
Efficient Incremental Run-Time Specialization for Free

Renaud Marlet Charles Consel Philippe Boinot

IRISA / INRIA - Universite de Rennes 1
Compose project

Campus universitaire de Beaulieu
35042 Rennes cedex, Prance

{marlet,consel,pboinot>@irisa.fr

Abstract 1.1 Staging in Partial Evaluation

Availability of data in a program determines compu-
tation stages. Incremental partial evaluation exploit
these stages for optimization: it allows further special-
ization to be performed as data become available at
later stages. The fundamental advantage of incremental
specialization is to factorize the specialization process.
As a result, specializing a program at a given stage costs
considerably less than specializing it once all the data
are available.

We present a realistic and flexible approach to
achieve efficient incremental run-time specialization.
Rather than developing specific techniques, as previ-
ously proposed, we are able to re-use existing technol-
ogy by iterating a specialization process. Moreover, in
doing so, we do not lose any specialization opportuni-
ties. This approach makes it possible to exploit nested
quasi-invariants and to speed up the run-time special-
ization process.

This approach has been implemented in Tempo, a
specializer for C programs that is publicly available. A
preliminary experiment confirm that incremental that
incremental specialization can greatly speed up the spe-
cialization process.

1 Introduction

Different stages of computation can be identified in a
program, depending on the availability of data. Code
corresponding to later stages can often be optimized by
performing in advance the computations depending on
data available at earlier stages, i.e., by factorizing some
computations from late stages into earlier stages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
TO copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SlGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA
Q 1999 ACM l-581 13-083-X/99/0004...$5.00

Staging is the essence of partial evaluation: it tradition-
ally makes explicit two stages (binding times), namely
static (early stage) and dynamic (late stage).

Consider’ a program p which normally computes a
result out in one stage from input in, and ind.

out = [PI in, ind

Given a binding-time division of p’s input, a program
specializer spec splits computations into two stages:

p-res = [spec] p ‘SD’ in,

out = l[p-res] ind

In the first stage, when building the residual (i.e., spe-
cialized) program p-res, computations depending only
on input data in, are performed. Remaining computa-
tions needed to obtain out are performed in a second
stage.

1.2 Staging in Loop Nests

Staging also arises in nested loops. The deeper is the
nesting, the later is the stage (and the more frequent the
execution). Consider for example the program below.

for i = . . . (stage 1)
for j = . . . (stage 2)

for k = . . . (stage 3)
f(i,j,k) (stage 3)

end (stage 3)
end (stage 2)

end (stage 1)

Variable i does not vary inside the body of the first,
outmost loop. It is called a quasi-invariant. Any com-
putation in f depending only on i can be performed
before the second, middle loop is executed, thus avoid-
ing being recomputed at each iteration of variables j
and k. Similarly, any computation depending only on

‘Notations are borrowed or adapted from [12, 171. In addition, we
note ‘SS’DjJ a binding-time sequence consisting of i occurrences of S
(static) and j occurrences of D (dynamic).

281

i and j can be performed before the third, innermost
loop is executed. Informally, this factorization could be
obtained with the following specializations.

for i = . . .
f-i = spec(f,i)
for j = . . .

f-i-j = spec(f-i,j)
for k = . . .

f-i-j(k)
end

end
end

This corresponds to an incremental specialization pro-
cess: further specialization are performed as data for
later stages become available.

1.3 Benefits of Incremental Specialization

Just as ordinary specialization, incremental specializa-
tion is beneficial only if specialized functions are used
enough times to amortize the time to construct them.

Specialization can be performed at compile time as a
source-to-source transformation. For example, a generic
microprocessor simulator can be first specialized with
respect to a given instruction set, yielding a simulator
dedicated to a processor, and then be further special-
ized with respect to a program to speed up its simula-
tion time. Similarly, a generic program-analysis engine
(e.g., 21 [36], BANE [2]) could be specialized with re-
spect to a language (abstract interpreter or equation
generator) and an analysis (precision and abstract do-
mains). Other applications include meta-interpreters
taking as successive input a language definition, a pro-
gram and its data, and the generation of a compiler
generator capable of supercompilation from a two-level
driving interpreter [Ia, 131.

However, compile-time specialization, whether or
not incremental, is limited. For example, it cannot be
applied to the above loop nest because of the compila-
tion overhead at each stage would make it impractical.
To eliminate this overhead, we must resort to run-time
specialization, i.e., run-time code generation. In the
loop nest example, the benefit of incremental special-
ization varies according to the amount of computations
depending on the quasi-invariants (i.e., the execution
cost of pre-computed static expressions), the number
of loop iterations (i.e., the amount of re-use) and the
time taken for code generation. Besides loop nests, in-
cremental run-time specialization can be used to speed
up staged computations that are inherently dynamic
such as configuring a system with respect to run-time
parameters.

In fact, the Synthetix project has been advocating
the use of incremental specialization to optimize oper-
ating systems [S]. They used the technique successfully
to optimize the HP-UX file system by exploiting staged
invariants of this subsystem [29].

Also, a combination of compile-time and run-time
specialization was used by Volanschi to optimize the
Chorus IPC [34].

1.4 This paper

In this paper, we study how a practical multi-level spe-
cialization process can be derived from a simple two-
level model. In particular we show how Tempo, a two-
level run-time specializer for C, can be turned into an
efficient incremental partial evaluator. Our contribu-
tions are the following:

l We present a realistic and flexible approach to
achieve efficient incremental run-time specializa-
tion.

l This provides some practical insight into the na-
ture of incremental partial evaluation.

l Our approach is simpler than existing techniques
and relies on well-known and available technology.

l It is implemented in an existing program special-
izer named Tempo and a preliminary experiment
confirm that it can considerably speed up the spe-
cialization process.

