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Abstract

Recently, advanced microprocessors have
incorporated hardware performance counters in their
design allowing for new types of analysis via
empirical methods.  The goal of this analysis
continues to be the discovery of analytical/empirical
methods to evaluate performance of scaling codes on
today’s advanced CPU’s and to predict effects of
architectural advances on current applications.  In
this paper, we provide an instruction-level
characterization derived empirically in an effort to
demonstrate how architectural limitations in
underlying hardware will affect the performance of
existing codes.  In particular, we focus on scientific
applications of interest to the DOE ASCI
(Accelerated Strategic Computing Initiative)
community.  Preliminary results provide promise in
code characterization, and empirical/analytical
modeling.  These include the ability to quantify
outstanding miss utilization and stall time attributable
to architectural limitations in the CPU and the
memory hierarchy.  This work further promises
insight into quantifying bounds for CPI0 or the ideal
CPI with infinite L1 cache.  In general, if we can
characterize workloads using parameters that are
independent of architecture, such as this work, then
we can more appropriately compare different
architectures in an effort to direct processor/code
development.

Introduction

Workload characterization has been proven an
essential tool to architecture design and performance

evaluation in both scientific and commercial
computing areas. Traditional workload
characterization techniques include FLOPS rate,
cache miss ratios, CPI (cycles per instruction or IPC,
instructions per cycle) etc.  With the complexity of
sophisticated modern superscalar microprocessors,
these traditional characterization techniques are not
powerful enough to pinpoint the performance
bottleneck of an application on a specific
microprocessor.  They are also incapable of
immediately demonstrating the potential performance
benefit of any architectural or functional
improvement in a new processor design.  To solve
these problems, many people rely on simulators,
which have substantial constraints especially on
large-scale scientific computing applications.  This
paper presents a new technique of characterizing
applications at the instruction level using hardware
performance counters.  It has the advantage of
collecting instruction-level characteristics in a few
runs virtually without overhead or slowdown.  A
variety of instruction counts can be utilized to
calculate some average abstract workload parameters
corresponding to microprocessor pipelines or
functional units.  Based on the microprocessor
architectural constraints and these calculated abstract
parameters, the architectural performance bottleneck
for a specific application can be estimated.  In
particular, the analyzed results can provide some
insight to the problem that only a small percentage of
processor peak performance can be achieved even for
many cache-friendly codes.  Meanwhile, the
bottleneck estimation can provide suggestions about
viable architectural/functional improvement for
certain workloads.  Eventually, these abstract
parameters can lead to the creation of an analytical
microprocessor pipeline model and memory
hierarchy model.



This paper describes the application of this technique
on two SGI R10000-based systems: Origin2000 and
PowerChallenge, using the SGI performance counter
tool perfex.  Some results are directly validated by
the empirical memory model [1] and the statistic
model [5].

Methodology

The original motivation of creating an analytical
pipeline model for a superscalar microprocessor leads
to the definition of a set of workload parameters.  We
focus on the importance of using instruction-level
parameters to characterize a workload so as to
associate the workload performance behavior with
the microprocessor architecture.  Common
architectural features of many modern superscalar
microprocessors can be generalized as separated
pipelines for functional units (Figure 1):  one or more
integer pipeline(s) for ALU(s), one or more floating-
point pipeline(s) for FPU(s), and one or more
memory operation pipeline(s) for load/store unit(s).
We incorporate memory hierarchy influence on stalls
within the microprocessor in the general diagram
provided in Figure 2.

