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Abstract 

Getting good I/O performance from parallel programs is a 
critical problem for many application domains. In this pa- 
per, we report our experience tuning the I/O performance 
of four application programs from the areas of satellite-data 
processing and linear algebra. After tuning, three of the 
four applications achieve application-level I/O rates of over 
100 MB/s on 16 processors. The total volume of I/O re- 
quired by the programs ranged from about 75 MB to over 
200 GB. We report the lessons learned in achieving high I/O 
performance from these applications, including the need for 
code restructuring, local disks on every node and knowledge 
of future I/O requests. We also report our experience on 
achieving high performance on peer-to-peer configurations. 
Finally, we comment on the necessity of complex I/O inter- 
faces like collective I/O and strided requests to achieve high 
performance. 

1 Introduction 

I/O has been identified as one of the major obstacles to 
achieving high performance from parallel computers. As a 
result, significant effort has been put into trying to improve 
the performance of I/O on these machines. To date, most 
researchers have focused on observing the I/O behavior of 
existing applications and on trying to improve the ability of 
I/O systems available on parallel machines to execute these 
applications [2, 3, 4, 7, 91. We take a different approach. 
Instead of assuming that the applications are fixed and that 
the I/O system alone is open to modification, we believe 
that both the applications and the I/O system have to be 
tuned to achieve good performance. In this paper, we con- 
centrate on tuning the applications to improve their I/O 
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performance, hopefully also improving their execution time. 
Our goal in this research was to find out what strategies 
were required to achieve good I/O performance for these 
applications, and to identify common strategies that work 
for a variety of applications. We were also interested in 
seeing what support from I/O libraries and filesystems was 
necessary to achieve good performance. 

To eliminate an under-configured I/O system, often a 
cause of I/O bottlenecks, as a cause of poor performance, 
we conducted our experiments on a parallel machine with 
an aggressive I/O configuration. Our experimental plat- 
form consisted of a 16-processor IBM SP-2 with six fast 
disks attached to every processor. A widely used micro- 
benchmark indicated the maximum application-level band- 
width to be 400 MB/s using the Unix raw disk interface 
and 270 MB/s using the Unix filesystem interface. All pro- 
cessors are connected to a high performance switch by a 
40 MB/s bi-directional link. Each node on our platform has 
substantial resources and can perform I/O for itself and for 
other nodes. This configuration also allowed us to investi- 
gate the performance of applications on both peer-peer and 
client-server architectures. 

For our study, we selected I/O-intensive applications from 
two areas: satellite-data processing (earth science) and out- 
of-core sparse-matrix factorization (scientific computation). 
The earth-science applications are currently in production 
use at NASA Goddard Space Flight Center and the out-of- 
core sparse-matrix factorization applications have been de- 
veloped at the University of Maryland with a near-term goal 
of solving very large submarine structural acoustics prob- 
lems. I/O is required in these applications for accessing pre- 
existing data, for intermediate results (i.e., for out-of-core 
processing) and for producing final output. 

For each program the objective was simple: make it run 
as fast as possible and keep track of what was required to 
achieve this. The results of this exercise are encouraging. 
Foremost, we were able to obtain application-level I/O rates 
of over 100 MB/s for three out of four applications. We 
also observed several common characteristics in the ways in 
which we achieved high performance from our applications. 
First, although it appeared that the initial versions of some 
of the applications would benefit from complex I/O inter- 
faces, such as strided requests, after tuning relatively simple 
I/O primitives proved to be sufficient. Second, local disks on 
compute nodes were required to achieve good performance 
for all of the applications. Third, information about future 
I/O requests was available for all applications and could be 
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used to schedule the requests. Both prefetching, initiated 
by applications, and write-behind, provided by the operat- 
ing system, were successfully used. 

The rest of this paper is divided into six sections. In the 
next section, we describe our experimental configuration. 
Section 3 reports on our efforts to characterize our config- 
uration using micro-benchmarks. In Sections 4 and 5 we 
describe each of onr application areas, report the I/O per- 
formance, and discuss the steps required to achieve this per- 
formance. Section 6 describes the lessons we learned tuning 
the applications. Finally, Section 7 summarizes our work. 

2 Systems background 

All our experiments were performed on a 16-node IBM SP- 
2 running AIX 3.2f.5. Each node is identically configured 
with one POWER;! processor, 64 MB of main memory, two 
fast-wide SCSI buses and a 40 MB/s bi-directional link to 
a multi-stage high-performance switch. Each SCSI bus has 
three 2.2 GB IBM Starfire 7200 SCSI disks. The peak band- 
width for each disk is 8 MB/s and the peak bandwidth 
for each SCSI bus is 20 MB/s. The overall system has 96 
disks totaling over 200 GB, a peak aggregate disk band- 
width of 640 MB/s and a peak aggregate SCSI bandwidth 
of 480 MB/s. The SCSI buses and the network adaptor are 
connected to an 80 MB/s MicroChannel bus. 

Each disk contains a separate filesystem. Although, 
AIX 4.1 is able to stripe filesystems across multiple disks 
in a single node, it has only recently become available for 
the SP-2 and has not yet been installed on our machine. 

Jovian-2 is a multi-threaded parallel-I/O library devel- 
oped at the University of Maryland. It provides an interface 
similar to the POSIX liolistio0 interface, which allows 
multiple I/O requests to be issued with a single call. Jovian- 
2 consists of two parts; the client proxy, which runs in the 
same thread as the application, and a separate server thread. 
The server thread c:an serve requests from both local and re- 
mote processes; local requests are handled as a special-case 
for fast processing. Jovian-2 is able to take advantage of 
multi-disk configurations. It allows the application process 
running on each node to control the scheduling of the associ- 
ated I/O server. Our current implementation assumes that 
a standard Unix file system with asynchronous I/O calls is 
available on individual nodes. On the SP-2, our implementa- 
tion uses the user-space communication primitives provided 
by IBM’s Message Passing Library (MPL). 