The paper is organized as follows. Section 2 presents
two approaches for achieving incremental partial eval-
uation, namely “native” multi-level specialization and
iterated two-level specialization. Section 3 describes our
implementation of the latter approach in Tempo. Sec-
tion 4 analyzes our iterative specialization approach and
Section 5 compares it with related work. Section 6 lists
ongoing and future work. Section 7 concludes.

2 Incremental Partial Evaluation

Most offline partial evaluators rely on the concept
of generating extension [16]. A generating extension
p-gen is a generator of specialized p programs.

p-res = [p-gen] in,

out = up-res] ind

A generating extension is generally obtained using a
compiler generator cogen given a binding-time specifi-
cation.

p-g- = [cogen] p ‘SD’

A compiler generator provides a specializer:

[spec] p ‘SD’ in, Ef [[cogen] p ‘SD’] in,

The question is: how can this two-level staging of com-
putations be extended to n levels in the case of a pro-
gram p with n arguments?

out = I[pJ ini . . . in,

282

(Without loss of generality, we assume that p has ex-
actly n inputs, provided in the staging order inr, . . . ,
in, .)

There exists basically two main approaches to
achieve incremental partial evaluation [13]. These ap-
proaches extend the concept of generating extensions to
multi-level specialization.

2.1 Multi-Level Generating Extension

The idea of multi-level offline specialization [ll, 131 can
be described as follows.

An n-level generating extension is a program
that produces (n- l)-level generating exten-
sions.

The base case is a two-level generating extension, which
corresponds to the classic definition of p-gen given
above.

An n-level generating extension p-mgen, for pro-
gram p is used as follows.

p-wn,-l = [p-mgen,] inr

p-mgenl = [p-rnge$l in,-1

out = [p-mgenll in,

At step i, when computing the (n-+)-level generating
extension p-mgen,+, only computations of p that de-
pend on stages i and before (i.e., on arguments inr, . . . ,
ini) are performed.

As an example, consider the loop nest pattern pre-
sented in the introduction. A three-level generating ex-
tension f -mgen3 for function f can be used as follows.

for i = ,..
f-mgen2 = f_mgen3(i)
for j = . . .

f-mgenl = f_mgen2(j)
for k = . . .

f-mgenl(k)
end

end
end

The fact that some computations at a given stage do
not vary in deeper stages in now made explicit.

2.2 Multi-Level Compiler Generator

To construct multi-level generating extensions, Gliick
and Jorgensen [12] propose to extend the two-point
binding-time domain {S, D} to a domain { 1, . . . , n} of
cardinality n. A multi-level binding time i in this do-
main corresponds to input that is available only at
stage i and subsequently. Two-level binding-time anal-
yses (BTA) can be extended to multi-level binding-time

analyses (MBTA) in order to treat n stages. For exam-
ple, L‘LJ” in the “S C D” lattice becomes “max” in the
“1 6 . . . 6 n” lattice.

A multi-level compiler generator mcogen can then be
defined to exploit this multi-level binding-time analysis

and produce multi-level generating extensions.

p-men, = [mcogen]l p ‘1.-.n’

However, defining an mcogen is not a trivial task [13].

2.3 Iterated Two-Level Specialization

Instead of specifically developing a multi-level binding-
time analysis and a multi-level compiler generator
mcogen, we consider an alternative construction called
incremental self-application [ll, 121 or incremental gen-
eration [13].

To first get some intuition, consider again the loop
nest case, given only a two-level generating extension.

for i = . . .
for j = . . .

f-res = f-gen(i,j)
for k = . . .

f -res(k)
end

end
end

To further factorize computations depending only on
i inside the j loop, the function f-gen itself could be
specialized.

for i = . . .
f-gen-res = f-gen-gen(i)
for j = . . .

f-res = f-gen-res(j)
for k = . . .

f-res(k)
end

end
end

Specialization is advantageous only if the residual code
is used enough times to compensate for the building
cost. In our example, whether to further specialize
f-gen or not depends on the number of iterations on
j, the amount of computations depending only on i in
f -gen, and the time required for generating f -generes.

This re-specialization further stages computations
that were previously declared as static. It suggests an
alternative to n-level generating extensions:

p-igen, = (p-igen,-,)-gen

More precisely, given a two-level cogen and a pro-
gram p, we define:

p-igen, = p n-1

p-igenz = [cogen] p-igen, ‘!???D,

p-igen, = [cogen] p-igen,-r ‘SD’

283

Program p-igeq achieves multi-level specialization in
the sense that:

p-igen, is an n-level generating extension

This statement says that iterated applications of
p-igen, to the sequence of inputs ini, _ . . , in, yields
the result out. The proof is by induction on the level n;
the induction hypothesis is applied to program p- igen,.

Another way to understand p-igen, is the following.
Let spec be the specializer defined from cogen. Then,
for all 0 < i < n,

[. . . [p-igen,] ini . . .I ini =
[specl p-igennpi ‘SiD’ inI . . . ini

The proof is by induction on i.
These facts are important to capture the nature of

this iterated generating extension: each additional level
in the construction merely consists in specializing the
preceding level. In particular, compared to traditional
two-level specialization, incremental specialization does
not discover more specialization. Indeed, consider the
case where i = n-l and compare it with the two-level
specialization of p with binding times ‘Sn-‘D’:

8.. . Bp-igen,] inI . . *]I in,-1 =
[spec] p ‘Sn-‘Dj inI .. . in,-1

Thus, given a two-level specialization, further staging
the static inputs does not alter final the specialized pro-
gram. What incremental specialization does is just to
optimize the specialization process itself. Incremental-
ity may thus lower the specialization break-even point,
which is the number of times that the specialized pro-
gram must be executed to amortize the cost of special-
ization. This is especially useful at run time (as opposed
to compile time) because specialization must be as fast
as possible.

3 Implementation

This iterated approach for incremental specialization
has been implemented using Tempo.

