Dynamic Loading in an Application Specific Embedded Operating System

Stefan Beyer, Ken Mayes and Brian Warboys
Centre for Novel Computing
Department of Computer Science
University of Manchester
M13 9PL
United Kingdom
Email: {beyer,ken,briap@cs.man.ac.uk

Abstract— Traditionally, configuration of operating systems is may not be known until run-time. For instance, a memory man-
done statically at compile- or link-time, but recently dynamic run- agement system can take advantage of information about page-

time configuration has become possible. Embedded systems howy,gaq6 collected at run-time to alter the page replacement policy,
ever have constraints, such as limited memory and real-time re- . .
in order to reduce paging overhead.

quirements, that prevent many dynamically configurable operat- .)))
ing systems from being used in an embedded system. This paper concentrates on the dynamic re-configuration

Dynamic configuration has associated limitations: either execu- of embedded systems. All the re-configurations performed
tion time overheads, due to complex code structures, or restricted jn the experiments are application-driven. That is, the re-
flexibility. However, loading compiled code and linking it immedi- configurations happen as a reaction of the application to its cur-

ately at load-time avoids many of these overheads. This paper de-) . .
scribes efficient dynamic loading and linking techniques employed "€Nt State. Itis however easy to adapt the techniques described

as part of the Arena special-purpose operating system to allow em- t0 perform re-configuration as a result of user-input.
bedded systems to be configured by replacing resource managers, The requirements for a dynamic configuration system for em-
such as the process manager. In Arena operating system man-phadded operating systems are as follo{@3$:The system should

agers reside in user-level libraries. A general-purpose loading- .
framework, designed specifically for embedded systems, is intro- allow low-level resource managers to be configured to allow

duced and two case-studies are described to show the flexibility of Maximum flexibility. (2) The run-time overhead should be min-
the system. imal. (3) The memory footprint should be sma(y4) The sys-

~ Performance measurements are presented to show that there tem should not require a hardware memory management unit.
is no measurable overhead introduced by the dynamic loading (5) Re-configuration should be reasonably fast compared to the

framework after the actual installation of a resource manager. i i . e .
This paper describes the results obtained by the work presented lifetime of a long-lived application(6) Real-time computing

as “work in progress” at the 24th IEEE Real-Time Systems Sym- Should be possible in between re-configurations.
posium [1]. Existing systems have been reviewed in the context of these

requirements and have been found unsuitable. Therefore, a sys-
tem which fulfils the requirements has been developed, based
I. INTRODUCTION on dynamic code loading.

Embedded systems are special-purpose systems. They af@he dynamic code-loading approach has been applied to the

often designed to perform very specialised tasks. Any oper&f€na library operating system, in which Operating System

ing system running on such a specialised system could bendfingers (OSMs) are implemented in user-level libraries, linked
greatly from adapting to specific requirements. Therefore, cdi-the application. In this scheme, the application requests the
figurable operating systems seem advantageous for embedd8ging or replacement of an OSM from a remote system over

systems. There are two ways in which operating systems &Retwork. A local dynamic linker then links the OSM into the
be configured: running application. Note that this differs from dynamically-

Static configuration is done at compile- or link-time. The Op_Iinked shared libraries [2], in that the loading and linking of the

erating system consists of components, which are combinedtg™ happens during execution, rather than at application-load-

build a specialised “version” of the operating system. time”,] o)
Dynamic configuration is performed at run-time, either Two possible target applications have been implemented to

through external input, for example via user interaction gemonstrate the flexibility of the system. The first of these case
automatically, as the result of the application requesting a &Udies is a system which allows the replacement of the pro-
configuration. cess manager (PM). The application specifies a new required

Static configuration tends to be more efficient at run-time, _ _ _ _ _
IThere are performance improving measures with dynamically-linked shared

b_Ut it '_S Iegs f_le)_(lble_than dynamic Conf'gu@t'qn' _Sta’[IC COMiprary approaches that delay the resolution of certain symbols until the first
figuration is limited in that the type of specialisation neededference to them is made at run-time.