Jovian-2 is significantly different from the original Jovian 
I/O library [I]. These changes were prompted by our experi- 
ence with real I/O-,intensive applications and by changes in 
our experimental platform. There are four main differences. 
First, Jovian assumed a loosely synchronous model of com- 
putation and provided a collective-I/O interface; Jovian-2 
makes no such assumption and provides a simple 
liolistio()-like interface. Since all clients were guaran- 
teed to participate in a request, Jovian servers would wait for 
requests from all their clients before issuing disk requests. 
Jovian-2 servers, o’n the other hand, try to keep the disk 
busy by issuing disk requests as soon as possible. Second, 
Jovian assumed that individual requests would be small and 
provided support for coalescing multiple requests. Jovian- 
2 assumes programmers are aware of the costs of I/O and 
individual I/O requests are of substantial size. Third, Jo- 
vian servers were implemented as separate processes; Jovian- 
2 servers are implemented as threads in the application’s 
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Figure 1: Maximum application-level I/O rates for JFS. 
< z, y > indicates the number of disks on each of the two 
SCSI buses. 

address-space. Finally, Jovian did not provide support for 
striping over multiple disks whereas Jovian-2 supports user- 
customizable striping. 

3 Micro-benchmarks 

We conducted a series of experiments using micro-bench- 
marks to characterize the performance of our experimen- 
tal platform. These experiments had two goals. First, we 
wanted to determine the maximum application-level I/O 
bandwidth, which is a more realistic baseline to evabmte the 
performance of applications than peak disk or SCSI trans- 
fer rates. Second, we wanted to determine the parameters 
and configurations that provide the best performance. This 
information is needed to tune applications to effectively use 
the I/O system. 

In this section we present results for both the native Unix 
filesystem available on the SP-2 and for Jovian-2. For our 
study, we used Jovian-2 for the earth-science applications 
and the Unix filesystem for the sparse-matrix factoritzation 
applications. 

3.1 Journaled File System 

The Journaled File System is the default Unix filesystem 
available on AIX 3.2. To measure single node JFS per- 
formance, we used a modified version of the widely used 
iozone benchmark [13]. iozone determines the maximum 
application-level I/O bandwidth by making a sequence of 
contiguous write requests followed by a sequence of contigu- 
ous read requests. Our version of this program supports 
multi-disk configurations and can generate multiple simul- 
taneous requests per disk. It issues all requests using a single 
lio-listio() call and waits for all of them to complete be- 
fore issuing the next set. 

We performed experiments for request sizes between 4 KB 
and 4 MB; with one to six outstanding requests per disk and 
six different disk configurations. For each experiment, the 
benchmark wrote and read back a 70 MB file. We used a 
70 MB file to ensure we measured disk activity and not file 
cache performance. Along the request-size dirnensio:n, the 
bandwidth curves saturate around 1 MB requests. lncreas- 
ing the number of outstanding requests did not provide much 
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benefit. In most cases, the best performance was achieved 
with just one or two outstanding requests. Of the various 
configurations tested, the configuration with two disks per 
SCSI bus provided the best performance in almost all cases. 
The additional bandwidth provided by adding a third disk 
on a SCSI bus did not increase performance because of con- 
tention between disks for the bus. 

Figure 1 presents the maximum application-level read 
and write bandwidths for a set of request sizes on four disk 
configurations. We repeated these experiments using the 
Unix raw disk interface instead of JFS. The maximum read 
bandwidth achieved was 25.2 MB/s and the maximum write 
bandwidth was 23.5 MB/s. Although the raw disk config- 
uration provided noticeably higher throughput, we decided 
that any potential benefit from using raw disks would be 
offset by the loss in functionality. 

bandwidth that can be achieved for individual non-local re- 
quests can be computed by adding the time taken to read a 
striping unit from the disk into the memory of the server 
node and the time taken to move it to the client node. 
We measured the maximum communication bandwidth for 
128 KB messages to be 32 MB/s.’ Combining this with the 
maximum application-level I/O bandwidth via JFS (from 
Table l), we arrive at 10.3 MB/s as an upper bound for 
non-local bandwidth for individual requests. In compari- 
son, Jovian-2 achieved a read bandwidth of 9.3 MB/s for a 
one-server-one-client configuration. For configurations with 
relatively large I/O bandwidth - more servers than clients 
and large peer-peer systems, the read and write bandwidths 
are comparable. For configurations with relatively small I/O 
bandwidth, write bandwidth is much higher than read band- 
width, due to write-behind in the filesystem. 

3.2 Jovian-2 4 Earth-Science Applications 

To test the performance of the Jovian-2 parallel-I/O library 
for various I/O configurations, we performed experiments 
for three kinds of configurations: 

l Local-access: data is located on the same node that 
the I/O requests are made on. 

l Client-server: the nodes participating in the experi- 
ment are partitioned into clients and servers as shown 
in Figure 2(a). Clients run both the application thread 
and the I/O-server thread whereas servers run only 
the I/O-server thread. All I/O requests are made on 
clients. 

s Peer-peer: all nodes run both the application and the 
I/O-server thread as shown in Figure 2(b). I/O re- 
quests can originate from any node. 

In these experiments, the primary parameter was the 
number of nodes that performed I/O. On each node that 
performed I/O, we used four disks (two on each SCSI bus), 
since that provided the best performance, as shown in Sec- 
tion 3.1. Both file size and request size were scaled with the 
number of disks. For the local-access and the one-client-one- 
server cases, a single processor wrote and read back a 70 MB 
file. For larger configurations, the file size was scaled to en- 
sure at least 70 MB of data per node. file In addition, we 
read a 70 MB file on every node between every write experi- 
ment and the subsequent read experiment. For each config- 
uration, the file was striped over all available disks - local 
disks for the local-access case, server disks for client-server 
configurations, and all disks on all the nodes for peer-peer 
configurations. 

The request size was scaled to request at least one strip- 
ing unit from every disk. For a configuration that used 
d disks, a request of striping-unit-size x d KB was used. 
For configurations with multiple clients (or multiple peers), 
non-overlapping requests were generated. For peer-peer con- 
figurations using n nodes, l/n of I/O was local and the rest 
remote. 

Results for a representative subset of the experiments 
are presented in Table 1. All measurements include time re- 
quired to flush the file cache. For comparison, the maximum 
JFS bandwidths for four disks per node are 15.0 MB/s (read) 
and 16.8 MB/s (write). For non-local requests, Jovian-2 
reads files from disk using JFS and delivers them to the re- 
questing application using MPL. An upper bound for the 

The two earth-science programs, included in our applica- 
tion suite, pathfinder and climate, constitute a process- 
ing chain for Advanced Very High Resolution Radiometer 
(AVHRR) data. The Pathfinder AVHRR data sets are global, 
multichannel data from NOAA meteorological satellites. Both 
pathfinder and climate are currently in production use by 
NASA’s Goddard Distributed Active Archive Center and, 
together, are representative of a large class of NASA earth- 
science applications. Furthermore, the structure of these 
applications is similar to the large set of programs currently 
being developed to process data from the Earth Observation 
System [S] satellites. 

