
Dynamic Loading in an Application Specific Embedded Operating System

Stefan Beyer, Ken Mayes and Brian Warboys
Centre for Novel Computing

Department of Computer Science

University of Manchester

M13 9PL

United Kingdom

Email: {beyer,ken,brian}@cs.man.ac.uk

Abstract— Traditionally, configuration of operating systems is
done statically at compile- or link-time, but recently dynamic run-
time configuration has become possible. Embedded systems how-
ever have constraints, such as limited memory and real-time re-
quirements, that prevent many dynamically configurable operat-
ing systems from being used in an embedded system.

Dynamic configuration has associated limitations: either execu-
tion time overheads, due to complex code structures, or restricted
flexibility. However, loading compiled code and linking it immedi-
ately at load-time avoids many of these overheads. This paper de-
scribes efficient dynamic loading and linking techniques employed
as part of the Arena special-purpose operating system to allow em-
bedded systems to be configured by replacing resource managers,
such as the process manager. In Arena operating system man-
agers reside in user-level libraries. A general-purpose loading-
framework, designed specifically for embedded systems, is intro-
duced and two case-studies are described to show the flexibility of
the system.

Performance measurements are presented to show that there
is no measurable overhead introduced by the dynamic loading
framework after the actual installation of a resource manager.
This paper describes the results obtained by the work presented
as “work in progress” at the 24th IEEE Real-Time Systems Sym-
posium [1].

I. I NTRODUCTION

Embedded systems are special-purpose systems. They are
often designed to perform very specialised tasks. Any operat-
ing system running on such a specialised system could benefit
greatly from adapting to specific requirements. Therefore, con-
figurable operating systems seem advantageous for embedded
systems. There are two ways in which operating systems can
be configured:
Static configuration is done at compile- or link-time. The op-
erating system consists of components, which are combined to
build a specialised “version” of the operating system.
Dynamic configuration is performed at run-time, either
through external input, for example via user interaction, or
automatically, as the result of the application requesting a re-
configuration.

Static configuration tends to be more efficient at run-time,
but it is less flexible than dynamic configuration. Static con-
figuration is limited in that the type of specialisation needed

may not be known until run-time. For instance, a memory man-
agement system can take advantage of information about page-
usage collected at run-time to alter the page replacement policy,
in order to reduce paging overhead.

This paper concentrates on the dynamic re-configuration
of embedded systems. All the re-configurations performed
in the experiments are application-driven. That is, the re-
configurations happen as a reaction of the application to its cur-
rent state. It is however easy to adapt the techniques described
to perform re-configuration as a result of user-input.

The requirements for a dynamic configuration system for em-
bedded operating systems are as follows:(1) The system should
allow low-level resource managers to be configured to allow
maximum flexibility. (2) The run-time overhead should be min-
imal. (3) The memory footprint should be small.(4) The sys-
tem should not require a hardware memory management unit.
(5) Re-configuration should be reasonably fast compared to the
lifetime of a long-lived application.(6) Real-time computing
should be possible in between re-configurations.

Existing systems have been reviewed in the context of these
requirements and have been found unsuitable. Therefore, a sys-
tem which fulfils the requirements has been developed, based
on dynamic code loading.

The dynamic code-loading approach has been applied to the
Arena library operating system, in which Operating System
Mangers (OSMs) are implemented in user-level libraries, linked
to the application. In this scheme, the application requests the
loading or replacement of an OSM from a remote system over
a network. A local dynamic linker then links the OSM into the
running application. Note that this differs from dynamically-
linked shared libraries [2], in that the loading and linking of the
OSM happens during execution, rather than at application-load-
time1.

Two possible target applications have been implemented to
demonstrate the flexibility of the system. The first of these case
studies is a system which allows the replacement of the pro-
cess manager (PM). The application specifies a new required

1There are performance improving measures with dynamically-linked shared
library approaches that delay the resolution of certain symbols until the first
reference to them is made at run-time.



scheduling policy and the system loads an appropriate PM over
the network and links it into the application. Results of perfor-
mance experiments are given to show that there is no measur-
able overhead in running a dynamically-linked PM, compared
to a statically linked PM, once the loading and linking has been
achieved. The costs of the loading and linking phases are also
given.