scheduling policy and the system loads an appropriate PM o¥erent versions of these libraries dynamically as a means of re-

the network and links it into the application. Results of perfoeonfiguring the operating system. The PMs discussed in the

mance experiments are given to show that there is no meaguresent work are implemented as user-level resource managers

able overhead in running a dynamically-linked PM, compared libraries. Formerly, these were statically-linked to the appli-

to a statically linked PM, once the loading and linking has beaation to achieve re-configuration. This work introduces the dy-

achieved. The costs of the loading and linking phases are atsonic loading and replacement of user-level resource managers

given. on Arena and uses a PM case study to demonstrate the flex-
As a second case study, network protocol loading has bebitity and performance of a dynamic code-loading approach

investigated. A system has been implemented which aufor embedded system configuration. Furthermore, the memory

matically loads transport and application level protocols whesaving advantages of the approach are demonstrated by the net-

needed. TCP [3] and HTTP [4] have been used as examplerk protocol loading case study.

protocols. The system saves valuable memory by “listening”

to specific protocol ports without the full protocol implementa-

tion being present on the system. The protocol is loaded when IV. PREVIOUS WORK

a message needs to be sent or received. A possible targetgppynamically Configurable Operating Systems

plication could be a multimedia device, which uses UDP [5] . - .

to stream data most of the time, but might occasionally be re-Many conventional monolithic operating systems allow mod-

configured using remote login over TCP. Using dynamic prdli€S to be loaded into a running kemel. Linux and its ker-

tocol loading, it would be possible to save memory otherwig};el mod_ule 'OaF’ef [10][11] are a readily available example.

occupied by TCP for the actual streaming data. Conventlonal'mlcro—kernel-based systems, such as Mach [12],
Section Il describes the Arena Operating System. This is f lace OSMs in user-l_evel servers. An OSM_can th_eoretlcally

lowed by a short introduction to the basic concept of dynam replgced by stopping a server and restarting a different ver-

code-loading in Arena (section Ill) and a discussion of previo&éon of it. However, these systems tend to be general-purpose

work (section IV). Section V describes the underlying cod@-nd cannot give full control to applications, due to their multi-

loading system that was developed for this research and Secs&qllcatlon and multi-user paradigms. Another problem is the

VI describes the PM loading case study. Section VII gives t act that certain low-level policies, for instance in scheduling,
results of performance experiments. Section VIII describes tfi

network protocol loading case study. Finally, section I1X corf" .)
cludes the paper. The Kernel Toolkit (KTK) [13] and Chimera [14] are systems

that consist of a selection of configurable components, which
have to be present on the system all the time, meaning that the
Il. THE ARENA OPERATING SYSTEM system might be relatively large, if high flexibility is required.
The work described here is based on the Arena library opherefore, there seems to be a trade off between requirements

erating system. Arena is an application-oriented operating syisand 3 in these systems.
tem [6] [7] intended for both distributed and real-time applica-
tions [8] [9]. Operating system policy resides in resource man-
agers implemented as user-level libraries which are linked to
the application. The effect of this is to move operating sys-
tem policy up into the application run-time system. Low-level
mechanisms are provided by a hardware-specific nanokernel,
the hardware object (HWO). The HWO presents a generic view
of low-level processor features. In order to access the low-level
mechanisms, resource managers make downcalls to the HWO
interface. Conversely, on the occurrence of a hardware event, Application
the HWO can make an upcall to some user-level resource man-
ager. The upcall mechanism enables deferred processing of the I
event via an application-specific event handler thread. Fig. 1
shows how a hardware interrupt may cause the HWO to invoke
the user-level PM, which schedules a user-level event handler HWO

thread.
Interrupt
IIl. DYNAMIC CODE LOADING //

OSMs are placed in libraries at user-level in Arena, and it
is a logical development to allow the application to load dif-

annot be modified. These systems violate requirements 1, 4

Application
Thread

Application

Thread

Fig. 1. Arena Event Handling

Systems based on scriptingiGhoices [15]), type and which answers requests for whole applications andaalule
pointer-safe kernel extensions (Spin [16]) or virtual machinaerver which is responsible for the transfer of modules (figure
(Inferno Operating System [17], Java [18]) do not allow corB). ALP packet types allow requests for either whole appli-
figuration of certain low-level resource managers and therefarations, whole modules or individual symbol or string tables.
violate requirement 1, with some of them violating other refFhis ALP interface is used by the DOL, which is linked into
guirements as well. the application at user-level to load the modules and link them
into the application. Loadable modules are contained in ELF
relocatable object files.