Pathflnder: This program is the first in the processing 
chain and processes AVHRR global area coverage data. Its 
input consists one or more daily data sets which contain 
satellite imagery and several ancillary files which contain 
topographic and cartographic data about the earth and in- 
formation that helps determine the position of the satellite 
at any given time. Each daily data set contains fourteen files, 
each containing data corresponding to a little more than one 
orbit. The output of the program is a single multichannel 
image of the world. Pathfinder performs calibration for 
instrument drift, topographic correction, masking of cloudy 
pixels, registration of individual pixels with locations on the 
ground and compositing of multiple pixels corresponding to 
the same ground location. The size of one daily data se,! is 
about 680 MB, the total size of all ancillary files is about 
100 MB and the size of the output is 228 MB. 

Each orbit file consists of about lO,OOO-13,000 scan lines, 
each scan line containing 3584 bytes. Input data is read in 
scan line by scan line, in chunks of 128 lines. Processing 
is done one chunk at a time. Ancillary files are not cached 
in memory. Instead, the data from these files is read when 
needed. The calibration, correction, masking and registra- 
tion operations depend only on the data in the chunk being 
processed; the composition operation combines data from 
multiple chunks. For the first four operations, pathfinder 
maintains large in-core scratch data-structures which are 
reused for every chunk. For composition, pathfinder main- 
tains an out-of-core intermediate version of the composite 
image. After the first four operations have been performed 
on a chunk, each data value in the chunk is mapped into the 

‘This measurement was done by determining the time required 
send one million 128 KB messages between a pair of nodes. 
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Figure 2: Configurations for (a) client-server and (b) peer-peer execution models 

Four-way striping on each node (2 disks per SCSI bus), 128 KB striping unit 

Table 1: Micro-benchmark performance for Jovian-2. All bandwidths are aggregate and are in MB/s. CZ-sy corresponds to a 
client-server configuration with x clients and y servers; pp-x corresponds to a peer-peer configuration with z peers. 

intermediate image and is compared with the correspond- 
ing pixel. If the rtew value is “better”, it is copied into 
the pixel. In effect, the composition operation has been im- 
plemented as an out-of-core max-reduction. Note that the 
mapping between the pixels in the satellite images and the 
two-dimensional output image generated by pathfinder is 
complex and many-to-one. Once all input data has been 
processed, the intermediate image is scanned for pixels that 
have no data associated with them. This happens, for ex- 
ample, if the satellite image is clouded. Data for such pixels 
is computed by interpolation. Finally, the output image is 
generated by concatenating information about the data set 
with the intermediate image. The total I/O performed by an 
optimized sequential version, including I/O for out-of-core 
accesses, is over 28 GB. 

Although processing of the AVHRR global area coverage 
data is representative of many earth science applications, 
some similar programs process even more data. For exam- 
ple, the input volume is sixteen times higher for the AVHRR 
local area coverage data which is higher resolution; the cor- 
responding output :size for the global lkm data products is 
sixty-four times larger. For MODIS, the primary instrument 
of the Earth Observation System, both the input and the 
output are at least two orders of magnitude larger than the 
AVHRR global area coverage data processed by pathfinder. 

Climate: This program processes the output of pathf inder 
and generates the AVHRR Land Climate data product. It 
performs a data selection and reduction operation. It ex- 
tracts three frequency bands of the image generated by 
pathfinder and reduces them to a single band latitude- 
longitude grid. The output of climate is vegetation index 

map which is used to track global land cover change. Input 
to climate is the 228 MB file generated by pathfinder, of 
which the program reads 54 MB. In addition, climate reads 
21.5 MB from an ancillary file. The output image is about 
130 KB. The total I/O volume for climate is 75.5 Ml3. 

I/O Optimizations: 

l In both programs, input was being read one scan line 
at a time (3.5KB for pathfinder,lOKB for climate). 
We aggregated input reads to 512KB in both cases. 

l A recurrent I/O pattern in both programs was the em- 
bedding of small I/O requests in the innermost loops. 
Each such occurrence generated nested sequences of 
small requests with fixed strides. This occurs in three 
situations: (1) reading of topographic data, (2) read- 
ing of the land-sea mask and (3) reading and writing 
of data for the out-of-core max-reduction. The request 
size was almost always two bytes and the subsequent 
seek distance was 20 MB. Relatively straightforward 
loop restructuring transformations were sufficient to 
aggregate the I/O and move it to the outermost loop. 
In the first two cases, the I/O was converted to block 
reads, whereas for the out-of-core max-reduction, it 
was converted to block read-modify-writes. 

l All I/O in both programs was buffered, using the stdio 
library with 4 KB buffers. In most cases, including 
the patterns described above, this buffering was inap- 
propriate. In the case of the patterns described a.bove, 
individual requests were small (two bytes) and t.he dis- 
tance between successive accesses (20 MB) was very 
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large. We replaced the buffered-I/O calls by their un- 
buffered analogues. 

Parallelization: 

In pathfinder, the map between the input satellite im- 
ages and the output global composite image is data-dependent 
and cannot be computed a-priori. The amount of computa- 
tion depends roughly upon the size of the input data pro- 
cessed. However, this relationship is weak as: (1) night 
images are not processed, (2) clouded images are partially 
processed and (3) ocean images are partially processed. The 
categorization of an image is also data-dependent and can 
be determined only after the data has been unpacked and 
partially processed. 

We parallelized pathfinder by partitioning the output 
image in equal-sized horizontal strips. Each processor is re- 
sponsible for all processing needed to generate its partition 
of the output image. We chose to partition the output im- 
age (instead of the input data) as this allows all combination 
operations2 to be local to individual processors. No inter- 
processor communication is needed. We chose a horizon- 
tal partitioning scheme to take advantage of the row-major 
storage format used in all files (input, ancillary as well as 
output files). Horizontal striping allows I/O to be performed 
in large contiguous blocks. 

Each processor computes the map from the input data 
set to the output image by subsampling (one scan line per 
chunk) all input files. It then reads the chunks that intersect 
with its partition of the output image. For each chunk, it 
maps each input pixel into the output image. Pixels that 
map into its partition are processed further, others are ig- 
nored. The individual partitions of the output image are also 
too large to be stored in main memory. Therefore, the com- 
position operation is still out-of-core. Once all processing is 
completed, the final result is produced by concatenating the 
individual partitions. 