Tempo is an offline partial evaluator for C pro-
grams [5, 61. It allows programs to be specialized
both at compile time and run time. It has been ap-
plied in various domains, including operating system
and networking [22], domain-specific languages [31, 321,
software architectures [20], and numerical computa-
tion [18]. Tempo is publicly available2.

In this section, we describe how Tempo can be ap-
plied multiple times to the run-time generating exten-
sions that it generates, thus yielding incremental run-
time specialization. The basic concepts and implemen-
tation of the run-time specializer have been described

2Tempo’s home page: http://uvv.irisa.fr/compose/tempo

int dotprodcint size, int UC] , int v [I)
f.

int i, res = 0;
for(i = 0; i < size; i++)

c
res += u[il * v[i];

It
return res;

I

Figure 1: Inner product function dotprod

int dotprodcint size, int UC], int v[])

i
int i, res = 0;
for(i = 0; i < size; i++)
c

res += u[il * v[i];
1

I return x-es;

1
1

Figure 2: [btaj dotprod ‘SSD’

elsewhere [7, 23, 241. Still, we mention here specific
features of Tempo that make incremental specialization
particularly fast.

We explain the process of incremental specialization
only through an example: the function dotprod given
in Figure 1.

3.1 Binding-Time Analysis

Assume arguments size and uC1 of function dotprod
are static. The result of the corresponding binding-
time analysis is shown in Figure 2. Dynamic expressions
and statements are underlined; the other constructs are
assumed static. (Tempo displays similarly the results
of its BTA, using colors for different binding times.)

A compile-time generating extension based on this
binding-time division would3 look like the function Fig-
ure 3. The static slice of function dotprod determines
the control of the specialization process; the dynamic
slice is printed into some specialization output stream.
Dynamic code may contain holes (denoted with Xd) to
be filled by the result of static expressions; these frag-
ments are called templates.

Note that, even though 0 is a static constant, the ini-
tial definition of res (i.e., the assignment“res = 0;“)
has to be residualized because the variable becomes dy-
namic in the body of the loop [15]. In fact, rather than
assigning the binding time “res = 01” as one would
expect since 0 is static, Tempo treats it a fully dynamic
statement: ‘Yes = 0;“. The reason is that it is useless
to consider literal constants as static when they are in
a dynamic context: they cannot be exploited for any

3Tempo’s compile-time specializer does not rely on a generating
extension technology; it interprets specialization actions.

284

dotprod-ctgen(int size, int UC])
I

int i;
printf("int dotprod-res(int v[I)");
printf("{");
printf("int res = 0;");
for(i = 0; i < size; i++)
c

printf("res += %d * vc%d];",u[i],i);
>
printf("return res;");
printf("I") ;

1

Figure 3: Compile-time generating extension

int dotprod-res(int v[I)
c

int res = 0;
res += 7 * v[Ol;
res += 4 * v[l];
res += 6 * vC23
return res;

1

Figure 4: Compile-time specialization

static computation. Furthermore, for the generation
process - which must be as fast as possible at run time
-7 it is less expensive to directly produce “res = 0;”
in the specialized code rather than first lift the value
0 (i.e., turn it into text in the “template language”)
and then insert it in the hole of template “res = 0 ; “.
Because the constant is present at template compila-
tion time rather than specialization time, the resulting
binary code can also be more efficient (e.g., multipli-
cation of a dynamic value by a literal integer can be
turned into bit shifts). This binding-time feature will be
used later when Tempo is applied iteratively (cf. Sec-
tion 3.3). More features (not shown in this example)
related to static pointer lifting and modular specializa-
tion will also be necessary.

An example of a specialized version of dotprod pro-
duced by dotprod-ctgen and invoked with actual val-
ues size=3 and u [] =(7,4,6) is shown in Figure 4.

3.2 Two-Level Run-Time Specialization

Tempo’s strategy for run-time specialization relies on
generating extensions. The difference with compile-
time generating extensions is that templates are now
binary rather than textual (source code). For this,
source templates are pre-compiled into binary tem-
plates. The resulting fragments are assembled at spe-
cialization time. Holes in the binary code are patched
(i.e., filled) similarly.

To obtain those binary templates, Tempo generates
an extra file which defines the function dotprod-temp
given in Figure 5. The code of this function is struc-

for(;dummy test;) t

res += HI * v[H2]; TzIH1, Hz]

2-
I I

return res ;
1 r3

I I

Figure 5: Templates

dotprod-gen(int size, int UC])
(

char *buf, *bufp;
int i;
bufp = buf = rts-buf-alloc();
dump-template(bufp,t+tl ,sl);
bufp += sl;
for(i = 0; i < size; i++)
c

dump_template(bufp,t+tz,s2);
patch-hole(bufp+hl ,u[iI);
patch-hole(bufp+hz,i);
bufp += ~2;

)
dump_template(bufp,t+t3,~3);
bufp += ~2;
return buf;

I

Figure 6: Run-time generating extension

tured so that a standard C compiler can process the
templates. This strategy contrasts with other ap-
proaches to run-time specialization which require a
special-purpose compiler to be developed 13: 191.

For example, there are three templates in function
dotprod-temp which correspond to code regions Tl , Tz
and T3. Template Tz contains two holes HI and HZ,
that can be patched later at specialization time. A
dummy loop has been inserted to instruct the compiler
that code fragment T2 can be executed many times.
Compiling this function and performing some surgery
on the binary code gives access to binary template de-
limitation and hole locations. (See [23, 241 for imple-
mentation details.)