L . . The DOL can be used by the application either directly or
Distributed systems, such as CORBA [19] or Jini [20] *em; rough a special OSM layer, such as the PMS described be-

ulate” dynamic code loading. However, the network latency gfy, - the application is loaded by the HWO using its applica-
SEIVICE access might be unacc_:eptable for some r.eal-t|me aPpdi loader component (“Appl.Load” in figure 2). This applica-
catlon; (re dquweme”n t 6%' M(I)SI |1nportantly, Sl‘!ChId'.Smbmed 38on loader interacts with the remote application server to pull
proacles 0 not allow low-level system manipulation (reqwrgver the application executable. Once the application has been
ment .)' 211 i hat low-level hiod loaded in memory, it may require the loading of further mod-

Dynlnst_[1] isa SOmMew _"".t ow-level approac _to YNaMiGies. Thatis, subsequently, as required, modules can be loaded
code loading. It lacks flexibility, as it cannot link in arbltraryby the DOL. The DOL interacts with the remote module server
code (requirement 1). . . to pull over the required modules.

Probably the most suitable approaches for arbitrary dynamlclt is vital that the DOL keeps a track of the symbols and string

cogillzoadw:g are gssted on Itljynam|_c(:j I|nk|n2.P| o the d . tables of the main program and of loaded modules so that sym-
. systems [22] typically provide an 10 IN€ dynamit, s can be resolved and linked. In order to achieve this, the
linker that can be used by the programmer to implicitly load ©60L maintains state with an entry for each loaded module. A

‘tahCiUtabhtaSr'nApart fé?_rg rily:ng higwlty OVTII";ii L;Nlrx enwéofnrrel:ﬁpo ule entry in this state contains the name of the module, the
S System uses shared objects, ch are useaior shafedinns and sizes of the symbol and string tables and infor-

libraries. These shared libraries are loaded through the mem Ytion about all the sections of the modaleEach module is

management subsystem on UNIX systems and rely heavily Q5 g .

. 0 given a type. For example, regular modules (i.e.non-OSM
the fact that pages are only loaded _when needed (requwe_mr% tdt?les) are{)rf) typREGand Erocesgs managers ar(e of tyade
4). Therefore, the components of a library tend to be combin e main program also has an entry in this module state, of type

in a few big shared object files and it is not trivial to extraclgJ EUDOso that symbol references to the main application can
smaller sized-objects from the shared objects, such as relo%%%resolved

able object files from static library archives. L : . .
DLD [23] enhances a.out-based systems with dynamic Ioad-The initialisation of this DOL state is achieved by a call to

”?g_ and unlogdmg of modules. DLD Is_ a “brary package pr0-2Not all sections of the ELF relocatable file containing the module have to be
viding the ability to load relocatable object files, normally usegdagded.
as input files for static linkers, into a running application. The
unlinking process relies on a garbage collector. DLD is the

B. Dynamic Code Loading Systems

closest of all existing systems surveyed to the loading system MOD
described here. However, it was designed for UNIX systems

and certain aspects of it, in particular the use of a garbage col- Application MOD

lector, make it less useful for embedded systems with memory link
restrictions and real-time constraints (requirement 6). N — link

V. THE DYNAMIC OBJECTLOADER

OosM OsM PM DOL

A dynamic object loader (DOL) has been developed for the
Arena operating system. Figure 2 shows a overview of Arena Do oo Request modules
with the DOL and a process manager switcher (PMS). The PMS [App. Load
is described in the following section. In the Arena HWO nano- ALP
kernel, the Arena loader protocol (ALP), a very light weight
transfer protocol, resides at the top of the network protocol HWO Net

. L. L. i work Protocol

stack. ALP is similar to TFTP [24] and is implemented di- Stack
rectly on IP [25] in the prototype implementation. It provides
the DOL with a simple send and receive interface, which allows

the transfer of modules (MOD in figure 2) from a remote mod-

. L Fig. 2. System Overview
ule server. The remote system containsagplication server

int dol_init (char *name); introducing indirections in the few cases in which the problem

. . _— QcCurs.
dol _init takes_ the name _Of the main application as an %or references from the main application to a loaded module
gument. Its main purpose is to set up the PSEUDO entry

. e function
the DOL state. The remote module server is contacted and the

string and symbol tables of the main application are request&gid *dol_get_symbol (char *name);

Since the module server executes in the same context as theﬁé‘B’rovided. This function searches through the symbol tables

plication server (which sent the application itself to Appl.loady¢ |3 4ed modules and returns a pointer to the location of the
the module server can obtain the required string and Sympghuested symbol

tables and send them to_ the DQdol _init t_hen crgat(_as the Unloading can be achieved by the following 2 functions:
PSEUDO module entry in its state. The main application sym-
bols and strings are now accessible to the DOL. int dol_unload_module (char *name);