In climate, the mapping between the pixels of the input 
image and those of the output image is data-independent 
and can be computed a-priori. The amount of computation 
to be done is proportional to the amount of input data. We 
parallelized climate by horizontally partitioning the output 
image. Each processor reads the data that maps to its par- 
tition of the output image. Load balance is achieved by en- 
suring that all processors read approximately equal amounts 
of data. 

For both pathfinder and climate, the final image is gen- 
erated by concatenating the images generated by individual 
processors. 

Use of Parallel I/O: 

In our experiments, we used four disks per node, two 
disks on each SCSI bus. We replaced calls to Unix I/O 
routines by calls to Jovian-2 routines. All ancillary files 
were replicated and striped across the four disks on every 
node. For client-server configurations, all input and out- 
put files were striped over all the disks of all server nodes; 
for peer-peer configurations, these files were striped over all 
participating disks. Every node running a pathfinder pro- 
cess (that is, the clients in client-server configurations and 
all participating nodes in peer-peer configurations) created 

2All input pixels that map to a single pixel in the output image 
are combined by a max-reduction operations to get the final value of 
an output pixel. 

a separate temporary file to hold its partition of the interme- 
diate image. This file was striped over the four local disks. 
The striping-unit size in all cases was 128 KB. 

4.1 Results and Analysis 

We ran pathfinder and climate for one daily data set on a 
variety of configurations. An unmodified version of 
pathfinder ran for 18,800 seconds on a single processor of 
the SP-2. Of this, about 13,600 seconds (76%) of the time 
was spent waiting for I/O; 580 seconds for input, 50 seconds 
for output and the remaining 12,970 seconds of I/O for the 
out-of-core max-reduction. 

Table 2 shows the breakdown of total l/O volume for 
the parallel version of pathfinder. The volume changes 
with configuration for two reasons. First, every processor 
constructs the map from the input images to the output im- 
age by reading one scan line per chunk of 128 scan lines. 
As a result, the total amount of input grows with the num- 
ber of processors that are running the application (clients 
in client-server, all nodes in peer-peer). This growth can 
be avoided by partitioning the task of constructing the map 
between input and output coordinates and having each pro- 
cessor report its share of the map to all other processors, 
Second, the size of the block that is read during the out- 
of-core max-reduction is determined by the bounding box 
around the pixels that are to be updated. Since the pixels 
to be updated are sparsely distributed, finer partitions of 
the intermediate image file are able to eliminate holes, re- 
ducing the total volume of I/O for this phase. The volume 
of intermediate reads is consistently much higher than the 
volume of intermediate writes. This is because some on-disk 
data has to be read to decide whether any pixels are to be 
updated. Writes are needed only if at least one of the pixels 
need to be updated, and then only for the bounding box 
around the pixels to be updated. 

The breakdown of total I/O volume for climatedoes not 
change with configuration. The I/O for climate consists 
almost exclusively of read requests. Total local I/O (for 
ancillary files) is about 21.5 MB and total non-local I/O 
(input data) is 54 MB. The output volume is 130 KB. 

Early results indicated that there was a large difference 
between the performance of peer-peer and client-server con- 
figurations for pathfinder. With abbreviated input (one 
orbit file instead of fourteen), pathfinder running on a four 
processor peer-peer configuration was able to achieve only 
a 400 KB/s per-processor non-local read bandwidth. With 
the same input, it was able to achieve a per-processor non- 
local read bandwidth of 6 MB/s on a client-server config- 
uration of the same size (three clients, one server). The 
write bandwidth on a four-processor peer-peer configura- 
tion was better at 3 MB/s but was much lower than the 
7.4 MB/s achieved on the corresponding client-server con- 
figuration of same size (three clients, one server). Note that 
the non-local reads are used to input the satellite data in 
chunks of 128 scan lines and are interspersed with compu- 
tation, whereas the non-local writes are used for final out- 
put and are bunched together. The total execution time 
for an abbreviated pathfinder run (single orbit file) on a 
four processor peer-peer configuration was 510 seconds, of 
which 320 seconds was I/O waiting time. In comparison, 
the execution time on a three-client-one-server configura- 
tion was 290 seconds, of which 103 seconds was I/O wait- 
ing time. In contrast, the Jovian-2 micro-benchmark, which 
does no computation, achieved comparable performance on 
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4 nodes 
c3-sl 

Input 1,508 
Intermediate read 20,341 
Intermediate write 6,301 
Total 28,378 20,126 20,771 17,024 19,459 19,300 19,376 

Table 2: Breakdown of total I/O volume (in MB) for pathfinder. Output volume is 228 MB for all configurations. 

both peer-peer and client-server configurations (see Table 1). 
This might lead to speculation that applications that do sig- 
nificant amount of computation hamper I/O performance 
on peer-peer configurations. Section 5 provides a counter- 
example. It provides performance results for a program that 
performs substantial computation and I/O on a peer-peer 
configuration. It achieves good performance by using exten- 
sive global information about future I/O requirements and a 
one-sided communication model. Our current hypothesis is 
knowledge of future I/O requirements is necessary to achieve 
good computation and I/O performance on peer-peer con- 
figurations. We intend to test this hypothesis in our future 
research. For the rest of the experiments with pathfinder 
and climate, we limited ourselves to client-server configu- 
rations. 

Figure 3 shows a breakdown of execution time for 
pathfinder for a set of client-server configurations. There 
are three interesting points. First, pathfinder is now 
compute-bound. Except for the 15-client-l-server case, I/O 
waiting time is less than 25% of the total time. In many 
cases, it is substantially less (10% in one case). Second, for 
a given number of nodes, configurations with a small number 
of servers achieved the best performance. This is unsurpris- 
ing as the bulk of the I/O is for intermediate read/write 
operations and is directed to local disks. It should be noted 
that increasing servers in a fixed size configuration has two 
conflicting effects: (1) it increases the bandwidth for uon- 
local I/O (by increasing the number of nodes that act as 
servers) and (2) it decreases the bandwidth for local I/O 
(by reducing the number of clients). Increasing the number 
of servers beyond two for any of the configurations provided 
no benefit and actually increased the execution time for the 
twelve- and sixteen-processor configurations. Third, the ex- 
ecution time does not reduce significantly from the twelve- 
processor to the sixteen-processor configurations. There are 
two reasons for this. First, since all processors independently 
compute the map from input coordinates to output coordi- 
nates, the amount of input data read during the partitioning 
phase increases with the number of processors. Second, as 
the number of processors grows, each chunk (128 input scan 
lines) is partitioned1 between more processors. Each proces- 
sor that processes a part of a chunk has to unpack, parse 
and map the entire chunk before it is able to isolate the 
portion it needs to process. Therefore, the total amount 
of processing done on every chunk grows roughly with the 
number of processors. As was mentioned earlier, growth in 
the amount of total input read volume can be avoided by 
partitioning the task of computing the map between input 
and output coordinates, followed by a global exchange of in- 
formation. An even better solution would be to compute the 
map from satellite image coordinates to the output image co- 
ordinates during the process of converting raw sensor read- 

ings (level 0 data in NASA parlance) to the AVHRR orbital 
data files ((level lb data in NASA parlance). This conver- 
sion occurs earlier in the processing chain than pathfinder. 
This change would also help eliminate the growth in t,he to- 
tal amount, of computation as individual processors ca.n now 
read only the portions of chunks that map to their pa:rtition 
of the output image. Note that this would require restruc- 
turing of pathfinder code to process variable-size chunks. 