A branch prediction unit is usually employed before
multiple decoded instructions are dispatched to these
pipelines.  In applications with a small percentage of

branches and high branch prediction hit ratio, the
execution of these applications can be virtually
viewed as feeding integer, floating-point, and
memory instructions into three pipeline queues.  At
the end of each queue, functional units execute the
instructions at a preset rate, e.g. two floating-point
instructions per cycle, one memory instruction per
cycle, etc.  The out-of-order execution feature
provides the ability of resolving data dependency
within or between these pipeline queues.  Therefore,
the distributions or the mixture pattern of these three
types of instructions in the application instruction
flow shall essentially determine the instruction
execution rate (IPC), ignoring the memory hierarchy
effect.  This is the well-known IPC0 or CPI0, which
represents the effective application performance on a
specific microprocessor without memory slowdown.

Efficiently measuring these instruction-level
workload parameters is the key component to code
characterization.  The large scale of our application
workloads and the big slowdown of detailed
instruction-level simulations determine that the
measurement of the workload characteristics must
resort to some methods other than simulators.  On-
chip hardware performance counters widely available
on recent generation microprocessors become good
candidates for extracting these functional-unit-related
parameters.
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In order to analyze the behavior of those queues
illustrated in Figure 1, we need to measure the
average inter-arrival distance in number of
instructions, instead of cycles, which are dependent
on both architecture and application.  When we
characterize an application, one of the keys is to
separate the architectural factors so that a true
workload characterization can be presented.  This
“number of instructions between two consecutive
operations” idea is borrowed from the concept of
run-length defined in [2].

We define the preceding average terms for those
queues illustrated in Figure 1. This λ value is a factor
without a unit such that 1/λx is the probability of
occurrence of instruction x over the incoming
instruction stream. λL1 and λL2 refer to the occurrence

of L1 and L2 misses. These are inclusive and a subset
of overall memory instructions. To discount the
effect of branch misprediction and the overhead
impact of branch instructions, we also need to obtain
the ratios of branch instructions and branch
mispredictions to ensure the applications can be
simplified as three major instruction flows (FP, Int,
and Memory).   On the other hand, the instruction
cache miss ratio is also considered to see if the
instruction fetch effect can be significant.  The key of
this methodology is to estimate which of the above λs
can cause the stall of microprocessor due to the
limitation of architectural or memory constraints.

We have devised a three-step process for analysis of
the inner workings of a given microprocessor, based
on our characterization.  Our first step involves
assumption of an infinite L1 cache to allow a focused
study on CPI0 modeling a generic system similar to
Figure 1.   To ease discussion, let us define G as the
growth rate of queued instructions within the
microprocessor.  We must take into account the rate
at which instructions graduate as well as the rate at
which they are decoded giving:

where Gx is the growth rate for the x-queue of
interest, β is the ideal instruction dispatching rate for
the given microprocessor, λx is the measured distance
between instructions of type x for a given code, ∆x is

nsinstructio FP graduated #
nsinstructio graduated #=fλ

nsinstructio INT graduated #
nsinstructio graduated #=iλ

nsinstructio memory graduated #
nsinstructio graduated #=mλ

misses cache L1 #
nsinstructio graduated #=1Lλ

misses cache L2 #
nsinstructio graduated #=2Lλ

x

x

xG ∆−=
λ
β
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the preset hardware graduation rate of the x-queue,
and x is the current instruction type of interest,
namely m, i, or f for memory, integer, or floating
point instructions.  We are interested in positive
growth rates (Gx>0) for each queue in question.  This
formula, along with our infinite L1 cache assumption,
allows us to approach a lower bound for the widely
discussed CPI0.  Figures 3-7 show the steady state
achieved for these λs.  As a steady state is reached,
positive growth rates will contribute to cpu stalls as
any queue within the microprocessor reaches its
capacity.  These cpu stalls directly contribute to the
underlying CPI0.  Multiple positive growth rates lead
to contemplation of K, a threshold of maximum

instructions in flight; in other words in some cases we
must consider queue interaction as well as individual
contributions to stalling. Since we assume an infinite
L1 cache, indicate no branching effect, and ignore
data dependency, calculations of CPI0 based on λ
values must give a lower bound to CPI0.  Current
data supports these conclusions as work towards
better approximations of CPI0 continues.