When a module is required the function int dol_unload_module_by_type (int type);

These functions take the name or the type of the module re-
spectively. Unloading by type allows the unloading of an OSM
is called. This loads the specified module into application memithout the caller needing to know the name of the current OSM
ory and updates the DOL state with a new entry for the negf that type. This is possible because there is only one instance
module. The module server is contacted with a request for tbkany OSM type at any one time.

section header table and section header string table. The DOL
loads all loadable sections, including the string and symbol ta- /| RepLACING OPERATING SYSTEM MANGERS AT
bles. The DOL state for this module is set to the specified type,

RUN-TIME
and the locations of the string symbol tables noted. Next, the . .
symbol table igelocatedto contain the actual location of each The loading framework described above can be used to load

symbol declared inside the module. This is followed by lookin gular modules, to extend the fl_mctl_onallty .Of a program, or
for sections in the newly-loaded module containing relocati replace parts of the program with different implementations.

information and performing each relocation. References Whigﬁ’r example, so_rt_lng algor!thms could be_replaced n order to
se the most efficient algorithm for a certain type of input data.

cannot be resolved within the module itself are undefined refé2 h Idb d | by th licati
ences, and require DOL to search through its module state fo;r e DOL could be used to replace OSMs by the application

the location in other, previously loaded, modules. These undjé[emly’ without an additional layer, but this would mean the

fined references are resolved by patching the code directly,azg’lication programmer having to be aware of the implemen-

with a static linker. This means that for references from modu‘i@t'on details of OSMs. Typically an OSM includes some state

to module and from module to main program, no indirectioWh'Ch has to be saved and transferred to the new version of the

is needed, as is the case with most dynamic linkers. This SM. An application programmer would need detailed knowl-
proach however, introduces a problem on some machines, s ge of internal OSM data structures and the OSM routines that
as RISC machir;es where branch offsets do not cover th;a fect the data structures. It is better to provide a simple safe

address space. For example jumps on the 32-bit ARM arc2Mework for replacing each type of OSM. As a case study
tecture have to be within 32 MBytes. This can be solved e PMS has been implemented. It provides a framework for
witching between PMs.

In Arena a PM has to define a certain interface. This in-
terface provides the application with a consistent way of cre-
ating, yielding, suspending and switching threads. The PM

also allows the application and other OSMs to register event
Request Module Embedded handler threads for hardware events (e.g. interrupts). Appli-
Application | Module System cation threads and event handler threads are scheduled from

i _switch , the central scheduling routine. Not every PM will

Coad Module implement the full PM interface, but “null-functions” should be
provided for all unimplemented functions.
The PMS provides the following routine to load a first PM at
application start time:

int dol_load_module (char *name, int type);

Request Application

Load Application

Server OS int load_initial_pm (int type);

This call effectively replaces the call to the initialisation rou-
tine of the previously statically linked PM. Tihgpe argument
specifies the scheduling policy of the PM to be loaded. For
example the calload _initial _pm (PMTIME_SLICE)

Fig. 3. Application and Module Server

causes the PMS to initialise the DOL, look up the file name] [PMRR [PMTS |

of a PM implementing a time-slicing scheduling policy in an initial load 263ms| 265ms
internal mapping table, load it usirdpl _load _module and replacement| 279ms| 277ms
initialise it. TABLE |

The PM switcher routine
PM LOAD TIMES

void enter_pm_sw (int type);

can then be used to replace an existing PM with a new PM

of implementation by the application programmer at any time] [PMRR | PMTS |
during executionenter _pmsw causes the currently execut- network transfer] 200ms| 200ms
ing thread to be saved into its data structure. It is necessary linking 65ms | 62ms

to first save the state of the current thread, since the switch-
ing of PMs cannot be executed in the context of an applica-
tion thread. Executing a PM switch using the execution con-
text of a running thread would modify the state of the running
thread after saving it, thus leaving the data structures that have

to be copied to the new PM in an inconsistent state. Therefore, , , K | h |
enter _pmsw uses a special thread context, with its own ass¢2cMPyte RAM) running Linux kernel 2.4.19. The module

ciated data structure and stack. Arena already provides a sejfver was compiled using GCC 2.96. For both client and server
rate thread context for the PM's scheduling roufinswitch side, compiler optimisation was disabled. The network link be-

This special context can be safely used for the switching BYeen development board and PC was a 10Mbps ethernet link.