Table 3 presents the aggregate bandwidths sustained by 
pathfinder for different kinds of I/O. Recall that both in- 
put and output I/O are non-local, whereas both interme- 
diate reads and writes are to local disks. It is interesting 
to note that for configurations with many clients and few 
servers, the aggregate I/O rate achieved is grea.ter th,an the 
value indicated by the micro-benchmark results presented in 
Table 1. This is made possible by the fact that, beyond an 
initial barrier for configuration purposes, all client processes 
are independent. This allows different clients t.o utilize the 
server(s) at different times. A parallel-I/O library that pro- 
vides a collective-I/O interface and coalescing of requests 
from multiple clients would usually not be able to d.o this 
as it would wait until requests are received from all (clients 
before issuing any requests to the disks. A collective-I/O 
library that provided only partial coalescing and issued disk 
requests without waiting for all requests to arrive, would be 
able to utilize the server(s) over a longer time. 

Another point of interest is that the intermediate re- 
quests have substantial locality and are able t.o take good 
advantage of the operating-system file cache for both reuse 
and write-behind. This is facilitated by the paralIeli:zation 
scheme, which ensures that all intermediate I/O is to lo- 
cal disks and that each processor processes exactly the data 
that maps into its segment of the output image. 

Figure 4 shows the breakdown of execution time for 
climate. Computation for climate scales well. The to- 
tal I/O time was consistently about 4-5% of the total com- 
putation time for all the configurations we experimented 
with. We did not run climateon larger configurations, since 
the individual partitions of the input data would bcecome 
very small. Recall that the total I/O volume for climate 
is 75.5 MB. Table 4 presents the aggregate I/O rat.es for 
climate. As in the results for pathfinder, independent 
requests allow climate to achieve a larger aggregate band- 
width than was indicated by the Jovian-2 micro-benchmark. 

Table 5 presents end-to-end I/O rates for both 
pathfinder and climate. It shows that both programs are 
now compute-bound. It also shows that it is possible to 
achieve end-to-end I/O rates over 26 MB/s in earth-science 
applications. 
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Figure 3: Breakdown of execution time for pathfinder. The numbers in the bottom row indicate the total number of nodes 
in the configuration. An unmodified version of pathfinder ran for 18,800 seconds on a single processor of the SP-2. Of this, 
about 13,600 seconds (76%) of the time was spent waiting for read/write operations. 

4 nodes 11 8 nodes 12 nodes 16 nodes 
Config (client/server) c3-sl (( c7-sl 1 c6-s2 1 c5-s3 11 cll-sl 1 ClO-s2 I c9-s3 11 c15-sl I c14-s2 ( c13-s3 

Table 3: Aggregate application-level I/O rates for pathfinder. All rates are in MB/s. The aggregate I/O rate is computed 
by multiplying the per processor application-level I/O rate by the number of clients. Per processor I/O rate is computed as 
the sum of I/O volumes for all clients divided by the sum of time spent in I/O routines by all clients. 

4 nodes 8 nodes 12 nodes 16 nodes 
Config (client/server) c3-sl c7-sl c6-s2 c5-s3 cll-sl ClO-s2 c9-s3 c15-sl c14-s2 c13-s3 

pathfinder 11.8 17.9 17.5 16.2 20.8 22.7 21.7 18.8 26.5 25.5 
climate 1.2 2.5 2.3 1.9 - - - - - 

Table 5: End-to-end I/O rates for pathfinder and climate. All rates are in MB/s. The rate is computed by dividing the 
total data volume by the total execution time. 
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Figure 4: Breakdown of execution time for climate. The numbers in the bottom row indicate the total number of nodes in 
the configuration. 

8 nodes 

Overall ’ 1 19.2 11 27.8 1 36.0 1 32.7 

Table 4: Aggregate application-level I/O rates for climate, 
in MB/s. The aggregate I/O rate is computed by multi- 
plying the per-processor application-level I/O rate by the 
number of clients. Per-processor I/O rate is computed as 
the sum of I/O volumes for all clients divided by the sum of 
time spent in I/O routines by all clients. 

5 Out-of-core Spame-Matrix Factorization 

Many scientific and engineering applications require the so- 
lution of very large sparse linear systems. Assuming a to- 
tal memory pool of 50 GB, the largest sparse system (with 
5% sparsity and double-precision complex arithmetic) that 
can be solved in-core on current supercomputers consists of 
about 250,000 equa.tions.3 Demands of some applications 
are far beyond that limit. In particular, submarine struc- 
tural acoustics problems can require the solution of sparse 
linear systems withL 2-3 million equations. Such applica- 
tions require efficient out-of-core methods. We have im- 
plemented an out-of-core parallel sparse Cholesky factor- 
ization, along with associated programs for parallel sym- 
bolic factorization and parallel matrix partitioning. We have 
selected two of these programs, the sparse-matrix parti- 
tioner (partitioner) and the Cholesky factorization pro- 
grams (factor) for our study. Like pathfinder and climate, 
this pair of programs forms a processing chain. 

Sparse Cholesky factorization arises in the direct solu- 
tion of symmetric positive-definite systems of linear equa- 
tions. The Cholesky factor of a symmetric positive definite 
matrix A is a lower-trian 

B 
ular matrix L with positive diag- 

onal, such that A q = LL . Our parallel out-of-core sparse 
Cholesky factorization is a parallelization of a left-looking 
supernodal Cholesk,y factorization algorithm [ll]. This par- 
ticular formulation ‘of Cholesky factorization is based on su- 

3We arrive at this number by calculating the number of double- 
precision complex values that a 50 GB memory will hold and by using 
this number and the sparsity.to compute the corresponding number of 
equations. This number is an overestimate, as it ignores the memory 
required to hold the data-structures used to efficiently store the sparse 
matrix. 