Tempo then builds a run-time generating extension
dotprod-gen that manipulates these code templates, as
shown in Figure 6. In this figure, the symbol t stands for
the function pointer dotprod,temp (an address known
at load time); ta is the offset of template Ti in t (a known
integer constant); si is the size of the corresponding Ti
templates (a known integer constant); hj symbols are
offsets of holes inside the templates (known integer con-
stants). Operation dump-template (actually memcpy)
copies the template into the specialization buffer. Op-

285

dotprod-gen(int size, int UC])
I

char *buf, *bufp;
int i;
bufp = buf = rts-buf-alloc();
dump_template(bufp,t+tl,
bufp += ~1;
for(i = 0; i < size; i++)
t

dump_template(bu~t+tz,sz);
patch-hole(bufp+hl,uCil);
patch-hole(bufp+hz,i);
bufp += ~2;

)
dump-template(bufp,t+tg&
bufp += s
return bu3fi

1

Figure 7: BTA with dynamic buffer allocation (1)

eration patch-hole (actually a macro) stores a value
in the buffer at a specific hole offset; this operation is
processor-dependent.

Running dotprod-gen with actual values size=3
and u [I ={7,4,6) allocates the buffer buf and fills it
as follows. (Filling a hole in a template T with the
result ‘u of a static expression is noted T[v].)

buf + (TI IT2[7,0] IT2[4,1] IT2[6,2] IT3 1
At the end, the function returns a pointer to the be-
ginning of the buffer where binary templates have been
assembled.

3.3 Iterated Run-Time Specialization

Now assume that arguments size, u [I and v [I of func-
tion dotprod are available in this order at successive
stages. We want first to specialize with respect to
the size, and then with respect to a given vector. As
seen in Section 2, such an incremental specialization
can be obtained by specializing the generating exten-
sion dotprod-gen with respect to argument size. This
requires running the binding-time analysis on the gen-
erating extension; the resulting binding times are pre-
sented in Figure 7.

As was the case for the static value 0 in the dynamic
assignment “res = 0 ;” of Figure 2, the analysis does
not treat the literal integers hi and si as static because
they are in a dynamic context. Without this optimiza-
tion, incremental specialization would incur the cost of
a useless hole-patching for each code generation oper-
ation (template dumping and hole filling) in the first
generating extension.

Tempo’s BTA also has a special treatment of static
pointers. It considers static the pointer expressions t+ti
because t is an address known at load time and integers
ti are literal constants. However, these expressions oc-
cur in a dynamic context (i.e., a call to dump-template).

#I ?[H;]
bufp = buf = rts-buf-alloco;

for(;dmamy test;) C

Figure 8: Multi-level templates (1)

In the case of compile-time specialization, static pointer
values cannot be lifted (i.e., translated into a textual
representation in the specialized code) when they are
in a dynamic context. Indeed, pointer values can vary
from one execution to another; moreover, pointed val-
ues might have to be lifted as well. Thus, such pointer
expressions are usually turned into dynamic by the
BTA [15]. As mentioned above, because there is no
need to consider literal constants as static when they
are in a dynamic context, this would actually result in
the binding time “dump-template(bufp,t+ti,si) ;“.

Fortunately, there is no such constraint in the con-
text of run-time specialization. Indeed, lifting a static
pointer is just like lifting an integer, i.e., the identity
function. However, the lifetime of the pointed memory
space should be considered carefully: not only should
it exist at specialization time but it should also ex-
ist at execution time. This condition is not guaran-
teed for pointers to heap-allocated memory (that can
be freed) nor stack-allocated memory (that becomes in-
valid when the corresponding function returns; more-
over, the address of local variables can vary from one
call to another). In order for pointer lifting to be safe,
it is enough to restrict this operation to global loca-
tions. Tempo implements such a feature, and thus may
produce different binding-time annotations depending
on the type of specialization chosen (compile-time or
run-time). In our example, the BTA produces the an-
notation “dump-template(bufp,t+ti ,si) ;“. The im-
provement over a traditional BTA is small in this case:
size+2 additions are now performed at specialization
time rather than execution time. However, this feature
will be crucial when further optimizing the incremental
specialization process (cf. Section 3.4).

The binding-time analyzed version of the generat-

286

dotprod-gen-gen’(int size)
I

char *buf’, *bufp’;
int i;
buf p’ = buf’ = rts-buf-alloco;
dump-templatecbufp’ ,t’+t; ,s;);
patch-hole(bufp’+h\ ,t+tl) ;
bufp’ += s’l ;
for(i = 0; i < size; i++)
c

dump-templatecbufp’ ,t’+$,.si)
patch-hole(bufp’+/$,t+tz) ;

;;;:;:;;;: ;;;;;: 1;; ; ;; ;

bufp’ += sl,;
1
dump-templatecbufp’ .t’+ti ,si) ;
patch-hole(bufp’+h; ,t+t3) ;
bufp’ += s;;
return buf’;

1

Figure 9: Multi-level run-time generating extension (1)

ing extension leads to templates shown in Figure 8.
These templates contain operations depending on the
data available at this stage, e.g., uCH$l . They also con-
tain template management of the previous stage. From
this binding-time analysis is also produced the three-
level generating extension shown in Figure 9.

The overall behavior is the following. Running the
function dotprod-gen-gen’ with the actual value 3 for
size allocates a first buffer for the intermediate spe-
cialization; it then loads it with templates Ti and fills
them.

buf’ -+ T;[t+tl] IT;[t+tz,O,O])T;[t+t2,1,11

T;[t+ta, 2,2] (T;[t-tts]

Then, running the function at address buf’ on a given
u[] produces the same effect as dotprod-gen as de-
scribed earlier in Section 2.3.

Note that each time the code at buf’ is run, a new
buffer buf is allocated. Hence, many specializations
with respect to size and uC1 may coexist. However,
there are cases where this is not needed. For example,
in the case of our loop nest program, the uses of func-
tion f -gen-res are not simultaneous but successive (for
each j). If we know that coexisting specializations are
not needed at a given stage, further optimization can
be achieved, as described in the next section.