PMs. enter _pmsw sets the execution environment to the Two implementations of the PM were used for the exper-
switch thread context and uses the function iments. PMRR implements a cooperative round-robin and

. _ _ PMTS a time-slicing scheduling policy. PMRR and PMTS
int switch_pm (int type); were contained in ELF relocatable files of 5172 and 5304 Bytes

as the entry point for the thread. in size respectively.
switch _pmfirst unregisters all event handlers, so that no
event handler can modify the internal PM state during the rB- PM load time

placement process. It then saves all the internal PM datarhe purpose of the first experiment was to investigate the
structures representing threads. The new PM is loaded ®gerheads of the loading and linking process. It measured the
ing the DOL and the interface of the PM is established usifigne taken to load a PM dynamically. This included separate

dol _get _symbol for each provided function. The PM is ini- measurements for network transport times and link times. A
tialised with the saved thread data structures. Finally, the switigl, resolution timer was used (resolution = 1ms).

TABLE Il
PM LOADING NETWORK TRANSFER AND LINK TIMES

thread terminates and forces the executioni ofwitch . Table | shows the the total times for the loading and linking
I _switch then uses the new PM thread state to re-schedygycess. The first set of measurements are the times taken to
the application threads. load the PM as the initial PM, the second set of measurements

The PMS uses the DOL to link-in PMs directly, by patchingepresent the time taken to replace the existing PM with the PM
cation, indirections to the external interface of the PM must k@ntain the time taken to unload the original PM and copy data
used. For this reason PMS provides a collection of pointersdgyctures between PMs. As can be seen, this extra processing
functions, which are assigned to the particular implementatiopgreased the total time of the loading of PMRR by up to 6%.

of the functions at load-time bipad _initial ~ _pm During Taple II shows the results of measurements taken to anal-
the replacement of a PM these indirections have to be updat@gk the actual code-loading process in more detail. The first
The application uses these indirections. row shows times taken for the transfer of the PM over the net-
work, and the second row shows the times taken to link the PM
VIl. PERFORMANCE OFPM LOADING into the application. The results show that the network transfer

A. Experimental Setup amounts to about 75% of the total load time. A relatively slow

Betwork link (LOMbps) was used and the performance would be

All experiments were run on an Atmel AT91M40800-base : :
improved greatly by using a faster network connection.

development board (32MHz), with 4MB of external RAM
and Cirrus Logic CS8900A 10Mbps ethernet chip. The GCC)

3.2.2 compiler and GNU assembler 2.13.2.1 were used to buffd Overhead of dynamically loaded process managers

Arena, the test application and the process managers. Th@he purpose of the second experiment was to measure the
application server and the module server, from which modverheads of executing the dynamically-loaded PMs. It con-
ules were loaded, ran on an Intel PC (Intel Celeron 566MHzisted of comparing the dynamically-loaded versions of the two

] \ | PMRR | PMTS | Table 11l also shows thapminit takes up to 220s longer

pmiinit | static 240us | 45Qus in PMTS than in PMRR. This difference is due to the extra
dynamic initial load || 260us | 460us work that PMTSpmuinit has to do in order to register a timer
dynamic replacement 459Qus | 481Qus event handling thread with the HWO. The cost of this extra op-
TABLE Il] gration_is ingicated by thmregisterEvHandlerZ .dura—
oVLINIT tions given in Table IV. mregisterEvHandler2 is the

PM routine called by other OSMs to establish an event handler
thread, which is achieved largely by registering the thread with

the HWO.
‘ H PMRR\ PMTS\ Tqble IV gives dgrations of the ot_h_er PM routines in-

createlnitialThread static 150us | 150us vestigated. The flg.ures focreatelnitialThread o

dynamic | 15Qus | 15Qus createThread anq y|e.IdThread shpw that there is no
createThread static 250us | 250us mea;urablg executlon—tlme'overhead mtroducgd by the dy-

dynamic | 250us | 250us namic loading procedure. Flgures for each routine are identi-
yieldThread Static 80us | 80us cal for both_PM types _and for_stat|cally and dynar_mcall_y loaded

dynamic || 80us | 80us PMs. The figure obtained fofieldThread (_j_uratu_)n gives a
m_registerEvHandler2 static 220us | 220us measure of the cost of the cer}tral. PM ' outmeswnch i I.t