-- 

1 for i = 1 to S do 

2 for all S, with j < i and Sij # 0 

3 Read S, 

4 Update Si with Sj 

5 Discard S, 

6 Factor Si 

7 Write Si to disk 
-- 

Figure 5: Out-of-core Sparse Cholesky Factorization 

pernodes. Each supernode is a set of contiguous columns 
such that every adjacent column in the set has an identical 
sparsity structure below the diagonal. Using supernodes en- 
ables the use of efficient dense linear-algebra kernels [5], as 
well as large transfers between secondary storage and pri- 
mary memory. These applications assume a peer-peer con- 
figuration and directly use Unix I/O calls. 

Partitioner: this program has two input files, the matriz 
file which contains the structure of the original matrix (A) 
and its non-zero values, and the indexfile which contains the 
sparsity structure of the factor L. The index file is generated 
by a symbolic factorization of A prior to the execution of 
part it ioner. Part it ioner performs two operations: (1) 
computing and allocating space for the fill-ins, which are 
locations in A that are originally zero, but will become non- 
zero (in L) after the factorization; and (2) distributing the 
Cholesky factor, L, to the processors participating in the 
factorization. 

The Cholesky factor is partitioned using a 2-D strategy 
originally developed in [17]. The processors are organin;ed in 
a Ic x m grid. Let P,,, denote the processor number a& the 
rth row and qth column of the processor grid. Supernode 
i of matrix A is mapped to processors in the (; mod m)th 
column of the processor grid. A supernode is further par- 
titioned among the processors in a column of the processor 
grid, such that block j of supernode i is mapped to pro- 
cessor Pj mod k,i mod m. This mapping ensures that com- 
munication takes place only within the processors plac:ed in 
the same column or in the same row of the processor grid. 
Hence, each processor communicates with at most k + m 
other processors. 

This program has two phases with similar I/O access 
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patterns. The first phase sequentially reads the index file 
to extract the supernodal structure of the matrix. All re- 
quests in this phase are very large (25 MB) and contiguous. 
Furthermore, all requests are read requests and use blocking 
I/O calls. With the exception of the columns on the par- 
tition boundaries, all I/O in this phase is to the local disk. 
Requests in the second phase also access large contiguous 
chunks but the request size is smaller (5 MB) and two local 
files, instead of one, are used. 

Factor: as mentioned above, this program implements left- 
looking supernodal Cholesky factorization. Figure 5 pro- 
vides a high-level algorithm. Parallelism in factor is achieved 
at several levels, both in computation and I/O. First, since 
each supernode is partitioned among k processors, updates 
to a supernode are performed in parallel. Second, multi- 
ple supernodes can be updated in parallel, as long as the 
dependences are satisfied. That is, supernode S, can up- 
date supernode Si as long as the factorization (step 6) has 
been performed on S,. In our implementation, at most m 
supernodes are updated in parallel, where m is the hori- 
zontal dimension used in the processor grid. Third, each 
supernode is striped across Ii processors. The stripe size de- 
pends on the sparsity of the supernode and is determined 
by partitioner. Fourth, asynchronous I/O primitives are 
used to overlap the computation with I/O. The prefetch 
mechanism uses a pre-computed schedule to issue as many 
asynchronous I/O requests as possible given the memory 
constraints. The requests are issued in the order that the 
corresponding data will be used. We have not attempted 
to improve the communication balance for the factor. Our 
relatively simple technique provided acceptable performance 
for moderately unstructured matrices but did not perform 
welI on sara-2, which is very sparse. 

A key data structure in factor is the ehmination tree [lo] 
generated during symbolic factorization using the structure 
of the sparse matrix. This structure contains dependency in- 
formation between different supernodes and does not change 
over the course of the computation. Therefore the exact se- 
quence of supernode update operations is known a-priori 
and can be used to generate a schedule for I/O and com- 
munication for all processors. This information can be ex- 
ploited when performing step 3 of algorithm in two ways : 
(1) prefetching to overlap the I/O of Sj with the ongoing- 
computation, and (2) caching to avoid the re-reading of su- 
pernodes to be used in the near future. Each processor is- 
sues prefetch I/O requests based on the schedule generated 
from the elimination tree and availability of memory space. 
A static prefetch horizon of two dependency levels per su- 
pernode is used, generating at most 2m outstanding read 
requests on each processor. The prefetch horizon was deter- 
mined empirically and depends on the per-processor physical 
memory available for user programs as well as the relative 
I/O and computation rates. I/O requests in factor can be 
both local and non-local; step 3 of Figure 5 requires non- 
local I/O when S, is not stored on local disk. Prefetched 
non-local data is injected into the communication network 
when the local computation reaches an appropriate point in 
the schedule. 

5.1 Results and Analysis 

We ran partitioner and factor on a variety of peer-peer 
configurations. In all configurations, we used only one lo- 
cal disk at each node. To evaluate the benefit of future 
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Partitioner Factorization 
Matrix R d Write R d Write 

skirt 3: 403 2oezao 377 
Sara- 1 488 534 49:ooo 509 
Sara-2 301 1,939 220,800 838 

Table 7: Application I/O volumes (in MB) for 16 processors. 

knowledge provided by the elimination tree. we conducted 
experiments with two versions of factor - one that used the 
information for prefetching (factor) and the other that did 
not (factor-np). In factor-np, processors make explicit 
I/O requests to their peers and service the requests from 
their peers at particular points in the execution. Specifi- 
cally, a processor is available to serve I/O requests from its 
peers either after step 4 of the algorithm outlined in Figure 5 
or while it is waiting for the completion of its non-local I/O 
requests. As before, all computation on a supernode is per- 
formed at the processor in which the data is stored. Since 
I/O operations are performed on demand, non-local requests 
pay for one round-trip delay as well as any delay incurred 
by the processor that is servicing the request. Such delays 
may occur due to local computation at the service node and 
due to interactions with other peers. 

We used three input matrices in our experiments - skirt, 
Sara-1 and Sara-l. Table 6 presents some characteristics of 
these matrices. The first two, skirt and Sara-1 correspond to 
roughly the same number of equations but skirt has fewer 
non-zeroes and is more sparse. The third matrix, Sara-l? 
is similar in the number of non-zeroes to Sara-f but corre- 
sponds to twice as many equations. As a result, Sara-2 is 
significantly more sparse than the other two, contains rel- 
atively thin supernodes and needs more space to store the 
sparse-matrix data-structures. 