As a second case study, network protocol loading has been
investigated. A system has been implemented which auto-
matically loads transport and application level protocols when
needed. TCP [3] and HTTP [4] have been used as example
protocols. The system saves valuable memory by “listening”
to specific protocol ports without the full protocol implementa-
tion being present on the system. The protocol is loaded when
a message needs to be sent or received. A possible target ap-
plication could be a multimedia device, which uses UDP [5]
to stream data most of the time, but might occasionally be re-
configured using remote login over TCP. Using dynamic pro-
tocol loading, it would be possible to save memory otherwise
occupied by TCP for the actual streaming data.

Section II describes the Arena Operating System. This is fol-
lowed by a short introduction to the basic concept of dynamic
code-loading in Arena (section III) and a discussion of previous
work (section IV). Section V describes the underlying code-
loading system that was developed for this research and section
VI describes the PM loading case study. Section VII gives the
results of performance experiments. Section VIII describes the
network protocol loading case study. Finally, section IX con-
cludes the paper.

II. T HE ARENA OPERATING SYSTEM

The work described here is based on the Arena library op-
erating system. Arena is an application-oriented operating sys-
tem [6] [7] intended for both distributed and real-time applica-
tions [8] [9]. Operating system policy resides in resource man-
agers implemented as user-level libraries which are linked to
the application. The effect of this is to move operating sys-
tem policy up into the application run-time system. Low-level
mechanisms are provided by a hardware-specific nanokernel,
the hardware object (HWO). The HWO presents a generic view
of low-level processor features. In order to access the low-level
mechanisms, resource managers make downcalls to the HWO
interface. Conversely, on the occurrence of a hardware event,
the HWO can make an upcall to some user-level resource man-
ager. The upcall mechanism enables deferred processing of the
event via an application-specific event handler thread. Fig. 1
shows how a hardware interrupt may cause the HWO to invoke
the user-level PM, which schedules a user-level event handler
thread.

III. D YNAMIC CODE LOADING

OSMs are placed in libraries at user-level in Arena, and it
is a logical development to allow the application to load dif-

ferent versions of these libraries dynamically as a means of re-
configuring the operating system. The PMs discussed in the
present work are implemented as user-level resource managers
in libraries. Formerly, these were statically-linked to the appli-
cation to achieve re-configuration. This work introduces the dy-
namic loading and replacement of user-level resource managers
on Arena and uses a PM case study to demonstrate the flex-
ibility and performance of a dynamic code-loading approach
for embedded system configuration. Furthermore, the memory
saving advantages of the approach are demonstrated by the net-
work protocol loading case study.

IV. PREVIOUS WORK

A. Dynamically Configurable Operating Systems

Many conventional monolithic operating systems allow mod-
ules to be loaded into a running kernel. Linux and its ker-
nel module loader [10][11] are a readily available example.
Conventional micro-kernel-based systems, such as Mach [12],
place OSMs in user-level servers. An OSM can theoretically
be replaced by stopping a server and restarting a different ver-
sion of it. However, these systems tend to be general-purpose
and cannot give full control to applications, due to their multi-
application and multi-user paradigms. Another problem is the
fact that certain low-level policies, for instance in scheduling,
cannot be modified. These systems violate requirements 1, 4
and 6.

The Kernel Toolkit (KTK) [13] and Chimera [14] are systems
that consist of a selection of configurable components, which
have to be present on the system all the time, meaning that the
system might be relatively large, if high flexibility is required.
Therefore, there seems to be a trade off between requirements
1 and 3 in these systems.

PM

Application
Thread

Application
Thread

Schedule

Upcall

HWO

Interrupt

Application

Event Handler 
Thread

User−Level

Fig. 1. Arena Event Handling



Systems based on scripting (µChoices [15]), type and
pointer-safe kernel extensions (Spin [16]) or virtual machines
(Inferno Operating System [17], Java [18]) do not allow con-
figuration of certain low-level resource managers and therefore
violate requirement 1, with some of them violating other re-
quirements as well.

B. Dynamic Code Loading Systems

Distributed systems, such as CORBA [19] or Jini [20] “em-
ulate” dynamic code loading. However, the network latency of
service access might be unacceptable for some real-time appli-
cations (requirement 6). Most importantly, such distributed ap-
proaches do not allow low-level system manipulation (require-
ment 1).