In the second step, we focus on the first level of
memory hierarchy taking into account the diagram in
Figure 2.  We no longer assume an infinite L1 cache
and focus on architectural features that allow
computational overlap at the queueing level.  Most of
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Figure 3 λ values for Sweep on Origin 2000
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Figure 4 λ values for Dsweep on Origin 2000
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Figure 7 λ values for Heat on Origin 2000

λ  for Hydro

0
1
2
3
4
5
6
7
8
9

0 100 200 300 400

Problem Size

N
u

m
b

e
r 

o
f 

In
st

ru
ct

io
n

s

Floating Point

Integer

Memory

Figure 5 λ values for Hydro on Origin 2000
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Figure 6 λ values for Hydro-t on Origin 2000



today’s superscalar microprocessors allow overlap of
computation through support for outstanding cache
misses.  Through comparison of λ values when
misses to L1 cache occur, we can infer the
advantages of lengthening the number of
outstandings supported on chip.  This analysis is
extendible to multi-layered caches and is not limited
to this simple example.  We define a term Q’o as the
maximum number of outstanding cache misses
utilized by a code on a particular architecture.

This parameter gives us insight to the exploitation of
outstanding misses for a particular code on a given
architecture.

The third step of utilizing the instruction-level
characterization attempts to draw conclusions related
to cache size.  When cache sizes across machines
differ, λ values will reflect the performance gained.
Larger cache should insinuate greater values for the
respective λs.  If not, then there is no significant

performance gain attributable to a larger cache for a
particular code.

This multi-level procedure based on real-time code
measurements can provide both analysis of current
performance and evaluation of possible gains/losses
of simple architectural changes such as increasing
queue length, increasing number of outstandings, or
increasing cache size.  A later section provides results
obtained using this methodology on the test-bed
discussed earlier.

We should note that we have given several provisos
above, namely during different phases of the three
step process.  As shown in Figures 8 and 9, there are
several underlying assumptions for each layer of
analysis using the described characterizations.  These
provide a simplified modeling environment at the
expense of applicability among various types of
codes, but we feel the evolving techniques are useful
and adaptable as advances are made to incorporate
branch prediction and dependency modeling. Figures
8 and 9 show the overall assumptions, and the
assumptions associated with each level of analysis.

Application Description

Three applications (5 codes), which form the building
blocks for many nuclear physics simulations in Los
Alamos National Laboratory, were used in this study.
SWEEP is a three dimensional solver for the time
independent, neutral particle transport equation on an
orthogonal mesh [3]. The specific version used in
these tests was a scalar-optimized "line-sweep"
version [3] that involves separately nested, quadrant,
angle, and spatial-dimension loops.  In contrast with
vectorized plane-sweep versions of SWEEP, there are
no gather/scatter operations and memory traffic is
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significantly reduced through "scalarization" of some
array quantities.  Because of these features, L1 cache
reuse on SWEEP is fairly high (the hit rate is about
85%).  A problem size of N implies N3 grid points.
Another version of SWEEP algorithm, DSWEEP is
used in our experiments too.  This is a vectorizable
implementation of the diagonal line-sweep.

HYDRO is a two-dimensional explicit Lagrangian
hydrodynamics code based on an algorithm by W. D.
Schulz [4].  HYDRO is representative of a large class
of codes in use at the Laboratory.  The code is 100%
vectorizable.  An important characteristic of the code
is that most arrays are accessed with a stride equal to
the length of one dimension of the grid. HYDRO-T is
a version of HYDRO in which most of the arrays
have been transposed so that access is now largely
unit-stride.  A problem size of N implies N2 grid
points.

HEAT solves the implicit diffusion PDE using a
conjugate gradient solver for a single timestep.  The
code was written originally for the CRAY T3D using
SHMEM.  The key aspect of HEAT is that its grid
structure and data access methods are designed to
support one type of adaptive mesh refinement (AMR)
mechanism, although the benchmark code as supplied
does not currently handle anything other than a
single-level AMR grid (i.e. the coarse, regular level-1
grid only). A problem size of N implies N3 grid
points.