Table 7 shows the total amount of I/O performed by both 
apphcations for the three matrices. Since the elimination 
tree is replicated over all processors, the size of partitioner’s 
output, and consequently the size of factor’s input, in- 
creases with the number of processors. The table shows 
the I/O volumes for 16 processors, the largest possible con- 
figuration on our machine. 

Table 8 presents the aggregate application-level I/O rates 
achieved by partitioner. This number is computed by di- 
viding the total volume of I/O by the sum of the time spent 
issuing I/O requests and the time spent waiting for them to 
complete. The superlinear growth in the application-level 
I/O rate, seen for all three phases, is a caching effect. The 
index file is read in both the Read-l and Read-2 phases. For 
the 16 processor configuration, the Read-2 phase is operat- 
ing entirely out of the file cache. Similarly, the write phase 
benefits from the write-behind nature of the file cache. The 
performance of writes lags significantly behind that of reads 
because of a group of small unbuffered writes that dominate 
the write time. This effect can be easily eliminated by using 
a buffer to collect these writes (stdio should be adequate). 

The breakdown of execution time for partitioner is 
shown in Table 9. It shows that (1) I/O is a small frac- 
tion (7.6%/o-25%) of the total execution time and (2) I/O 
scales well with increasing numbers of processors. In fact, 
I/O scales better than the computation for all three matri- 
ces. For these matrices, I/O takes less than 25% of the total 
program execution time, often significantly less. 



Table 6: Characteristics of input matrices. N is the number of equations. IAl d enotes the number of nonzeros in the input 
matrix, and IL1 is t.he number of nonzeros in the Cholesky factor. 

t Sara- Sara-2 skirt 1 4 nodes 49.6 19.4 15.9 8 16 

M:atrix Read-l Read-2 Write Read-l Read-2 Write Read-l Read-2 Write 

20.4 14.1 12.3 9.9 9.3 2.5 43.0 42.1 18.6 nodes 45.8 29.5 76.4 19.7 U3.7 16.4 108.8 106.1 103.2 430.7 380.9 297.8 nodes 41.1 15.1 15.5 

Table 8: Aggregate application-level I/O rates (MB/s) for partitioner. 

4 nodes 8 nodes 16 nodes 
Matrix Total I/O lotal I/O Total I/O 

skirt 309.6 77.6 (25.1%) 222.4 38.4 (17.3%) 162.0 19.3 (11.9%) 
Sara-1 522.3 79.2 (15.2%) 401.7 40.1 (10.0%) 319.8 24.3 ( 7.6%) 
Sara-2 2,568.4 541.7 (21.1%) 2,101.2 319.2 (15.2%) 1,568.4 177.9 (11.3%) 

Table 9: Execution time breakdown for partitioner, in seconds 
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Figure 7: Execution time breakdown for factor and factor-np. The graph shows results for 4-, 8- and 16-processor con- 
figurations for both factor and factor-np on skirt and Sara-l. For sara-!?, only the results for factor on a 16-processor 
configuration are slhown; factoring aara-2 takes too long on other configurations to allow much experimentation. For skirt and 
Sara-l, the first three bars show the results for factor and the second three bars show the results for factor-np. 
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Figure 6: Aggregate application-level I/O rates for factor. 
Results are shown for 4-, 8- and 16-processor configuration 
for slcirt and Sara-l. For sat-a-2, only the results for the 16- 
processor configuration are shown; experiments for smaller 
configurations take very long to complete. 

Figure 6 shows the aggregate application-level I/O rates 
seen by factor. It shows that factor is able to achieve an 
application-level read bandwidth up to 170 MB/s and an 
appgatron-level. write. bandwidth up to 270 MB/s. 

e execution time breakdowns for factor and 
factor-np are shown in Figure 7. In addition to showing 
how the different parts of each program scale, this graph also 
quantitatively demonstrates the utility of knowledge about 
future I/O requests. 

The breakdown for factor shows that the computation 
scales linearly with the number of processors. The I/O per- 
formance scales fairly well but not as much as the compu- 
tation. Communication, however, does not scale well. In all 
cases, I/O takes a fairly small percentage of the total exe- 
cution time. Note that the Sara-8 input data set was only 
run on 16 processors, because the program runs for too long 
on fewer processors. Even for this very sparse matrix, I/O 
takes only about 20% of the total execution time. 

Comparison of these results with corresponding results 
for factor-np shows that lack of knowledge about future 
I/O requests can degrade performance by between 23 and 
86%. Furthermore, the fraction of execution time spent 
waiting for I/O increased from between 1% and 7% for 
factor to between 40% and 56% for factor-np. Almost 
all of the increase in execution time is due to time spent 
waiting for non-local I/O requests to complete. 

The slowdown was more pronounced (86%) for Sara-f 
than for skirt. We speculate that this difference is due to 
the different amount of computation performed per supern- 
ode. Recall that a processor is available to serve I/O re- 
quests from other processors either after step 4 of the al- 
gorithm outlined in Figure 5 or while it is waiting for the 
completion of its own non-local I/O requests. The less sparse 
nature of skirt results in a more uniform distribution of per- 

-. 

supernode computation time. Also since nonzero precision 
in skirt is less than nonzero precision in Sara-l, the aver- 
age per-supernode computation is also smaller for skirt. In 
contrast, Sara-1 has a large variation in the per-supernode 
computation times caused by a few very large supernodes. 
As a result, in certain phases of the computation for sara- 
1, service of I/O requests from other processors is delayed 
for large intervals causing cascaded performance degrada- 
tion of non-local I/O. As mentioned above, non-local l/O 
dominated the I/O costs for factor-np: for Sara-l, 87% of 
the I/O time was spent for non-local I/O, constituting 50% 
of total runtime. 

6 lessons learned 

This section presents the lessons we learned from the studies 
presented in this paper. We present our experiences as well 
as guidelines for obtaining high I/O performance for I/O- 
intensive applications. 