3.4 Optimized Iterated Specialization

Assuming that coexisting specializations with respect
to UC] are not needed, we may allocate a single spe-
cialization buffer for each given size. This amounts to
considering the allocation of the specialization buffer in
dotprod-gen as static rather than dynamic. This infor-

dotprod-gen(int size, int UC])
r
2

char *buf, *bufp;
int i;
bufp = buf = rts-buf-alloc();
dump-template(bufp,t+tl ,sl);
bufp += SI;
for(i = 0; i < size; i++)
c

dump_template(bufp,t+t2 ,sz);
patch-hole(bufp+hl,uCil);
patch-hole(bufp+hz.i);
bufp += ~2;

)
dump_template(bufp,t+t3 .s3);
bufp += s3;
return bufi

1

Figure 10: BTA with static buffer allocation (2)

mation can be exploited to further factorize the special-
ization process. In particular, calls to dump-template
can now be performed at the first specialization stage.
The resulting binding-time analyzed program is shown
in Figure 10. As can be noticed, compared to the an-
alyzed program in Figure 7, many more computations
have been made static.

It must be noted that expression bufp+hl is a static
pointer in a dynamic context, as was the case for ex-
pressions t+ti in Section 3.3. If static pointers in dy-
namic contexts could not be lifted, they would have to
be dynamic. Then the initial buffer allocation as well
as calls to dump-template would have to be residual-
ized. This would lead to binding times similar to those
in Figure 7. Thus, it would not be possible to exploit
the static buffer allocation.

To specify that the buffer allocation should be static,
we rely on Tempo’s support for modular specialization,
i.e., the ability to specialize only a part of a program.
In Tempo, a model of the operational behavior can be
specified for all external functions. In our case, we
model rts-buf-allot as a function returning a con-
stant global pointer. It is also possible to specify if
external functions can be called at specialization time,
provided they do not contain any dynamic fragment.
We thus declare function rts-buf -allot as executable
at specialization time.

The combination of all these features are required to
obtain the binding times in Figure 10. The only dy-
namic action is the patch of the values uCi1 at given
addresses. Compared to the dynamic buffer allocation
case, corresponding templates are much smaller and
simpler, as shown in Figure 11. The resulting three-
level generating extension is shown in Figure 12.

The overall behavior is the following. Running the
function dotprod-gen-gen” with the actual value 3 for
size generates two specialization buffers in a row and

287

dotprod-gen-temp” (int uC1)
I

for-(; dummy test;) t

patch-hole(H; ,u[H;I 1;

1

T{’
I

T; [H;’ , H;]

return H:;
)

Tl[H;]

Figure 11: Multi-level templates (2)

dotprod-gen-gen”(int size)
c

char *buf”, +bufp” ;
char *buf, *bufp;
int i;
bufp” = buf” = rts-buf-&loco;
dump-template(bufp” ,t”+t;’ ,s;);
buf p” += s:‘;
bufp = buf^= rts-buf-alloc();
dump-template(bufp,t+tl ,sl);
bufp += 31;
for(i = 0; i < size; i++)
c

dump_template(bufp,t+t2 ,sz);
dump-templatecbufp” ,t”+t$,sy) ;
,‘~~:~~~~:.“:~~~:::~~;~~~“l) ;

bufp” += s; ;
patch-hole(bufp+hz , i) ;
bufp += sz;

1
dump_template(bufp,t+t3 ,sg);
bufp += 53;

dump-template(bufp”,t”+tj’,sj’);
patch-hole(bufp”+hy,buf);
buf p” += s”.
return buf 3’ ;

)

Figure 12: Multi-level run-time generating extension

(2)

loads them both with pre-filled templates Ti and T,!‘.
Values ai are pre-computed addresses buf + s1 + i x
ss + hl; they are the addresses of the three holes in buf
(denoted by “0”).

buf -+ T~)Tz[O,O]~TZ[O,~])T~[~,~]~T~]

buf”+ T:‘IT,“[ao,O]jT,“[al,l]IT~[az,2])Tj’[buf]I

This completes the first specialization stage. Then, run-
ning the function at address bzlf” merely amounts to
filling the three holes of buf at address ai with uCi1
values; the function at address buf is then ready for
execution.

Function Time
dotprod 1.67
dotprod-res (compile-time) 0.54
dotprod-res (run-time) 0.87
dotprod-gen (RT dyn allot) 24.0
dotprod-gen (RT stat allot) 17.6

Table 1: Traditional specialization of dotprod

Dynamic Static
Function allocation allocation
dotprod-res 0.87 0.87
dotprod-gen-res 22.8 1.96
dotprod-gen-gen 81.1 96.4

Table 2: Incremental specialization of dotprod

3.5 Experiment

We ran a preliminary experiment with incremental run-
time specialization on our dotprod example. For this,
we used a Spare Ultra 1 / 170 MHz running SunOS 5.5.
All files were compiled by gee with optimization op-
tion -01. Execution times for traditional (run-time and
compile-time) and incremental specialization are pro-
vided respectively in Table 1 and Table 2. All times
are given in seconds for one million of calls, for a vector
size of 10 and any known vector u Cl. (Actual values of
uC1 have no impact except, possibly, at compile time.)
Figures are given for both static and dynamic buffer
allocations. When memory allocation is involved, the
time also includes freeing the allocated memory. Due to
the very small running time of all the tested functions,
the figures should be considered with caution.

These results show that all versions of dotprod-res
have the same execution time. That is coherent with
the fact that they are all identical.

For traditional specialization, when the buffer allo-
cation is dynamic, specializing is 2 times faster than
the original code and 30 executions are needed for spe-
cialization to pay off. When the specialization buffer is
static, specialization is 3 times faster and is amortized
after 22 executions.

In the incremental case, as soon as the vector size is
known, only 2.5 to 28.5 uses of the specialized function
(whether the specialization buffer is static or not) are
required to make it profitable. It is important to note
that, in the static buffer case, incrementality makes the
specialization break-even point 9 times smaller than for
traditional specialization. Besides, incremental special-
ization with static buffer allocation is only slightly more
costly than in the dynamic case: it is better than dy-
namic allocation after only 2 uses.