dynamic | 210us | 210us is difficult to measure the duration ofswitch directly. This

is becausé _switch runs in its own context, and is normally
TABLE IV invoked via an upcall from the HWO rather than being called
PM ROUTINES directly. An application call tyieldThread causes the cur-
rent thread context to be saved, thewitch contextto be en-
tered, and a new thread selected and scheduled witch
code.yieldThread thus represents the full thread schedul-

process managers with statically linked versions. The timi¥ operation. _ o
taken to execute certain PM interface functions were measured Nere are possibly two pairs of anomalous results given in
and compared. A high resolution timer was used (resolution@bles Il and IV. The 4% to 8% difference between the

10 us). The following functions were measured: times taken forpminit and mregisterEvHandler2

- pmiinit with static and “dynamic initial load” are not immediately ex-

- createlnitialThread plicable. In one case the static-linked routine is slower than
- createThread the dynamic-linked routine, whereas in the the other case it is
- yieldThread faster. This may indicate that the most likely explanation is that
- mregisterEvHandler2 the slight differences are due to timing errors.

The purpose of these functions should be obvious from the

name, apart from D. Discussion of Results

mregisterEvHandler2 , Which is provided for other re- The results described above show absolute times for the dy-
source managers to register event handler threads for hardwggic loading and linking of PMs. It has been shown that the
events. main factor in the total loading and linking time is the network

Table 1l shows the durations gfimiinit routine invoca- transfer. It is expected that these times could be reduced if a
tions. pminit is executed once at the start-up of a PM infaster network connection was used. The network connection
stance. The “dynamic initial load” and the “dynamic replacaised was at the bottom end of current network speeds. De-
ment” figures in Table Il both represent the time taken fgsending on the target use of the described system a much faster
pminit of a PM instance which has been dynamically innetwork is likely to be used. Network protocol optimisations
corporated into an application. “Dynamic initial load” refersnight further decrease the total times. There is a penalty asso-
to loading a PM into an application which previously had noiated with saving and restoring the thread data structures be-
PM. In contrast, "dynamic replacement” refers to loading a Pelveen replacement PMs. This approach however is only a small
into a running application with an existing PM. The order ofraction of the total load and link time. The longest total time
magnitude difference between the initial and replacement figreasured for a re-configuration of the scheduling policy using
ures represents the cost of copying existing PM state into tA®S was 279ms. Any static re-configuration of a system is
new PM instance. This state consists of the data-structures ridgely to take much longer. Moreover, it has been shown that
resenting threads and a few variables containing informatiance the reconfiguration has been completed, there is no mea-
such as the last scheduled thread. The time tak@mimit surable overhead in the execution of a PM, compared to a stati-
after dynamic replacement of the PM, although relatively higbally linked version. All other systems described in section IV
is less than 2% of the entire load and link overhead (Table §eem to either introduce overheads which are not acceptable on

embedded systems or lack the flexibility the system described | data size (bytes)] 128 [256 | 512 |
here provides. The structure of Arena, with OSMs placed in static (us) 7030] 9175] 12655
user-level libraries, provides the application with access to op- dynamic is) 6860 | 8480 | 13735
erating system policies, that cannot be modified in most other
operating systems.

| data size (bytes) 1024 [2048 | 4096 |

VIIl. N ETWORK PROTOCOL LOADING static (us) 18693 | 32290 | 60045
. dynamic (iS) 19049 | 31942 | 60113
A. Overview
TABLE V

As a second case study the DOL has been used to implement
a network protocol loader. The system allows the dynamic load-
ing of both transport level and application level protocols onto
the embedded system. That is, the embedded software can lis-

ten to communications ports without the bulk of the associatﬁgS been demonstrated by implementing an HTTP server. If the
protocol being loaded. The protocol is loaded when a mess

) . .agﬁbedded application needs to become a web server it calls an
needs to be sent or interpreted. Network protocol loading is a PP

fthe DOL which f . I initialisation routine, which is a stub call to the network pro-
gzii&"tye WhICh Tocuses on saving memory as Well 8s kol loader. Note that if TCP is not loaded it will be loaded