Code restructuring is important: 

l For the applications we have studied, it is not diffi- 
cult to restructure the code to coalesce small requests 
into much larger ones. Based on our experience with 
these applications as well as our examination of other 
NASA satellite-data processing programs, we believe 
that, while many I/O-intensive applications are cur- 
rently not designed to generate large I/O requests, 
relatively little effort is required to modify them to do 
so. In other words, the problem is not that large I/O 
requests cannot be generated, but that programmers 
have not considered the problem of optimizing their 
applications to take advantage of the performance ben- 
efits provided by larger requests. 

l For the applications we have studied, information about 
future requests was available and could be used to 
prefetch data. For pathfinder and climate, proces- 
sors subsample the input files in the partitioning phase. 
At the end of this phase, every processor has com- 
plete information about its future requests for input 
reads. For the modified version of the out-of-core max- 
reduction (where modification consisted of a pair of 
simple loop-splitting and loop-reordering transforma- 
tions), information about updates to all frequency bands 
of the output image is known before any updates are 
performed. For factor and partitioner, the sequence 
of requests is available from the elimination-tree struc- 
ture generated by symbolic factorization. Similar ex- 
periences have been reported by Patterson et al [15]. 
They report that after relatively simple loop-splitting 
transformations, significant knowledge about future I/O 
requests is available in all five I/O-intensive programs 
they studied. 

Furthermore, three of the applications in this study (all 
the ones that write a significant volume of data), could 
be structured to take good advantage of the write- 
behind provided by the operating-system file cache. 

l For the applications we have studied, it is possible to 
partition the out-of-coreintermediate data so that each 
processor reads and writes to its own local disk(s). 
As can be expected, and as we have shown in Sec- 
tion 3, bandwidths for local disk access are substan- 



tially higher ,than the bandwidths for non-local ac- 
cesses. In addition, local accesses are guaranteed not 
to interfere w.ith I/O requests from other processors. 
This increases the utility of the file cache and makes 
the overall beh.avior of the application more predictable. 
Exploiting loc.ality in this manner is beneficial for out- 
of-core applica.tions [l, 2, 141 on both client-server and 
peer-peer confgurations. In either configuration, ex- 
ploiting locality improves I/O performance as well as 
total execution time. 

Diskful machines are important: 

Diskful machines (machines with local disks) allow prob- 
lems to be partitioned such that most of the I/O requests 
are satisfied by local disks. As noted above, local disk ac- 
cesses have a higher application-level bandwidth with the 
associated benefit of guaranteed lack of contention for the 
disk and the file cache. As shown by the results in Sections 4 
and 5, local disks attached to compute nodes can help con- 
vert programs that request tens to hundreds of gigabytes 
of I/O into compute-bound problems. In combination with 
code restructuring to exploit locality, diskful machines can 
improve both the I/m0 performance and the overall execution 
time for out-of-core applications. 

Complex I/O interfaces are not required: 

l After code restructuring, most requests in the studied 
applications were large. For large requests, the inter- 
face is usually less important. 

l Small strided requests were a recurrent pattern in the 
original versions of pathf inder and climate. Nested- 
strided requests [12] have been proposed for just such 
patterns. However we found that these patterns were 
caused by the embedding of small I/O requests in the 
innermost loops. Relatively straightforward loop re- 
structuring, including loop splitting, interchanging the 
order of nested loops [18] and fusing multiple requests 
were sufficient to coalesce these requests into large 
block I/O requests. 

l None of the applications studied required collective 
I/O [l, 3, 161. This is not surprising given the size 
of the requests after code restructuring. All of the ap- 
plications are parallelized in SPMD fashion. In our 
earth-science applications all processes are indepen- 
dent (apart from initial and possibly final synchro- 
nization). Independent I/O requests were able to uti- 
lize the servers when they would have been idle in a 
collective-I/O model (see Section 4). 

We recognize that this paper describes experiences with 
only four programs. However, we believe that a substantial 
class of I/O-intensive programs will be able to achieve good 
I/O performance with simple I/O interfaces. This belief is 
based on our examination of other NASA satellite-data pro- 
cessing programs and on the experiences reported by Pat- 
terson et al [15]. The characterization study by Crandall et 
al [4] provides another example. It describes a significantly 
different program running on a machine with much lower 
I/O bandwidth (the JPL terrain rendering application run- 
ning on an Intel Paragon) that is able to achieve relatively 
good I/O performance with just asynchronous I/O requests. 

We speculate that with sufficient I/O bandwidth and effi- 
cient asynchronous I/O support and an interface similar to 
liolistio0, most I/O-intensive programs will be able to 
achieve good I/O performance. 

Good performance on peer-peer systems is possible: 

Our experience with applications that do substantial I/O 
and computation on peer-peer configurations was mixedl. On 
one hand, the performance of pathfinder on peer-peer con- 
figurations was poor; on the other hand, factor achieved 
excellent performance. The problem of achieving good com- 
putation performance on processors that are serving data 
to others has been previously noted by Kotz and Cai [8]. 
In their experiments on a cluster of RS6000s, they I’ound 
that serving off-processor I/O requests can slow a relatively 
simple parallel program by between 17% and 98%. We be- 
lieve that knowledge of future I/O requests (local ancd off- 
processor) is likely to be the key to achieving good. I/O 
performance on peer-peer configurations. Our experiments 
with pathfinder used a general-purpose parallel-I/O library 
which served requests as they arrived and had no informa- 
tion about future I/O requests. In contrast, the I/O module 
in factor had access to extensive information about future 
requests and was able to control the scheduling of I/O re- 
quests. The other version of factor, which did not take 
advantage of this knowledge, performed significantly worse. 

7 Conclusions 

In this paper we have shown that I/O-intensive parallel ap 
plications can be optimized so that I/O is not the limiting 
factor in their performance. The results from both micro- 
benchmarks and complete applications, run on an IBM SP-2 
with multiple disks per node, show that we can achieve high 
I/O rates from the hardware and into the applications. We 
have been able to convert programs with very large I/O re- 
quirements whose performance appears to be limited by the 
I/O capabilities of the parallel machine into compute-bound 
programs. Our experience has shown that achieving high 
I/O performance does not require complex I/O strategies; 
rather, appropriate restructuring of the applications to use 
local secondary storage for staging intermediate results and 
producing relatively small numbers of large I/O requests al- 
lows an I/O library or the vendor filesystem to provide a high 
I/O bandwidth to the application. In addition, overlalpping 
the I/O with computation, either in the application or in 
the operating system, provided large performance benefits. 
For the applications we have studied, this benefit derives 
from the out-of-core nature of the algorithms -used, which 
are required because of the extremely large data sets to 
be processed. These out-of-core algorithms did not require 
complex I/O interfaces to achieve high I/O bandwidths. A 
relatively simple interface like POSIX 1iolisti.o () was ad- 
equate as long as the application and I/O system were con- 
figured properly. 
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