Dyninst [21] is a somewhat low-level approach to dynamic
code loading. It lacks flexibility, as it cannot link in arbitrary
code (requirement 1).

Probably the most suitable approaches for arbitrary dynamic
code loading are based on dynamic linking.

ELF systems [22] typically provide an API to the dynamic
linker that can be used by the programmer to implicitly load ex-
ecutables. Apart from relying heavily on a UNIX environment,
this system uses ELF shared objects, which are used for shared
libraries. These shared libraries are loaded through the memory
management subsystem on UNIX systems and rely heavily on
the fact that pages are only loaded when needed (requirement
4). Therefore, the components of a library tend to be combined
in a few big shared object files and it is not trivial to extract
smaller sized-objects from the shared objects, such as relocat-
able object files from static library archives.

DLD [23] enhances a.out-based systems with dynamic load-
ing and unloading of modules. DLD is a library package pro-
viding the ability to load relocatable object files, normally used
as input files for static linkers, into a running application. The
unlinking process relies on a garbage collector. DLD is the
closest of all existing systems surveyed to the loading system
described here. However, it was designed for UNIX systems
and certain aspects of it, in particular the use of a garbage col-
lector, make it less useful for embedded systems with memory
restrictions and real-time constraints (requirement 6).

V. THE DYNAMIC OBJECTLOADER

A dynamic object loader (DOL) has been developed for the
Arena operating system. Figure 2 shows a overview of Arena
with the DOL and a process manager switcher (PMS). The PMS
is described in the following section. In the Arena HWO nano-
kernel, the Arena loader protocol (ALP), a very light weight
transfer protocol, resides at the top of the network protocol
stack. ALP is similar to TFTP [24] and is implemented di-
rectly on IP [25] in the prototype implementation. It provides
the DOL with a simple send and receive interface, which allows
the transfer of modules (MOD in figure 2) from a remote mod-
ule server. The remote system contains anapplication server,

which answers requests for whole applications and amodule
server, which is responsible for the transfer of modules (figure
3). ALP packet types allow requests for either whole appli-
cations, whole modules or individual symbol or string tables.
This ALP interface is used by the DOL, which is linked into
the application at user-level to load the modules and link them
into the application. Loadable modules are contained in ELF
relocatable object files.

The DOL can be used by the application either directly or
through a special OSM layer, such as the PMS described be-
low. The application is loaded by the HWO using its applica-
tion loader component (“Appl.Load” in figure 2). This applica-
tion loader interacts with the remote application server to pull
over the application executable. Once the application has been
loaded in memory, it may require the loading of further mod-
ules. That is, subsequently, as required, modules can be loaded
by the DOL. The DOL interacts with the remote module server
to pull over the required modules.

It is vital that the DOL keeps a track of the symbols and string
tables of the main program and of loaded modules so that sym-
bols can be resolved and linked. In order to achieve this, the
DOL maintains state with an entry for each loaded module. A
module entry in this state contains the name of the module, the
locations and sizes of the symbol and string tables and infor-
mation about all the sections of the module2. Each module is
also given a type. For example, regular modules (i.e.non-OSM
modules) are of typeREGand process managers are of typePM.
The main program also has an entry in this module state, of type
PSEUDO, so that symbol references to the main application can
be resolved.

The initialisation of this DOL state is achieved by a call to

2Not all sections of the ELF relocatable file containing the module have to be
loaded.

App. Load

ALP

HWO
Network Protocol

Stack

OSMOSM

MOD

DOL

Downcall Inteface
Upcall / 

Request modules

PM

MOD

PMS

link

link
link

Application

Fig. 2. System Overview



int dol_init (char *name);

dol init takes the name of the main application as an ar-
gument. Its main purpose is to set up the PSEUDO entry in
the DOL state. The remote module server is contacted and the
string and symbol tables of the main application are requested.
Since the module server executes in the same context as the ap-
plication server (which sent the application itself to Appl.load),
the module server can obtain the required string and symbol
tables and send them to the DOL.dol init then creates the
PSEUDO module entry in its state. The main application sym-
bols and strings are now accessible to the DOL.