S . dynamically when a request for a web page is received.
Protocol loading is hidden from the user. That_ls, some proySince allythat is norn?ally needed is (F))ng stub routine, a huge
tocol API calls have been r.eplaced by stubs, which load in tlﬂ%mber of application level protocols can be theoretically sup-
rest of the code when required. ported without using a lot of memory. This could be useful in
applications where a large number of protocols are needed, but
B. Transport Level Protocols not necessarily all at the same time. An example of this is grid

To allow the loading of transport level protocols, the protd=0mputing [26]. Embedded systems could participate in a com-
col architecture had to be restructured, so that transport lef&iational grid using such a dynamic network protocol loading
protocols are implemented at user level [9]. system, providing access to computing power on remote ma-

It does not make sense to load very small and lightweigRfines-
protocols dynamically, if the code size of the support code for
the loading exceeds the code size of the actual protocol. IJ-%r Network Performance
this reason only the dynamic loading of TCP and not of UDP To evaluate the performance of dynamically loaded network
has been implemented at the transport layer. protocols, a series of performance experiments have been run.

The TCP code has been split into two parts. A static pafthe experiment environment was the same as described in sec-
containing the code for listening to TCP ports, is linked statfiion VII.
cally to the application and a dynamic part, containing the main Data buffers of various sizes were sent from the PC to the
TCP state machine, is located in a module with the moduggnbedded system and “bounced” back to the sending system.
server. The static part provides the equivalent operations to tHee times from the sending of the buffers to the receipt of the
UNIX system callsbind andlistenand also contains stubs forbounced buffers were measured using both a statically - and
all the API calls provided by the dynamic part. dynamically loaded version of TCP (timer resolution:9).

There are two cases to distinguish. If the system is used infable V shows the average times it took to bounce the data
server modgthat is the system waits for incoming connection@,“ﬁer? o_f various sizes. It can be seen that overall the_tlmes are
the dynamic part is only loaded when a remote system tries@'y Similar in the static and dynamic cases. In some instances
establish a connection to a port the system listendinding the times are slightly lower in the dynamic case, in other in-
andlisteningto a port number does not lead to the loading dft@nces they are slightly hlghgr. These variations are small and
TCP. If however the system is useddlient mode that is the &€ probably to due to variation |n.network load. Overall the '
systems tries to establish a connection to a remote system, tH6R!ItS seem to suggest that there is no measurable overhead in
is no point in delaying the loading of TCP, since establishirigging dynamically loaded TCP. o
a connection is almost always shortly followed by sending of To establish the cost of loading TCP, the time it takes to es-

packets. Therefore@nnectall causes TCP to be dynamicallytab”Sh a connec_tion was also_measured. In stati(_:ally loaded
loaded directly. TCP the connection was established at an average time of 17ms.

If TCP had to be loaded dynamically during the connecting pro-
cess it took a total of 1.6s. This suggests that the loading of
large protocols, such as TCP, is most effective if the protocol
The dynamic loading of application level protocols is bess used rarely. A multimedia device, which uses TCP only for
achieved by providing stub calls, which load the protocols. Thixcasional re-configuration would fall into this category.

NETWORK DATA “BOUNCE" TIMES

C. Application Level Protocols

IX. CONCLUSION [17] R. Pike, D. Presotto, S. Dorward, D. M. Ritchie, H. Trickey, and P. Win-
. terbottom, “The inferno operating systenBell Labs Technical Journal
It has been shown that embedded operating systems can beg > winter 1997. perating systers 2
configured dynamically by loading and linking code into th@g] T.Lindholm and F. YellinThe Java Virtual Machine SpecificatioRead-

_ti ; ; ing, MA: Addison-Wesley, 1997.
system a.t run.tlme' The A'.re”"’.‘ operating SYStem prOVIdeﬁlg] O. M. Group, “The common object request broker: Ar-
platform in which OSMs res_|de in user-level “_bra”es- A SYs- " chitecture and specification. tech. rep. version 2.0 1995.
tem has been developed which allows the loading of relocatable http:/www.omg.org/technology/documents/formal/caiiop.htm.

; : ; [20] Sun Microsystemslini[tm] Architectural OverviewJanuary 1999.
pieces of code into the r“”.r"'.".g system. http://wwws.sun.com/softwaref/jini/whitepapers/architecture.html.

To demonstrate the flexibility and performance of the codgi) B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
loading system, a system which can dynamically load and re- The International Journal of High Performance Computing Applications

lace PMs has been implemented. Performance measuremggts/0 14: PP: 317329, Winter 2000.
b P . o . &QfsTools Interface Standards - TIExecutable and Linkable Format (ELF),
have shown that the loading and linking times are acceptable version 1.2, Portable formats specificatioa§95.

and most importantly that there is no measurable performance http://x86.ddj.com/ftp/manuals/tools/elf.pdf.

