OaSis: An Application Specific Operating System
for an Embedded Environment

Gurashish Singh Brar
Susmit Biswas

Sudipta Kundu"
Arijit Mukhopadhyay

Pratik Worah
Anupam Basu

Dept. of Computer Science and Engineering, IIT Kharagpur
Dept. of Mathematics, IIT Kharagpur

Abstract

Portable and affordable assistive devices are calling
necessities for the physically challenged population
putting forth the requirement of designing embedded
systems tuned to specific assistive applications. In this
paper, we present a low footprint embedded operating
system, OaSis, which forms the core of embedded devices
being developed for the speech impaired, the visually
impaired and those with neuro-motor disorders. The
target hardware, housing QOaSis and on which the
applications are ported is Geode GXI1-233 processor
based POS-563 of Advantech. The system is presently
being ported to more energy efficient ARM based
platform. This system currently supports three
applications: Shruti — a Vernacular speech interface,
Sanyog — a Visual Communication interface and a web
browser. The OaSis embedded operating system has
been optimized to 90 KB and provides all the features
required for the specific applications. The different
modules of OaSis have been described and have been
compared with other operating systems.

1. Introduction

Assistive Technology [1, 5] deals with development
of hardware and software that enables physically
challenged people to overcome the hindrances in
efficient communication. Many of the modern assistive
devices are computer based [2, 3]. However, for better
usage, it is required that the systems be on low cost
portable platforms. The affordability issue is all the more
important for the people in developing countries, since
most of the portable systems are costly with respect to
these target users. The portability issue therefore calls for
indigenous development of low cost embedded assistive
systems.

The design or selection of suitable operating system
kernel forms a basic need of such embedded system
design. This paper presents OaSis, a low footprint

kernel. The hardware platform, on which the kernel and
the applications were first developed and ported, is
aGeode processor based Advantech board. The
applications that have been developed around OaSis,
include a text-to-speech system to be used by the visually
handicapped -Shruti, a visual communication system to
be used as an Augmentative and Alternative
Communication System (AAC) [4, 5, 6] for use of the
people affected with cerebral palsy - Sanyog. In addition,
a Web Browser is included for internet accessibility.

This paper concentrates on the design of OaSis
and also presents some of the embedded applications
developed around OaSis.

The paper is organized as follows.

Section 2 presents the overview of the target
hardware platform and the kernel of the OaSis operating
system. The next section discusses the application
programming interface (API) provided with OaSis.
Section 4 describes the device drivers. Section 5
discusses the optimization of OaSis. Section 6 presents a
comparison of OaSis with other operating systems.
Section 7 describes the ported applications followed by
the concluding section.

2. Overview of OaSis and the Hardware
Platform

The aim of OaSis is to provide an optimized low
footprint operating system. The current system consists
of the OaSis nanokernel, a modified form of the ulP
TCP/IP stack [8], emulation API’s providing the low-
level system functionality required by the applications
and drivers for the following: clock, ATAPI, Ethernet,
LCD, keyboard and sound blaster.

2.1. The Hardware Platform - POS — 563 Port

2.1.1. The POS — 563. The POS-563 is a low cost, fan-
less Geode GX1-233 board specially designed for POS
applications. The GX1-233 processor allows for fan-less
operation that virtually eliminates heat buildup problems
.The POS-563 has one PCI/ISA expansion slot, four
digital I/Os and four on-board serial ports each with +5
V/+12 V power.

2.1.2. The POS - 563 Port. In preparation for working
with real POS—563 hardware, a port of the Geode GX1-
233 was made using 32-bit GNU C compiler and GNU
inline assembler.

2.2. OaSis Nanokernel

The OaSis kernel has most of the characteristics
of a standard embedded OS kernel i.e. interrupt support
and soft Real-Time scheduling. The scheduler and the
interrupt control are closely interwoven. The data
structures are highly optimized to allow the full kernel to
reside in memory. OaSis, a modified subset of
Montague’s JN nanokernel [7] follows a classic soft-real-
time architecture informally known as a Cutler kernel.
The present kernel consists of a single work-loop, driven
by a queue of control blocks. It begins execution in
response to an interrupt. Once started, it continues to
execute until no control blocks remain in the queue. Each
control block contains the address of a routine which the
kernel must execute. Historically, these routines have
been called fork routines in the Cutler kernels. Since fork
routines cannot block and must have a bounded
execution time, they have many characteristics of
routines written for a hard-real-time environment.
Neither the fork routines nor the kernel need to use
explicit mutual exclusion to access global data structures,
reducing the need for explicit synchronization. The
OaSis currently supports Ext2 file system [9]. For
networking the OaSis supports Ethernet [11]. The full
kernel architecture was not implemented. The subset is
referred to as a nanokernel. Although the term has been
disparaged, it is believed to be warranted [13].

The current image size of OaSis is well within
90KB including all the modules i.e. the nanokernel itself,
the various application interfaces and the different device
drivers, excluding the speech database required for
Shruti.