When a module is required the function

int dol_load_module (char *name, int type);

is called. This loads the specified module into application mem-
ory and updates the DOL state with a new entry for the new
module. The module server is contacted with a request for the
section header table and section header string table. The DOL
loads all loadable sections, including the string and symbol ta-
bles. The DOL state for this module is set to the specified type,
and the locations of the string symbol tables noted. Next, the
symbol table isrelocatedto contain the actual location of each
symbol declared inside the module. This is followed by looking
for sections in the newly-loaded module containing relocation
information and performing each relocation. References which
cannot be resolved within the module itself are undefined refer-
ences, and require DOL to search through its module state for
the location in other, previously loaded, modules. These unde-
fined references are resolved by patching the code directly, as
with a static linker. This means that for references from module
to module and from module to main program, no indirection
is needed, as is the case with most dynamic linkers. This ap-
proach however, introduces a problem on some machines, such
as RISC machines, where branch offsets do not cover the full
address space. For example jumps on the 32-bit ARM archi-
tecture have to be within 32 MBytes. This can be solved by

Load Application

Load Module

Request Module

Application
Server

Module
Server

Server OS

Embedded

System

Request Application

Fig. 3. Application and Module Server

introducing indirections in the few cases in which the problem
occurs.
For references from the main application to a loaded module
the function

void *dol_get_symbol (char *name);

is provided. This function searches through the symbol tables
of loaded modules and returns a pointer to the location of the
requested symbol.
Unloading can be achieved by the following 2 functions:

int dol_unload_module (char *name);
int dol_unload_module_by_type (int type);

These functions take the name or the type of the module re-
spectively. Unloading by type allows the unloading of an OSM
without the caller needing to know the name of the current OSM
of that type. This is possible because there is only one instance
of any OSM type at any one time.

VI. REPLACING OPERATING SYSTEM MANGERS AT

RUN-TIME

The loading framework described above can be used to load
regular modules, to extend the functionality of a program, or
to replace parts of the program with different implementations.
For example, sorting algorithms could be replaced in order to
use the most efficient algorithm for a certain type of input data.

The DOL could be used to replace OSMs by the application
directly, without an additional layer, but this would mean the
application programmer having to be aware of the implemen-
tation details of OSMs. Typically an OSM includes some state
which has to be saved and transferred to the new version of the
OSM. An application programmer would need detailed knowl-
edge of internal OSM data structures and the OSM routines that
affect the data structures. It is better to provide a simple safe
framework for replacing each type of OSM. As a case study
the PMS has been implemented. It provides a framework for
switching between PMs.

In Arena a PM has to define a certain interface. This in-
terface provides the application with a consistent way of cre-
ating, yielding, suspending and switching threads. The PM
also allows the application and other OSMs to register event
handler threads for hardware events (e.g. interrupts). Appli-
cation threads and event handler threads are scheduled from
i switch , the central scheduling routine. Not every PM will
implement the full PM interface, but “null-functions” should be
provided for all unimplemented functions.
The PMS provides the following routine to load a first PM at
application start time:

int load_initial_pm (int type);

This call effectively replaces the call to the initialisation rou-
tine of the previously statically linked PM. Thetype argument
specifies the scheduling policy of the PM to be loaded. For
example the callload initial pm (PMTIME SLICE)



causes the PMS to initialise the DOL, look up the file name
of a PM implementing a time-slicing scheduling policy in an
internal mapping table, load it usingdol load module and
initialise it.

The PM switcher routine

void enter_pm_sw (int type);

can then be used to replace an existing PM with a new PM
of implementation by the application programmer at any time
during execution.enter pm sw causes the currently execut-
ing thread to be saved into its data structure. It is necessary
to first save the state of the current thread, since the switch-
ing of PMs cannot be executed in the context of an applica-
tion thread. Executing a PM switch using the execution con-
text of a running thread would modify the state of the running
thread after saving it, thus leaving the data structures that have
to be copied to the new PM in an inconsistent state. Therefore,
enter pm sw uses a special thread context, with its own asso-
ciated data structure and stack. Arena already provides a sepa-
rate thread context for the PM’s scheduling routinei switch .
This special context can be safely used for the switching of
PMs. enter pm sw sets the execution environment to the
switch thread context and uses the function

int switch_pm (int type);

as the entry point for the thread.
switch pm first unregisters all event handlers, so that no

event handler can modify the internal PM state during the re-
placement process. It then saves all the internal PM data
structures representing threads. The new PM is loaded us-
ing the DOL and the interface of the PM is established using
dol get symbol for each provided function. The PM is ini-
tialised with the saved thread data structures. Finally, the switch
thread terminates and forces the execution ofi switch .
i switch then uses the new PM thread state to re-schedule
the application threads.

