantial penalty on the
overall OS performance1 . Also, the executor block() and
executor unblock() primitives convey more information
than simple concurrency locks: they indicate that while
the executing process is not currently executing with re-
spect to x, it will expect to be able to resume execution at
some point.

4.2 THE REPLUGGING ALGORITHM

It is possible to solve this concurrency problem using some
form of wait-free synchronization [16]. However, wait-free
synchronization is not always faster than simple locking,
can be considerably more complex, and may require hard-
ware support for variations of atomic test&set instructions.
Instead, we implemented asymmetric locking: both the pro-
cesses executing specialized functions, and the processes
replugging specialized functions must acquire and release
locks on the specialized function. The asymmetry is that
the method used to acquire and release the lock for pro-
cesses executing the specialized function is considerably
faster than that used by replugging processes.

Note that the algorithm presented here assumes that a
coherent read from memory is faster than a concurrency
lock: if specialized hardware makes locks fast, then the
specialized synchronization mechanism presented here can
be replaced with locks.

To simplify the replugging algorithm, we make some
assumptions that are true in many Unix systems:

1Assuming that function use is more common than function
replacement.



1. Kernel calls cannot abort, i.e. take an unexpected
path out of the kernel on failure. This assumption al-
lows us to avoid checking for an incomplete execution
using executor start().

2. There is only one thread per process. This assump-
tion allows us to assume that multiple kernel calls
cannot concurrently access process level data struc-
tures.

3. That there can be at most one thread executing in-
side specialized code. This assumption simpli�es the
streamlined lock acquisition for executor start().

To separate the simple case (when no thread is execut-
ing inside code to be replugged) from the complicated case
(when one thread is inside), we use an inside flag. The
�rst instruction of executor start() sets the inside flag
to indicate that a thread is inside. The last instruction in
executor end() clears the inside flag.

To synchronize specialized execution with replugging
operations, the replugging algorithm uses a queue, called
the holding tank, to stop the thread that happens to in-
voke the specialized kernel call while replugging is taking
place. Upon completion of replugging, the algorithm acti-
vates the thread waiting in the holding tank. The thread
then resumes the invocation through the newly replugged
code. The algorithms for the primitives are as follows:

executor start(x):

1. Set x.inside flag.

2. Branch indirect through x.target. This branch leads
to either holding tank() or the specialized function.
The indirect address is changed by the replugger.

holding tank(x):

1. Clear x.inside flag.

2. Sleep on the x.holding lock to await replugger com-
pletion.

3. Re-invoke executor start(x).

Whether the executor leaves directly, or via the holding
tank, in all cases it jumps to the replaceable function
pointed to by target. Upon completion, the executor in-
vokes executor end(x):

executor end(x):

1. Clear x.inside flag.

Replugging begins by invoking replug start():
replug start(x):

1. Lock the x.replug lock to block concurrent replug-
gers. It may be that some guard was triggered con-
currently for the same specialized function, in which
case we are done.

2. Lock the x.holding lock to block exit from holding
tank.

3. Change the x.target indirect pointer to send execu-
tors to the holding tank (changes action of the exe-
cuting thread at step 2 so no new threads can enter
the specialized code).

4. Spinwait for x.inside flag to be cleared. Now no
threads are executing the specialized code.

Once replug start() completes, it is safe to replug the
specialized function by changing x.target to point to the
new specialized (or generic) function.

replug end(x):

1. Unlock the x.holding lock to unblock the (potential)
thread in holding tank.

2. Unlock the x.replug lock to allow other repluggers
to continue.

The replugger synchronizes with the reader thread
through the inside flag in combination with the target
indirection pointer. If the executor sets the inside flag
before a replugger sets the indirection pointer then the re-
plugger waits for the executor to �nish. If the executor
takes the indirect call into the holding tank, it will clear the
inside flag which will tell the replugger that no thread is
executing the specialized code. Once the replugging is com-
plete the algorithm unblocks any thread in the holding tank
and they resume through the new code path.