3. The Application Programming Interface
(API)

This section documents the API required by the
application to execute on OaSis. The API is divided into

4 classes: thread, graphics, file and inter process
communication.

3.1. Thread APIs

The threading API were suitably modified from the JN
[10]. Thread priorities range from 0 to 16. This is
required for a soft Real Time environment to provide the
developer with a larger range, so as to effectively decide
the priorities of his applications. A sysThreadCreate()
API routine creates a thread in suspended state,
sysThreadExit() can terminate any thread, and
sysThreadYield() rotates the threads at the current
priority level. Any thread can be removed from
scheduling consideration by sysThreadSuspend() and
restored to scheduling eligibility by sysThreadResume().
The unique integer thread ID of the caller can be
obtained as well as the priority of any thread can be set
and read.

3.2. File APIs

Though the file system used by the OaSis embedded
operating system is a subset of the Ext2 file system, all
the standard conventions have been followed and the
standard data structure for the inode and the file
descriptor table has been implemented. The superblock
structure also remains the same. Some changes have
been made because of the application specific nature of
our system.

Shruti produces the output speech file by
concatenating small wav files, read from a database. So
to make Shruti run in an optimized way, OaSis needs to
search through the database very quickly and also read
from and write to a file quickly. The same requirement
exists for Sanyog. OaSis thus uses a binary search
strategy when searching for files within a directory to
quicken the search. As far as the API functions are
concerned there is the standard open, close, read, write
and lseek functions, implemented keeping in mind the
application’s requirement.

3.3. Graphics APIs

The Sanyog Application needs a grid type layout for
displaying its icons. A user will select a set of icons from
the display with switches attached to the serial port.
Displaying graphics in a fast and optimized way was a
priority. The graphics API has a simple Java AWT type
layout manager. The API consists of the TextClass,
GraphicsClass, LayoutBoxClass and

GridLayoutClass. The GridLayoutClass extends the
LayoutBoxClass and divides the display area into grids,
where each grid box can contain a graphics object or text
object or both. The LayoutBoxClass takes into account

the graphics and text object attached to the box, and
displays the object in the grid box whenever the
display_object function is called. The TextClass and
GraphicsClass read and buffer the text and graphics
object respectively. The system currently can display
portable pixel map (PPM) format files.

3.4. Inter Process Communication (IPC) APIs

The Web Browser application downloads a web page
from the internet and then applies a transcoding
algorithm to convert the page, because of the limited
display capability of the client device which is then
passed to Shruti. Inter process communication is required
in OaSis between Shruti and the browser and between
Sanyog and Shruti. So a Pipe message passing data
structure was created.

4. Drivers

Device drivers for the serial UART, the Keyboard,
Sound Blaster and Ethernet have been implemented as
described below:

e Realtek Ethernet: This driver has been
implemented for the Web Browser application.
This driver has two major components:

a) Packet Transmission: The transmit path of
RTL8139 uses four descriptors, each descriptor having a
fixed IO address offset. The four descriptors are used in
round-robin fashion. Early transmit threshold is also
specified in the descriptor.

b) Packet Reception: The receive path of
RTL8139 is designed as a ring buffer. Data coming from
line is first stored in a Receive FIFO in the chip, and then
moved to the receive buffer when the early receive
threshold is met. The status of receiving a packet is
stored in front of the packet (packet header).

e Sound blaster: The need for this driver arose
due to the text to speech application Shruti. The
driver uses DMA to transfer the sound file to a
buffer where from the DSP chip processes it to
get the sound.

e Keyboard: This driver is wused by all
applications. Implementation uses the standard
approach i.e. with a circular queue and a process
queue for the device.

o Serial UART: The need for this driver came
because in the iconic application, Sanyog a user
can give input to the application through special
access system as described in Section 7.1.

5. Optimization of OaSis:

OaSis has been optimized in many ways. The thread,
work blocks and memory data structures have been
highly optimized because only a few applications will be
running at the same time. Light thread data structures
allow rapid scheduling. Only necessary drivers have
been implemented. The file system and the file APIs
have been modified. A binary search strategy has been
implemented to facilitate a rapid database search for the
TTS application. Sanyog uses a grid type interface to
display the icons and also requires displaying the same
icon more than once at times. The Graphics API has been
written considering the display constraints of an
embedded device. The Graphics API has very simple
data structures in which it reads a graphics object and
buffers it. This helps in a much faster display of icons.

6. Comparison

In this section we present a comparison of OaSis with
respect to other standard operating systems.

6.1. System size

Table 1 gives a comparison of the storage requirements
for various embedded operating systems with the OaSis
operating system which clearly shows the difference in
size achieved by OaSis.

Table 1. Storage Requirements

Embedded CE.NE Micro
Linux T Linux

90KB 100MB 16MB 16MB S12KB

OaSis Embedded XP

6.2. Context Switch Time

5

%0

35

30

=25

20

0 2000 £000 6000 2000 10000
Conex: Switch x 1000

Figure 1. Time in sec (y axis) vs. context switches x
10000 (x axis).