All of these benchmark codes are run on two MIPS
R10000-based systems: the SGI PowerChallenge and
the Origin2000.  Table 1 exhibits branch ratios,
branch misprediction ratios, and the instruction cache
miss ratios for all these codes.  It is clear from Table
1 data that both branch and instruction cache effect
can be negligible. Under this condition, the
performance study of these codes can focus on the
impact of the three major instruction flows (FP, Int,
& Memory).

Figures 3-7 show the variations of the λs for all 5
benchmark codes in this study.  These figures

demonstrate that the λs converge to constant values
with increasing problem sizes.  This is understood as
the instruction flow pattern of a problem that reaches
its steady state.  This phenomenon proves that λs can
be used in characterizing these codes once they reach
the steady state.

Performance Bottleneck Estimation

This new instruction-level workload characterization
technique is first applied to two R10000-based
systems to estimate the application performance
bottleneck.  This SGI microprocessor is a state-of the
art 4-way superscalar microprocessor supporting out-
of-order and speculative execution as well as non-
blocking cache and register renaming.  The R10000
microprocessor has the following major architecture
constraints to cause a CPU stall [6] (besides branch
and instruction cache effects):  a). one of the three
main queues is full; b). outstanding miss queue is
full; c). the number of total instructions in all three
queues reaches its maximum 32; d). all renaming
registers are consumed; e). there is more than one
back-to-back write-back from L1.  On the R10000
processor, both the F queue and the M queue have 16
entries each.  The I queue can accommodate 16
instructions.  As a good first-order approximation [7],
at each cycle, the load/store unit can execute one
memory instruction.  The two ALUs can graduate up
to two integer instructions per cycle and the FPUs
complete up to two floating-point instructions each
cycle.  The total number of instructions in flight on a
R10000 is 32.  The outstanding miss queue length is
less than 2 on the PowerChallenge and 4 on the
Origin2000.  According to [6], since a R10000 has 64
registers for renaming, it is unlikely that all 64
registers are exhausted before any other limit is
reached.  Also, the limit e) of L1 write-back buffer
may not be reached most of the time.  Therefore, we
can focus on the other 3 constraints.

Utilizing these instruction-level characteristics, we
calculate the growth rates for each code over both
machines in Table 2.  Due to their architectural

Branch Ratio Miss Prediction Ratio Branch Miss Ratio Icache Miss Ratio
(branch per instruction) (miss_pred per branch) (miss_pred per instruction) (icache_miss per instruction)

SWEEP 0.0653 0.1365 0.0089 0.0002
DSWEEP 0.0570 0.0340 0.0017 0.0001
HEAT 0.0554 0.0393 0.0022 0.0017
HYDRO 0.1052 0.0988 0.0104 0.0088
HYDROT 0.1057 0.1126 0.0103 0.0087

Table 1 Branch and icache characteristics for measured codes



similarity, the growth rates are identical across
PowerChallenge and Origin 2000.  For Sweep,
Dsweep, and Heat the only positive growth rate is
given in Gm.  This leads us to declare the memory
instruction growth rate as our limiting factor for these
codes on these machines.  A limiting factor is the key
contributor to stalls within the microprocessor
(excluding dependencies and memory latency as we
assume infinite L1 cache).  For these codes, it is very
likely the memory queue will fill, leading to stalls in
decoding as entries graduate slower than they arrive.
For Hydro and Hydro-t, we have positive growth
rates for the memory and integer queues.  This leaves
us two possibilities for the limiting factor.  The queue
associated with the maximum of the two growth rates
in the ideal case would fill first, namely the integer
queue.  This can only happen however, if the
maximum instruction threshold K is not reached.  As
mentioned above, K=32 for the MIPS R10000.  Since
the memory and integer queue lengths are both 16,
we cannot reach the maximum number of instructions
prior to stalling on a single queue.  Thus, the limiting
factor for both of these codes will be the integer
instruction growth rate.