To generalize this algorithm so that more than one
thread can execute a specialized function at the same time,
the inside flag should be changed to an inside counter
that is incremented and decremented by threads using
the specialized function. The replugging path continues
to check the inside counter, as before, but only pro-
ceeds with replugging when the inside counter is 0. This
method su�ces so long as all paths out of the special-
ized read path decrement the inside counter, including
abnormal terminations. It is also necessary to atomi-
cally increment and decrement inside counter to prevent
concurrency errors among the multiple threads invoking
executor start().

The replugging procedure su�ers from substantial ine�-
ciency if a thread executing the specialized function blocks
for disk I/O, because it will spinwait at step 4 until the I/O
completes. The executor block() primitive solves this in-
e�ciency by causing step 4 to switch from a spinwait on
inside flag to a wait on an additional io blocked lock.
The executor unblock() primitive wakes the sleeping re-
plugger and causes it to go back to spin waiting. The use of
conventional locks instead of spin locks in this case is fea-
sible because I/O is orders of magnitude slower than com-
putation, and so the cost of acquiring and releasing locks
is inconsequential.

4.3 DISTRIBUTED REPLUGGING

Replugging components in a distributed system presents
additional problems. Replugging a component becomes
slower because of the additional latency imposed by wait-
ing until it can be assured that no other process will try to
execute the facility being replugged on any other machine.
Fault-tolerant execution on a system in which network fail-
ures can occur is especially di�cult.

Software feedback addresses this problem with careful
design of the policy specializations. Software feedback does
not have to synchronize between replugging on one machine
and execution on another machine because there is a mo-
mentary tolerance of inconsistency between the machines.
After replugging has been e�ected on one machine, that
machine ignores further violations of the relevant quasi-
invariants for a period of time, so as to allow the system to
adapt to the replugging action that has just been applied.

In classical feedback terms, this can be viewed as
damping the software feedback mechanism so as to avoid
repeating oscillations due to positive feedback. Damping
further feedback for a period of time that is longer than



Operation Cost

indirect function call 5
function call through a replugging point 50
HP-UX Kernel spinlock & unlock 110
replugging a replugging point 280

Table 1: Concurrent Replugging Performance in Context,
cost in machine cycles

twice the longest possible propagation delay across the dis-
tributed system su�ces to guarantee that oscillation due to
positive feedback will not occur.

4.4 REPLUGGING PERFORMANCE

The dynamic replugging system just described has two im-
portant performance �gures: the added overhead of invok-
ing a replaceable function, and the cost of replacing a func-
tion. To provide some basis for comparison, we compare
these costs to the cost of a simple indirect function call,
and to the cost of a semaphore lock on the same architec-
ture: a Hewlett-Packard 9000 series 800 G70 (9000/887)
dual-processor server [1].

All of the performance �gures given are for the uncon-
tended case, i.e. no concurrent attempt to execute or replug
the replugging point. The time to execute or replug a re-
plugging point that is already locked is bounded only by
the time to execute the function or perform the replugging
operation, and so such measurements would be dominated
by those costs and provide little meaningful data.

Table 1 shows these results in machine cycles (approx-
imately 10 nanoseconds). Our asymmetric locking scheme
has succeeded in driving the cost of safely executing a re-
placeable function down well below the cost of an ordinary
lock/unlock sequence, at the expense of making the func-
tion replacement more expensive: function execution is a
factor of 2.2 faster than a lock/unlock pair, while function
replacement is a factor of 2.5 slower than a lock/unlock
pair. With these costs, our asymmetric locking mechanism
is bene�cial if replaceable functions are executed at least
2.8 times more frequently than they are actually replaced.

5 RELATED WORK

Our dynamic linking mechanism is motivated by the needs
of optimistic and incremental specialization, and so it is
subtly di�erent from previous dynamic linking mechanisms.
The dld tool [18] provides for basic dynamic linking, but is
designed to be used by an application program. As such,
it does not deal with concurrency issues, but does partially
automate the garbage collection of un-used functions from
the program's address space.