The PMS uses the DOL to link-in PMs directly, by patching
code. However in order to do the initial static link of the appli-
cation, indirections to the external interface of the PM must be
used. For this reason PMS provides a collection of pointers to
functions, which are assigned to the particular implementations
of the functions at load-time byload initial pm. During
the replacement of a PM these indirections have to be updated.
The application uses these indirections.

VII. PERFORMANCE OFPM LOADING

A. Experimental Setup

All experiments were run on an Atmel AT91M40800-based
development board (32MHz), with 4MB of external RAM
and Cirrus Logic CS8900A 10Mbps ethernet chip. The GCC
3.2.2 compiler and GNU assembler 2.13.2.1 were used to build
Arena, the test application and the process managers. The
application server and the module server, from which mod-
ules were loaded, ran on an Intel PC (Intel Celeron 566MHz,

PMRR PMTS

initial load 263ms 265ms
replacement 279ms 277ms

TABLE I
PM LOAD TIMES

PMRR PMTS

network transfer 200ms 200ms
linking 65ms 62ms

TABLE II
PM LOADING NETWORK TRANSFER AND LINK TIMES

128Mbyte RAM) running Linux kernel 2.4.19. The module
server was compiled using GCC 2.96. For both client and server
side, compiler optimisation was disabled. The network link be-
tween development board and PC was a 10Mbps ethernet link.

Two implementations of the PM were used for the exper-
iments. PMRR implements a cooperative round-robin and
PMTS a time-slicing scheduling policy. PMRR and PMTS
were contained in ELF relocatable files of 5172 and 5304 Bytes
in size respectively.

B. PM load time

The purpose of the first experiment was to investigate the
overheads of the loading and linking process. It measured the
time taken to load a PM dynamically. This included separate
measurements for network transport times and link times. A
low resolution timer was used (resolution = 1ms).

Table I shows the the total times for the loading and linking
process. The first set of measurements are the times taken to
load the PM as the initial PM, the second set of measurements
represent the time taken to replace the existing PM with the PM
specified. Consequently, the “replacement” results in table I
contain the time taken to unload the original PM and copy data
structures between PMs. As can be seen, this extra processing
increased the total time of the loading of PMRR by up to 6%.

Table II shows the results of measurements taken to anal-
yse the actual code-loading process in more detail. The first
row shows times taken for the transfer of the PM over the net-
work, and the second row shows the times taken to link the PM
into the application. The results show that the network transfer
amounts to about 75% of the total load time. A relatively slow
network link (10Mbps) was used and the performance would be
improved greatly by using a faster network connection.

C. Overhead of dynamically loaded process managers

The purpose of the second experiment was to measure the
overheads of executing the dynamically-loaded PMs. It con-
sisted of comparing the dynamically-loaded versions of the two



PMRR PMTS

pm init static 240µs 450µs
dynamic initial load 260µs 460µs
dynamic replacement 4590µs 4810µs

TABLE III
P M I N I T

PMRR PMTS

createInitialThread static 150µs 150µs
dynamic 150µs 150µs

createThread static 250µs 250µs
dynamic 250µs 250µs

yieldThread static 80µs 80µs
dynamic 80µs 80µs

m registerEvHandler2 static 220µs 220µs
dynamic 210µs 210µs

TABLE IV
PM ROUTINES

process managers with statically linked versions. The times
taken to execute certain PM interface functions were measured
and compared. A high resolution timer was used (resolution =
10µs). The following functions were measured:
- pm init
- createInitialThread
- createThread
- yieldThread
- mregisterEvHandler2
The purpose of these functions should be obvious from the
name, apart from
mregisterEvHandler2 , which is provided for other re-
source managers to register event handler threads for hardware
events.