288

4 Discussion

In this section, we analyze our iterative specialization
approach and compares it with related work.

4.1 Degree of Specialization

An important issue about incremental specialization is
whether the iterated approach has an impact on the
degree of specialization. Since “native” multi-level spe-
cialization is specially defined to achieve incremental
specialization, the question actually is: does iterated
specialization lose any specialization opportunity?

It is difficult to make a general statement on this
issue because an answer requires thoroughly formaliz-
ing the two models (for a given language, a given BTA
precision, a given code generation mechanisms, etc.).
What we try here is to provide informal evidence that,
given some assumptions, the two approaches are equiv-
alent as far as the exploitation of data available at each
stage is concerned.

Obviously, to achieve iterated specialization, a par-
tial evaluator must first of all be able to handle the
language constructs that are used by the generating ex-
tensions that it produces. Then comes the issue of bind-
ing times that expresses the degree of specialization. As
illustrated by the examples in Figures 3 and 6, a gener-
ating extension contains two intertwined pieces of code:
one that is a copy of the static slice of the original pro-
gram (it also defines the overall control of the special-
ization), and one that manages code generation (buffer
allocation, template assembling, hole filling). When fur-
ther staging the static arguments, the BTA must exploit
the specialization opportunities offered by the availabil-
ity of more data without being disrupted by code gener-
ation. Since template management does not affect the
control flow and operates on separate memory states,
the only possible interference is through the data that
is exchanged with the static slice, i.e., the computed
values that are put into template holes. In our case,
this corresponds to the last argument of patch-hole.
There are four cases to examine: whether this argument
is static or dynamic in the new binding-time division
of the previous static stage (e.g., expressions “i” and
“u[i]“), and whether the hole filling operation is forced --
to dynamic or can be static (e.g., see Figures 7 and 10).
The only possible impact is when the hole filling oper-
ation is dynamic whereas the value to put into the hole
is static (e.g., “patch-hole (buf p+hz, i&“): because it
is in a dynamic context, the static expression should be
turned dynamic by the BTA if it cannot be lifted. Yet,
we know that this expression must necessarily be liftable
since it is the argument of a hole filling operation: this
means that it was already a static expression in a dy-
namic context in the previous binding-time stage, which
thus resulted in a template with a hole to be filled.

From this informal reasoning, we can conclude that
there is no interference between multi-level static com-
putations and code generation. Iterated specialization
exploits as much specialization opportunities as multi-
level specialization.

4.2 Engineering Effort

Iterated run-time specialization is simple. As can be
seen in Section 3, there is no need to turn the first tem-
plate object file and corresponding pointers into textual
data in order to apply specialization a second time. The
actual values of template addresses are determined at
load time and thus available at run time. All template
object files; as well as the second-iteration generating
extension are linked together into a single file.

We implemented our incremental specialization pro-
cess in Tempo almost “for free”. We only had to make
very minor changes, mainly to prevent name clashes and
multiple definitions when building a second-iteration
generating extension of an already produced generating
extension. All the other features that we used (modular
specialization, static pointers lifting and dynamic literal
constants) had already been implemented in Tempo for
other applications.

Iterated specialization requires applying partial eval-
uation n - 1 times if n stages are required. This can
be laborious although part of it could be automated.
However, besides loop nests, for all applications we have
considered so far, the number of levels of incremental
specialization is actually equal to three, thus requiring
only two applications of a partial evaluator. Yet, in
principle, a multi-level BTA should be able to process
a program more efficiently than our iterated process
because of its global knowledge of the stages. The iter-
ated process only processes two levels at a time. There
are redundancies in the determination of binding times
at each stepwise refinement: although staged later in
following iterations, computations are first determined
static as a whole.

Besides, iterated specialization allows incremental
partial evaluation to be tuned for each stage (e.g., static
or dynamic buffer allocation). Even if a similar func-
tionality could easily be defined for multi-level spe-
cialization, developing a multi-level specializer, when a
two-level specializer is already available, does not seem
worth the effort; this is even more so at run time because
run-time code generation requires complex back-ends.

5 Related Work

There is an obvious relationship between incremental
partial evaluation in loop nests and code motion of
loop invariants as found in optimizing compilers [l, 211.
The difference is that incremental partial evaluation can

289

handle any type of invariants (structures, arrays, point-
ers), not only scalars. Moreover, incremental partial
evaluation factorizes computations inter-procedurally,
whereas code motion in compilers is usually only intra-
procedural. Autrey and Wolfe proposed a staging anal-
ysis, named glacial variable analysis, aimed at detecting
variables in loop nests that are good candidate for in-
cremental runt-time specialization [4].

There exists a variety of code generation strategies,
depending on the target language and the specialization
time (before compiling or while running the program).
Since incremental specialization only amounts to opti-
mizing the specialization process, the speed of the code
generation process is a crucial issue for realistic appli-
cations.

Incremental specialization has been proposed for
functional languages [13, 331. Because this work is lim-
ited to compile time, a comparison with our approach
is difficult. Indeed, when performing compile-time spe-
cialization, the code generation process is not optimized
for speed.

There exist run-time code generation systems, but
reports on these systems do not mention any support
for incremental specialization. The Fabius system com-
piles a pure, first-order subset of ML into native MIPS
code [19]. Some issues like register allocation are de-
cided at compile time whereas instruction selection is
performed at run time. The Tick C compiler gener-
ates code at run time from a C program where compu-
tations are explicitly staged using Lisp-like backquote
notations [9, 271. The DyC system compiles partially
annotated C programs. Like Tempo, it produces tem-
plates which are compiled by the DEC Alpha com-
piler [3, 141. Unlike Tempo, it performs additional opti-
mizations that can exploit template instantiation values
and template assembly. Data are not yet available to
assess the impact of these optimizations.