The OMOS system [25] dynamically links modules in a
system in an object-oriented manner. OMOS automatically
decides which version of a module will best meet the spec-
i�ed requirements, functioning somewhat like an interface
de�nition language. OMOS does deal with concurrency is-
sues, but functions at a coarser granularity than our system
because it was designed to support the Flex microkernel [8].

Chorus [29] allows modules, known as supervisor ac-
tors, to be loaded into the kernel address space. A special-

ized IPC mechanism is used for communication between
actors within the kernel address space. Similarly, Flex [8]
allows dynamic loading of operating system modules into
the Mach kernel, and uses a migrating threads model to
reduce IPC overhead.

One problem with allowing applications to load modules
into the kernel is loss of protection. The SPIN kernel [4]
allows applications to load executable modules, called spin-
dles, dynamically into the kernel. These spindles are writ-
ten in a type-safe programming language to ensure that
they do not adversely a�ect kernel operations.

Object-oriented operating systems allow customization
through the use of inheritance, invocation redirection, and
meta-interfaces. Mukherjee and Schwan et al [14, 22, 23]
control concurrent execution and modi�cation of an object
using attributes and object ownership. Choices [7] provides
generalized components, called frameworks, which can be
replaced with specialized versions using inheritance and dy-
namic linking. The Spring kernel uses an extensible RPC
framework [15] to redirect object invocations to appropri-
ate handlers based on the type of object. The Substrate
Object Model [2] supports extensibility in the AIX kernel
by providing additional interfaces for passing usage hints
and customizing in-kernel implementations. Similarly, the
Apertos operating system [31] supports dynamic recon�g-
uration by modifying an object's behavior through opera-
tions on its meta-interface.

Synthetix di�ers from the other extensible operating
systems described above in a number of ways. First, Syn-
thetix infers the specializations needed even for applica-
tions that have never considered the need for specializa-
tion. Other extensible systems require applications to know
which specializations will be bene�cial and then select or
provide them.

Second, Synthetix supports optimistic specializations
and uses guards to ensure the validity of a specialization
and automatically replug it when it is no longer valid. In
contrast, other extensible systems do not support auto-
matic replugging and support damage control only through
hardware or software protection boundaries.

Third, the explicit use of invariants and guards in Syn-
thetix also supports the composability of specializations:
guards determine whether two specializations are compos-
able. Other extensible operating systems do not provide
support to automatically determine whether separate ex-
tensions are composable.

Like Synthetix, Scout [21] has focused on the special-
ization of existing systems code. Scout has concentrated
on networking code and has focused on specializations that
minimize code and data caching e�ects. In contrast, we
have focused on parametric specialization to reduce the
length of various fast paths in the kernel. We believe that
many of the techniques used in Scout are also useful in
Synthetix, and vice versa.

6 CONCLUSIONS

This paper has described an e�cient mechanism to support
the concurrent execution and replacement of functions in
an operating system. Such a facility is essential for operat-
ing systems that wish to adaptively recon�gure themselves
at a �ne granularity. Fine-grained adaptivity is required to
use the techniques of optimistic and incremental specializa-



tion, described here and in [9, 26]. The concurrent dynamic
linking mechanism here has been shown to improve perfor-
mance over symmetric spinlocks if replaceable functions are
executed at least 2.8 times more frequently than they are
replaced.

We have demonstrated the feasibility and usefulness of
dynamic linking as used by incremental and optimistic spe-
cialization by applying it to �le system code in a commer-
cial operating system (HP-UX). The experimental results
show that signi�cant performance improvements are possi-
ble even when the base system is (a) not designed specif-
ically to be amenable to specialization, and (b) is already
highly optimized. Furthermore, these improvements can
be achieved without altering the semantics or restructuring
the program.

In future work, we will explore more e�cient and general
methods of implementing concurrent dynamic linking. We
will also investigate methods to automate the techniques
of optimistic and incremental specialization, so as to make
these techniques more accessible to the kernel developer.
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