Table III shows the durations ofpm init routine invoca-
tions. pm init is executed once at the start-up of a PM in-
stance. The “dynamic initial load” and the “dynamic replace-
ment” figures in Table III both represent the time taken for
pm init of a PM instance which has been dynamically in-
corporated into an application. “Dynamic initial load” refers
to loading a PM into an application which previously had no
PM. In contrast, ”dynamic replacement” refers to loading a PM
into a running application with an existing PM. The order of
magnitude difference between the initial and replacement fig-
ures represents the cost of copying existing PM state into the
new PM instance. This state consists of the data-structures rep-
resenting threads and a few variables containing information,
such as the last scheduled thread. The time taken inpm init
after dynamic replacement of the PM, although relatively high,
is less than 2% of the entire load and link overhead (Table I).

Table III also shows thatpm init takes up to 220µs longer
in PMTS than in PMRR. This difference is due to the extra
work that PMTSpm init has to do in order to register a timer
event handling thread with the HWO. The cost of this extra op-
eration is indicated by themregisterEvHandler2 dura-
tions given in Table IV. mregisterEvHandler2 is the
PM routine called by other OSMs to establish an event handler
thread, which is achieved largely by registering the thread with
the HWO.

Table IV gives durations of the other PM routines in-
vestigated. The figures forcreateInitialThread ,
createThread and yieldThread show that there is no
measurable execution-time overhead introduced by the dy-
namic loading procedure. Figures for each routine are identi-
cal for both PM types and for statically and dynamically loaded
PMs. The figure obtained foryieldThread duration gives a
measure of the cost of the central PM routine,i switch . It
is difficult to measure the duration ofi switch directly. This
is becausei switch runs in its own context, and is normally
invoked via an upcall from the HWO rather than being called
directly. An application call toyieldThread causes the cur-
rent thread context to be saved, thei switch context to be en-
tered, and a new thread selected and scheduled byi switch
code. yieldThread thus represents the full thread schedul-
ing operation.

There are possibly two pairs of anomalous results given in
Tables III and IV. The 4% to 8% difference between the
times taken forpm init and mregisterEvHandler2
with static and “dynamic initial load” are not immediately ex-
plicable. In one case the static-linked routine is slower than
the dynamic-linked routine, whereas in the the other case it is
faster. This may indicate that the most likely explanation is that
the slight differences are due to timing errors.

D. Discussion of Results

The results described above show absolute times for the dy-
namic loading and linking of PMs. It has been shown that the
main factor in the total loading and linking time is the network
transfer. It is expected that these times could be reduced if a
faster network connection was used. The network connection
used was at the bottom end of current network speeds. De-
pending on the target use of the described system a much faster
network is likely to be used. Network protocol optimisations
might further decrease the total times. There is a penalty asso-
ciated with saving and restoring the thread data structures be-
tween replacement PMs. This approach however is only a small
fraction of the total load and link time. The longest total time
measured for a re-configuration of the scheduling policy using
PMS was 279ms. Any static re-configuration of a system is
likely to take much longer. Moreover, it has been shown that
once the reconfiguration has been completed, there is no mea-
surable overhead in the execution of a PM, compared to a stati-
cally linked version. All other systems described in section IV
seem to either introduce overheads which are not acceptable on



embedded systems or lack the flexibility the system described
here provides. The structure of Arena, with OSMs placed in
user-level libraries, provides the application with access to op-
erating system policies, that cannot be modified in most other
operating systems.

VIII. N ETWORK PROTOCOLLOADING

A. Overview

As a second case study the DOL has been used to implement
a network protocol loader. The system allows the dynamic load-
ing of both transport level and application level protocols onto
the embedded system. That is, the embedded software can lis-
ten to communications ports without the bulk of the associated
protocol being loaded. The protocol is loaded when a message
needs to be sent or interpreted. Network protocol loading is a
use of the DOL which focuses on saving memory as well as on
flexibility.

Protocol loading is hidden from the user. That is, some pro-
tocol API calls have been replaced by stubs, which load in the
rest of the code when required.

B. Transport Level Protocols

To allow the loading of transport level protocols, the proto-
col architecture had to be restructured, so that transport level
protocols are implemented at user level [9].

It does not make sense to load very small and lightweight
protocols dynamically, if the code size of the support code for
the loading exceeds the code size of the actual protocol. For
this reason only the dynamic loading of TCP and not of UDP
has been implemented at the transport layer.