ML’ performs incremental run-time code generation
but do not produce native code. It compiles a subset
of ML augmented with specific code generation con-
structs into the CCAM, an extension of the Categorical
Abstract Machine [35]. The consistency of the code
generation constructs are checked by the compiler. In
contrast, Tempo offers automatic staging based on an-
notations produced by a binding-time analysis. Bench-
marks on ML’ are reported in terms of a number of
reductions steps in the CCAM. Besides ML’, a run-
time code generation system for Scheme has been con-
structed by composing a partial evaluator and a byte-
code compiler [30]; incremental specialization should be
possible with this system. Yet, as for ML’, the nature
of the source language and the target code makes the
comparison with our work difficult.

6 Future Work

Incremental run-time specialization aims at making spe-
cialization (i.e., code generation) faster. There is a
tradeoff between the quality of the generated code and
the speed to produce it. Finely tuning this tradeoff is
important for the practical use of incremental special-
ization. Code generation in Tempo is currently very
fast. However, Tempo does not perform any inter-
template optimization, nor does it take advantage of
specific values that are put into template holes. To im-
prove the quality of the code, we are investigating the
development a dynamic peephole optimizer. Implemen-
tation of run-time inlining when specializing a function
is in progress.

Besides, we are also considering source-level trans-
formations to encode optimizations to be performed at
specialization time by the specializer itself; this includes
some cases of algebraic simplifications and st.rength re-
duction. Source-level transformations can also cache
determined memory cells into local variables: that are
compiled more efficiently into machine registers. -As-
suming this caching is static, specialization is a little
slower because it compiles the caching process: but the
specialized function is faster because it makes less ac-
cesses to memory.

Beside techniques, we are also considering applica-
tions. We are investigating the development of a generic
virtual machine for mobile bytecode [lo]. The idea is
to parameterize this generic virtual machine with re-
spect to both a definition of bytecode instructions and
a bytecode program. The mobile nature of the appli-
cation makes it critical to use run-time specialization.
Furthermore, it is likely that a bytecode definition will
apply for a series of bytecode programs. This situa-
tion creates a need to factorize the specialization of the
generic virtual machine with respect to a given byte-
code definition. The goal is to achieve fast: efficient
on-the-fly compilation like a just-in-time compiler.

7 Conclusion

We have presented an approach to incremental run-time
specialization which allows programs to be optimized at
several stages, as data become available.

The main advantage of incrementality is to factor-
ize the specialization phase: instead of specializing a
program all at once, as is traditionally done, incremen-
tal specialization allows this process to be staged. As
a result, specializing a program at a given stage costs
considerably less than specializing it once all the data
are available. In addition, according to the number of
simultaneous uses of a specialized function at a given
stage, we have shown how to further optimize the incre-
mental specialization process. We have described how

290

incremental run-time specialization can be achieved us-
ing an existing partial evaluator. Our approach is im-
plemented in a program specializer for C named Tempo.

Although our preliminary experiment is encourag-
ing, realistic applications are now necessary to validate
the approach.

Acknowledgment

We would like to thank Fraqois Noel for early discus-
sions and ideas on this topic, and for testing the feasibil-
ity of the approach by making preliminary experiments
in and with the run-time specializer of Tempo. Julia
Lawall also provided helpful comments on this paper.

References

PI

PI

PI

PI

151

PI

171

PI

A.V. Aho, R. Sethi, and J.D. Ullman. Compil-
ers Principles, Techniques, and Tools. Addison-
Wesley, 1986.

A. Aiken, M. Fahndrich, J. Foster, and 2. Su. A
toolkit for constructing type- and constraint-based
program analyses. In Second International Work-
shop on Types in Compilation (TIC ‘981, Lecture
Notes in Computer Science. Springer-Verlag, 1998.

J. Auslander, M. Philipose, C. Chambers, S.J. Eg-
gers, and B.N. Bershad. Fast, effective dynamic
compilation. In PLDI’96 [25], pages 149-159.

T. Autrey and M. Wolfe. Initial results for glacial
variable analysis. In Proceedings of the 9th Interna-
tional Workshop on Languages and Compilers for
Parallel Computing (LCPC), Santa Clara, Califor-
nia, volume 1239 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, August 1996.

C. Consel, L. Hornof, J. Lawall, R. Marlet,
G. Muller, J. Noye, S. Thibault, and N. Volanschi.
Tempo: Specializing systems applications and be-
yond. ACM Computing Surveys, Symposium on
Partial Evaluation, 30(3), 1998.

C. Consel, L. Hornof, F. Noel, J. Noye, and
E.N. Volanschi. A uniform approach for compile-
time and run-time specialization. In 0. Danvy,
R. Gliick, and P. Thiemann, editors, Partial Eval-
uation, International Seminar, Dagstuhl Castle,
number 1110 in Lecture Notes in Computer Sci-
ence, pages 54-72, February 1996.

C. Consel and F. Noel. A general approach for
run-time specialization and its application to C. In
POPL96 [28], pages 145-156.

C. Consel, C. Pu, and J. Walpole. Incremental spe-
cialization: The key to high performance, modular-
ity and portability in operating systems. In Partial

PI

WI

[Ill

PI

P31

1141

WI

1161

[I71

Evaluation and Semantics-Based Program Manip-
ulation, pages 44-46, Copenhagen, Denmark, June
1993. ACM Press. Invited paper.

D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. (C:
A language for high-level, efficient, and machine-
independent dynamic code generation. In POPL96
[ZS], pages 131-144.

Bertil Folliot, Ian Piumarta, and Fabio Riccardi.
A dynamically configurable, multi-language execu-
tion platform. In Eighth ACM SIGOPS European
Workshop on Support for Composing Distributed
Applications, September 1998.

R. Gliick. Towards multiple self-application. In
Partial Evaluation and Semantics-Based Program
Manipulation, pages 309-320, New Haven, CT,
USA, September 1991. ACM SIGPLAN Notices,
26(9).