. 23] W. W. Ho and R. A. Olsson, “An approach to genuine dynamic linking,”
overhead after the replacement of a PM has been achieved. Software - Practice and Experienoel. 21. no. 4, pp. 375390, 1991.

Furthermore, a network protocol loader has been implg4] K. Sollinsl, The TFTP Protocol (Revision 2) — RFC 135@ily 1992.
mented to show a second use of the system. Rather than [#8] J. Postellntenet Protocol — DARPA Internet Program Protocol Specifi-

. flexibility thi tudv sh h th t cation — RFC 791Sept. 1981.
cusing on Tlexibility this case study snows how the system C%] I. Foster, “The anatomy of the Grid: Enabling scalable virtual organiza-

be used to save memory and therefore allow embedded systemstions,” Lecture Notes in Computer Scieneel. 2150, pp. 1-??, 2001.
to participate in systems from which they were previously ex-
cluded due to lack of embedded resources.

REFERENCES

[1] S. Beyer, K. Mayes, and B. Warboys, “Dynamic configuration of embed-
ded operating systems,” WIP Proceedings of the 24th IEEE Rael-Time
Systems Symposiupp. 23—26, December 2003.

[2] R. A.Gingell, M. Lee, X. T. Dang, and M. S. Weeks, “Shared libraries in
sunOS,"Proceedings of the USENIX 1987 Summer Confergumzel 31—
145, 1987.

[3] J. Postel, Transmission Control Protocol — DARPA Internet Program
Protocol Specification - - RFC 79%ept. 1981.

[4] T.Berners-Lee, R. Fielding, and H. Frystytypertext Transfer Protocol
—HTTP/1.0 - RFC 1948Viay 1996.

[5] J. PostelUser Datagram Protocol- RFC 76&wug. 1980.

[6] K. Mayes, S. Quick, J. Bridgland, and A.Nisbet, “Language- and
application-oriented resource management for parallel architectures,” in
ACM SIGOPS European Workshap. 172-177, 1994.

[7] R. Morrison, D. Balasubramaniam, M. Greenwood, G. Kirby, K. Mayes,
D. Munro, and B. Warboys, “A compliant persistent architectuznft-
ware - Practice & Experience, Special Issue on Persistent Object Systems
vol. 30, no. 4, pp. 363-386, 2000.

[8] S. Kingsbury, K. Mayes, and B. Warboys, “Real-time arena: A user-level
operating system for co-operating robots,Aroceedings of The Interan-
tional Conference on Prallel and Distributed Processing Techniques and
Applications (PDPTA)pp. 1844-1850, CSREA Press, 1998.

[9] S. Beyer, K. Mayes, and B. Warboys, “Application-compliant network-
ing on embedded systems,”Rroceedings of the 5th IEEE International
Workshop on Networked Appliancep. 53-58, October 2002.

[10] D. Bovet and M. Cesatl)nderstanding the Linux kerneD’Reilly, 2000.

[11] B. Henderson, “Linux loadable kernel module howto,” August 2001.
http://www.ibiblio.org/pub/Linux/docs/[HOWTO/other-
formats/ps/Module-HOWTO.ps.gz.

[12] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Orr, and R. Sanzi,
“Mach: A foundation for open systems,” iAroceedings of the Second
Workshop on Workstation Operating Systepps 109-113, 1989.

[13] K. S. B. Mukherjee, “Experimentation with a reconfigurable micro-
kernel,” in Proceedings of the USENIX Microkernels and Other Kernel
Architecture Symposiuymp. 45-60, 1993.

[14] D. B. Stewart, R. A. Volpe, and P. K. Khosla, “Design of dynamically
reconfigurable real-time software using port-based objeStsffivare En-
gineering vol. 23, no. 12, pp. 759-776, 1997.

[15] Y. Li, S. Tan, M. L. Sefika, R. H. Campbell, and W. S. Liao, “Dynamic
customization in the.choices operating system,” Proccedings of Re-
flection '96 1996.

[16] B. N. Bershad, C. Chambers, S. J. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E. G. Sirer, “SPIN - an extensible microker-
nel for application-specific operating system servicesAGM SIGOPS
European Workshappp. 68-71, 1994.