For the second step of the process, we no longer
assume infinite L1 cache, and focus on the λs for the
L1 cache misses.  In Table 3, the values for λL1 over

the codes and machines are given.  As discussed
earlier, the PowerChallenge allows two outstanding
misses.  In this particular case, if the number of
maximum outstandings utilized by a code is less than
2, the outstanding misses are not fully utilized.  The
results when calculating Q’o are given in Table 4.
Note the values are very close across machines.  Q’o

is influenced by architecture (the number of memory
queue entries) and code characteristics (λ values for
memory and L1).  In this case, even though the
memory hierarchies differ, the queue entries are the
same since they are on chip.  Also, since the same
compiled code is executed on both machines, the
instruction streams are identical.  Herein lies the
usefulness of this technique in that it allows us to
isolate this particular architectural feature, namely
outstanding misses.  From Table 4, we can see the
maximum number of misses that could be utilized for
a given code-machine combination.  For
PowerChallenge, code-machine combinations less
than 2 under-utilize the existing architecture.  This
happens in the case of Sweep and Hydro-t.  For
Dsweep, Heat, and Hydro, on the PowerChallenge,
the architectural specification of only 2 outstanding
misses could certainly contribute to stalls within the
microprocessor.  For the Origin 2000, we have 4
outstanding misses.  Sweep, Dsweep, Heat, and
Hydro-t all under-utilize the available outstanding

Sweep Dsweep Heat Hydro Hydro-t

Gm Gi Gf Gm Gi Gf Gm Gi Gf Gm Gi Gf Gm Gi Gf

PowerChallenge 0.41 -0.73 -0.68 0.84 -0.65 -1.19 0.43 -0.32 -1.11 0.08 0.11 -1.19 0.08 0.12 -1.20
Origin 2000 0.42 -0.76 -0.66 0.89 -0.70 -1.19 0.42 -0.32 -1.11 0.09 0.10 -1.19 0.08 0.12 -1.20

Table 2 Measured growth rates

   Sweep   Dsweep    Heat   Hydro   Hydro-t
λL1 λL2 λL1 λL2 λL1 λL2 λL1 λL2 λL1 λL2

PowerChallenge 26.6 112.8 12.5 34.6 15.5 62.2 13.5 78.8 30.3 274.2
Origin 2000 24.9 122.9 12.7 38.0 15.5 62.6 13.4 219.4 30.3 290.1

Table 3 Cache miss distances

   Sweep   Dsweep    Heat   Hydro   Hydro-t
PowerChallenge 1.7 2.8 2.9 4.4 2.0
Origin 2000 1.8 2.7 2.9 4.4 2.0

Table 4 Outstanding miss utilization, Q’o



misses.  In Hydro however, stalls could occur within
the microprocessor due to filling the outstanding miss
queue.

For the third part of the process, we observe the λL2

values in Table 3.  The frequency of L2 misses shows
a sharp decline from the PowerChallenge to the
Origin 2000 for Hydro.  This indicates that Hydro is
the only code that gains an advantage from the larger
L2 cache (2MB L2 on the PowerChallenge, 4MB L2
on the Origin2000).  This is also validated in the
empirical memory model [1] and the statistic model
[5].

Future Work

We intend to validate more thoroughly the proposed
relationship of λ values to CPI0 using simulators.  We
would also like to expand to more comprehensive
equations involving the relationships discussed
above.  We are currently attempting to extend this
characterization to commercial workloads as we feel
such extension is complementary to the techniques
discussed.  Finally, memory bandwidth,
branch/icache impact, and data dependency should be
incorporated in an evolving model to extend the
applicability and validity of this modeling technique.
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