The TCP code has been split into two parts. A static part,
containing the code for listening to TCP ports, is linked stati-
cally to the application and a dynamic part, containing the main
TCP state machine, is located in a module with the module
server. The static part provides the equivalent operations to the
UNIX system callsbind and listenand also contains stubs for
all the API calls provided by the dynamic part.

There are two cases to distinguish. If the system is used in
server mode, that is the system waits for incoming connections,
the dynamic part is only loaded when a remote system tries to
establish a connection to a port the system listens to.Binding
and listening to a port number does not lead to the loading of
TCP. If however the system is used inclient mode, that is the
systems tries to establish a connection to a remote system, there
is no point in delaying the loading of TCP, since establishing
a connection is almost always shortly followed by sending of
packets. Therefore aconnectcall causes TCP to be dynamically
loaded directly.

C. Application Level Protocols

The dynamic loading of application level protocols is best
achieved by providing stub calls, which load the protocols. This

data size (bytes) 128 256 512

static (µs) 7030 9175 12655
dynamic (µs) 6860 8480 13735

data size (bytes) 1024 2048 4096

static (µs) 18693 32290 60045
dynamic (µs) 19049 31942 60113

TABLE V
NETWORK DATA “ BOUNCE” TIMES

has been demonstrated by implementing an HTTP server. If the
embedded application needs to become a web server it calls an
initialisation routine, which is a stub call to the network pro-
tocol loader. Note that if TCP is not loaded it will be loaded
dynamically when a request for a web page is received.

Since all that is normally needed is one stub routine, a huge
number of application level protocols can be theoretically sup-
ported without using a lot of memory. This could be useful in
applications where a large number of protocols are needed, but
not necessarily all at the same time. An example of this is grid
computing [26]. Embedded systems could participate in a com-
putational grid using such a dynamic network protocol loading
system, providing access to computing power on remote ma-
chines.

D. Network Performance

To evaluate the performance of dynamically loaded network
protocols, a series of performance experiments have been run.
The experiment environment was the same as described in sec-
tion VII.

Data buffers of various sizes were sent from the PC to the
embedded system and “bounced” back to the sending system.
The times from the sending of the buffers to the receipt of the
bounced buffers were measured using both a statically - and
dynamically loaded version of TCP (timer resolution: 1µs).

Table V shows the average times it took to bounce the data
buffers of various sizes. It can be seen that overall the times are
very similar in the static and dynamic cases. In some instances
the times are slightly lower in the dynamic case, in other in-
stances they are slightly higher. These variations are small and
are probably to due to variation in network load. Overall the
results seem to suggest that there is no measurable overhead in
using dynamically loaded TCP.

To establish the cost of loading TCP, the time it takes to es-
tablish a connection was also measured. In statically loaded
TCP the connection was established at an average time of 17ms.
If TCP had to be loaded dynamically during the connecting pro-
cess it took a total of 1.6s. This suggests that the loading of
large protocols, such as TCP, is most effective if the protocol
is used rarely. A multimedia device, which uses TCP only for
occasional re-configuration would fall into this category.



IX. CONCLUSION

It has been shown that embedded operating systems can be
configured dynamically by loading and linking code into the
system at run-time. The Arena operating system provides a
platform in which OSMs reside in user-level libraries. A sys-
tem has been developed which allows the loading of relocatable
pieces of code into the running system.

To demonstrate the flexibility and performance of the code
loading system, a system which can dynamically load and re-
place PMs has been implemented. Performance measurements
have shown that the loading and linking times are acceptable
and most importantly that there is no measurable performance
overhead after the replacement of a PM has been achieved.

Furthermore, a network protocol loader has been imple-
mented to show a second use of the system. Rather than fo-
cusing on flexibility this case study shows how the system can
be used to save memory and therefore allow embedded systems
to participate in systems from which they were previously ex-
cluded due to lack of embedded resources.

REFERENCES

[1] S. Beyer, K. Mayes, and B. Warboys, “Dynamic configuration of embed-
ded operating systems,” inWIP Proceedings of the 24th IEEE Rael-Time
Systems Symposium, pp. 23–26, December 2003.

[2] R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks, “Shared libraries in
sunOS,”Proceedings of the USENIX 1987 Summer Conference, pp. 131–
145, 1987.