R. Gliick and J. Jorgensen. Efficient multi-level
generating extensions for program specialization.
In M. Hermenegildo and S. Doaitse Swierstra, ed-
itors, Proceedings of the Yth International Sym-
posium on Programming Language Implementa-
tion and Logic Programming, number 982 in Lec-
ture Notes in Computer Science, pages 259-278,
Utrecht, The Netherlands, September 1995.

R. Ghick and J. Jorgensen. An automatic program
generator for multi-level specialization. Lisp and
Symbolic Computation, 10:113-158, 1997.

B. Grant, M. Mock, M. Philipose, C. Chambers,
and S.J. Eggers. Annotation-directed run-time spe-
cialization in C. In ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 163-178, Amsterdam;
The Netherlands, June 1997. ACM Press.

L. Hornof, J. Noye, and C. Consel. Effective spe-
cialization of realistic programs via use sensitiv-
ity. In P. Van Hentenryck, editor, Proceedings
of the Fourth International Symposium on Static
Analysis, SAS’97, volume 1302 of Lecture Notes in
Computer Science, pages 293-314, Paris, France;
September 1997. Springer-Verlag.

N.D. Jones, C. Gomard, and P. Sestoft. Par-
tial Evaluation and Automatic Program Genera-
tion. International Series in Computer Science.
Prentice-Hall, June 1993.

N.D. Jones, P. Sestoft, and H. Sondergaard. An
experiment in partial evaluation: the generation
of a compiler generator. In J.-P. Jouannaud, ed-
itor, Rewriting Techniques and Applications, vol-
ume 202 of Lecture Notes in Computer Science,
pages 124-140. Springer-Verlag, 1985.

291

[18] J.L. Lawall. Faster Fourier transforms via auto-
matic program specialization. Publication interne
1192, IRISA, Rennes, France, May 1998.

[19] P. Lee and M. Leone. Optimizing ML with run-
time code generation. In PLDI’96 [25], pages 137-
148.

[20] R. Marlet, S. Thibault, and C. Consel. Mapping
software architectures to efficient implementations
via partial evaluation. In Conference on Automated
Software Engineering, pages 183-192, Lake Tahoe,
Nevada, November 1997. IEEE Computer Society.

[21] Steven S. Muchnick. Advanced compiler design
and implementation. Morgan Kaufmann Publish-
ers, 1997.

[22] G. Muller, R. Marlet, E.N. Volanschi, C. Consel,
C. Pu, and A. Goel. Fast, optimized Sun RPC us-
ing automatic program specialization. In Proceed-
ings of the 18th International Conference on Dis-
tributed Computing Systems, pages 240-249, Ams-
terdam, The Netherlands, May 1998. IEEE Com-
puter Society Press.

[23] F. Noi+l. Spkialisation dynamique de code par &al-
uation partielle. PhD thesis, Universite de Rennes
I, October 1996. In French.

[24] F. Nogl, L. Hornof, C. Consel, and J. Lawall. Au-
tomatic, template-based run-time specialization :
Implementation and experimental study. In In-
ternational Conference on Computer Languages,
pages 132-142, Chicago, IL, May 1998. IEEE Com-
puter Society Press. Also available as IRISA report
PI-1065.

[25] Proceedings of the ACM SIGPLAN ‘96 Conference
on Programming Language Design and Implemen-
tation, Philadelphia, PA, May 1996. ACM SIG-
PLAN Notices, 31(5).

[26] Proceedings of the ACM SIGPLAN ‘97 Conference
on Programming Language Design and Implemen-
tation, Las Vegas, Nevada, June 15-18, 1997.

[27] Massimiliano Poletto, Dawson R. Engler, and
M. Frans Kaashoek. tee: A system for fast, flex-
ible, and high-level dynamic code generation. In
PLDI’97 [26], pages 109-121.

[28] Conference Record of the 23’d Annual ACM
SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages, St. Petersburg Beach,
FL, USA, January 1996. ACM Press.

[29] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.

Optimistic incremental specialization: Streamlin-
ing a commercial operating system. In Proceedings
of the 1995 ACM Symposium on Operating Sys-
tems Principles, pages 314-324, Copper Mountain
Resort, CO, USA, December 1995. ACM Operat-
ing Systems Reviews, 29(5), ACM Press.

[30] Michael Sperber and Peter Thiemann. Two for
the price of one: Composing partial evaluation and
compilation. In PLDI’97 [26], pages 215-225.

[31] S. Thibault, C. Consel, and G. Muller. Safe and ef-
ficient active network programming. In i7th IEEE
Symposium on Reliable Distributed Systems, pages
135-143, West Lafayette, Indiana, October 1998.

[32] S. Thibault, R. Marlet, and C. Consel. A domain-
specific language for video device drivers: from de-
sign to implementation. In Conference on Domain
Specijic Languages, pages 11-26, Santa Barbara;
CA, October 1997. Usenix.

[33] Peter J. Thiemann. Cogen in six lines. In
Proceedings of the 1996 ACM SIGPLAN Inter-
national Conference on Ftinctional Programming,
pages 180-189, Philadelphia, Pennsylvania, 24-26
May 1996.

[34] E. N. Volanschi. Une approche automatique 6 la
spkcialisation de composants systdme. Thbse de
doctorat, Universitk de Rennes I, February 1998.

[35] Philip Wickline, Peter Lee, and Frank Pfenning.
Run-time code generation and modal-ml. In Pro-
ceedings of the ACM SIGPLAN’98 Conference on
Programming Language Design and Implementa-
tion, pages 224-235, Montreal, Canada, 17-19 June
1998.

[36] Kwangkeun Yi and Williams Ludwell Harrison
III. Automatic generation and management of
interprocedural program analyses. In Conference
Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles Of Program-
ming Languages, pages 246-259, Charleston, SC,
USA, January 1993. ACM Press.

292