The values for context switch time for OaSis were
obtained for a set of discrete points and the near linear
relationship obtained is plotted in Figure 1. Operating
systems like RH - 7.2, Windows XP, Windows 2000 SP2
have a context switching time which varies with the load
and ranges from a minimum of 3 psec for Win 2K SP2
and maximum of 14 psec for Red Hat 7.2 Linux. This
data was collected on a TP600X, 650 MHz by Bradford
[12]. In comparison, our system has a context switching
time of approximately 5 psec, which seems pretty good
for our embedded applications.

7. Applications.

7.1. Sanyog — Visual Communication Interface

The iconic communication application[14] provides
facilities physically challenged people to
communicate normally. The application has a very
simple GUI through which user selects icons. It has
the facility to form natural language sentences with
various moods, tenses and also interrogative
sentences. The application can be integrated with
special purpose input devices specially fabricated for
people afflicted with motor-neuron disorders. It is
also equipped with speech synthesis technique.

7.2. Shruti — Vernacular Speech Interface

The Text to Speech (TTS)[15] application acts as a
computer interface for the visually challenged, for whom
graphical interfaces are not viable also serving the
purpose of the voice of the speech impaired. The TTS is
based on a concatenation of speech approach. Given a
sentence in text, the synthesized speech will be generated
after some steps.

7.3. Web Browser

The Web Browser is a very low footprint simple
embedded browser. It uses a set of routines which take
input from a user, use TCP/IP to perform Web
transactions, and send the results to an output device, the
LCD display. The application can also make direct calls
(calls not initiated by an input device) to the browser to
perform such actions as loading a specific HTML file.

8. Conclusion

A working network computer with this custom operating
system has been implemented on a Geode GX1-233
processor based Advantech POS-563 board. While this
exercise served the purpose of proof of concept, we are
now porting it to ARM processor based platforms to

result in power efficient portable system. The paper
describes a novel operating system so that the specified
applications would perform better in this custom OS than
in a standard OS. The system is reasonably robust and
can serve as a test bed for future work. It was shown that
it is possible to do TCP/IP network development and
related research at a very low cost. The applications have
been ported and their successful execution proves the
efficacy of OaSis.

9. References

[1]. Proceedings of the ACM SIGCAPH Conference on
Assistive Technologies, 2000.

[2]. Newell Morris A, Booth L, and Ricketts I, Syntax PAL: A
writing aid for language-impaired users, in IS44C-92. [Also in
Augmentative and Alternative Communication, Vol.8, 1992].
[3]. Pennington C.A.and McCoy K.F, Providing Intelligent
Language Feedback for Augmentative Communication Users,
in Assistive Technology and Artificial Intelligence, Applications
in Robotics, User Interfaces, and Natural Language
Processing, (Mittal V.O et al eds.), LNAI 1458, Springer
Verlag, 1998

[4]. K. Rumble Gilian and Larcher Janet, AAC Device Review,
Vocation Pub. 1998

[5]. Vanderheyden P B.and Pennington C.A, An augmentative
communication interface based on conversational schemata, in
Assistive Technology and Artificial Intelligence, Applications in
Robotics, User Interfaces, and Natural Language Processing,
(Mittal V.O et al eds.), LNAI 1458, Springer Verlag, 1998.

[6]. Warrick A and Kaul Sudha, Their Manner of Speaking,
Indian Institute of Cerebral Palsy, Kolkata, India, 1997

[7]. B. R. Montague. JN: OS for an embedded Java network
computer. IEEE Micro, 17(3):54-60, May/June, 1997.

[8]. Adam Dunkels. ulP - A Free Small TCP/IP Stack.
Technical report, http://dunkels.com/adam/uip/.

[9]. Rémy Card, Theodore Ts'o and Stephen Tweedie. Design
and Implementation of the Second Extended Filesystem. The
First Dutch International Symposium on Linux, ISBN 90-367-
0385-9.

[10]. B. R. Montague. JN external API. Technical report, U. of
Calif. Santa Cruz, UCSC-CRL-97-17, 1997.

[11].Realtek Semiconductor Corporation. Realtek 3.3V single
chip fast Ethernet Controller with power management
RTL8139C (L). Revision 1.1, November 1999.

[12]. Dr Edward Bradford. High performance programming
techniques on linux and windows. http://www-
106.ibm.com/developerworks/linux/library/1-rt9/. July 1, 2002.
[13]. Jochen. Liedtke. Towards real microkernels.
Communications of the ACM, 39(9):70-77, September 1996.
[14]. Basu A., Sarkar S., Chakraborty K., Bhattacharya S.,
Choudhury M. and Patel R. Vernacular Education and
Communication Tool for the People with Multiple Disabilities.
Presented in Development By Design Conference, Bangalore,
2002.

[15]. Sen D., Sen S., Chakraborty S.J., Chakraborty A. and
Basu A. An Indian Language Speech Interface for Empowering
the Visually Handicapped. Proceedings of International
Workshop on Frontiers of Research in Speech and Music,
Kanpur, 2003. (pp 113 - 120)