[3] J. Postel,Transmission Control Protocol — DARPA Internet Program
Protocol Specification - - RFC 793, Sept. 1981.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk,Hypertext Transfer Protocol
– HTTP/1.0 - RFC 1945, May 1996.

[5] J. Postel,User Datagram Protocol- RFC 768, Aug. 1980.
[6] K. Mayes, S. Quick, J. Bridgland, and A.Nisbet, “Language- and

application-oriented resource management for parallel architectures,” in
ACM SIGOPS European Workshop, pp. 172–177, 1994.

[7] R. Morrison, D. Balasubramaniam, M. Greenwood, G. Kirby, K. Mayes,
D. Munro, and B. Warboys, “A compliant persistent architecture,”Soft-
ware - Practice & Experience, Special Issue on Persistent Object Systems,
vol. 30, no. 4, pp. 363–386, 2000.

[8] S. Kingsbury, K. Mayes, and B. Warboys, “Real-time arena: A user-level
operating system for co-operating robots,” inProceedings of The Interan-
tional Conference on Prallel and Distributed Processing Techniques and
Applications (PDPTA), pp. 1844–1850, CSREA Press, 1998.

[9] S. Beyer, K. Mayes, and B. Warboys, “Application-compliant network-
ing on embedded systems,” inProceedings of the 5th IEEE International
Workshop on Networked Appliances, pp. 53–58, October 2002.

[10] D. Bovet and M. Cesati,Understanding the Linux kernel. O’Reilly, 2000.
[11] B. Henderson, “Linux loadable kernel module howto,” August 2001.

http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-
formats/ps/Module-HOWTO.ps.gz.

[12] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Orr, and R. Sanzi,
“Mach: A foundation for open systems,” inProceedings of the Second
Workshop on Workstation Operating Systems, pp. 109–113, 1989.

[13] K. S. B. Mukherjee, “Experimentation with a reconfigurable micro-
kernel,” in Proceedings of the USENIX Microkernels and Other Kernel
Architecture Symposium, pp. 45–60, 1993.

[14] D. B. Stewart, R. A. Volpe, and P. K. Khosla, “Design of dynamically
reconfigurable real-time software using port-based objects,”Software En-
gineering, vol. 23, no. 12, pp. 759–776, 1997.

[15] Y. Li, S. Tan, M. L. Sefika, R. H. Campbell, and W. S. Liao, “Dynamic
customization in theµchoices operating system,” inProccedings of Re-
flection ’96, 1996.

[16] B. N. Bershad, C. Chambers, S. J. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E. G. Sirer, “SPIN - an extensible microker-
nel for application-specific operating system services,” inACM SIGOPS
European Workshop, pp. 68–71, 1994.

[17] R. Pike, D. Presotto, S. Dorward, D. M. Ritchie, H. Trickey, and P. Win-
terbottom, “The inferno operating system,”Bell Labs Technical Journal,
vol. 2, Winter 1997.

[18] T. Lindholm and F. Yellin,The Java Virtual Machine Specification. Read-
ing, MA: Addison-Wesley, 1997.

[19] O. M. Group, “The common object request broker: Ar-
chitecture and specification. tech. rep. version 2.0,” 1995.
http://www.omg.org/technology/documents/formal/corbaiiop.htm.

[20] Sun Microsystems,Jini[tm] Architectural Overview, January 1999.
http://wwws.sun.com/software/jini/whitepapers/architecture.html.

[21] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
The International Journal of High Performance Computing Applications,
vol. 14, pp. 317–329, Winter 2000.

[22] Tools Interface Standards - TIS,Executable and Linkable Format (ELF),
version 1.2, Portable formats specifications, 1995.
http://x86.ddj.com/ftp/manuals/tools/elf.pdf.

[23] W. W. Ho and R. A. Olsson, “An approach to genuine dynamic linking,”
Software - Practice and Experience, vol. 21, no. 4, pp. 375–390, 1991.

[24] K. Sollinsl,The TFTP Protocol (Revision 2) – RFC 1350, July 1992.
[25] J. Postel,Intenet Protocol — DARPA Internet Program Protocol Specifi-

cation – RFC 791, Sept. 1981.
[26] I. Foster, “The anatomy of the Grid: Enabling scalable virtual organiza-

tions,” Lecture Notes in Computer Science, vol. 2150, pp. 1–??, 2001.


