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Abstract 1.1 Staging in Partial Evaluation 

Availability of data in a program determines compu- 
tation stages. Incremental partial evaluation exploit 
these stages for optimization: it allows further special- 
ization to be performed as data become available at 
later stages. The fundamental advantage of incremental 
specialization is to factorize the specialization process. 
As a result, specializing a program at a given stage costs 
considerably less than specializing it once all the data 
are available. 

We present a realistic and flexible approach to 
achieve efficient incremental run-time specialization. 
Rather than developing specific techniques, as previ- 
ously proposed, we are able to re-use existing technol- 
ogy by iterating a specialization process. Moreover, in 
doing so, we do not lose any specialization opportuni- 
ties. This approach makes it possible to exploit nested 
quasi-invariants and to speed up the run-time special- 
ization process. 

This approach has been implemented in Tempo, a 
specializer for C programs that is publicly available. A 
preliminary experiment confirm that incremental that 
incremental specialization can greatly speed up the spe- 
cialization process. 

1 Introduction 

Different stages of computation can be identified in a 
program, depending on the availability of data. Code 
corresponding to later stages can often be optimized by 
performing in advance the computations depending on 
data available at earlier stages, i.e., by factorizing some 
computations from late stages into earlier stages. 
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Staging is the essence of partial evaluation: it tradition- 
ally makes explicit two stages (binding times), namely 
static (early stage) and dynamic (late stage). 

Consider’ a program p which normally computes a 
result out in one stage from input in, and ind. 

out = [PI in, ind 

Given a binding-time division of p’s input, a program 
specializer spec splits computations into two stages: 

p-res = [spec] p ‘SD’ in, 

out = l[p-res] ind 

In the first stage, when building the residual (i.e., spe- 
cialized) program p-res, computations depending only 
on input data in, are performed. Remaining computa- 
tions needed to obtain out are performed in a second 
stage. 

1.2 Staging in Loop Nests 

Staging also arises in nested loops. The deeper is the 
nesting, the later is the stage (and the more frequent the 
execution). Consider for example the program below. 

for i = . . . (stage 1) 
for j = . . . (stage 2) 

for k = . . . (stage 3) 
f(i,j,k) (stage 3) 

end (stage 3) 
end (stage 2) 

end (stage 1) 

Variable i does not vary inside the body of the first, 
outmost loop. It is called a quasi-invariant. Any com- 
putation in f depending only on i can be performed 
before the second, middle loop is executed, thus avoid- 
ing being recomputed at each iteration of variables j 
and k. Similarly, any computation depending only on 

‘Notations are borrowed or adapted from [12, 171. In addition, we 
note ‘SS’DjJ a binding-time sequence consisting of i occurrences of S 
(static) and j occurrences of D (dynamic). 
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i and j can be performed before the third, innermost 
loop is executed. Informally, this factorization could be 
obtained with the following specializations. 

for i = . . . 
f-i = spec(f,i) 
for j = . . . 

f-i-j = spec(f-i,j) 
for k = . . . 

f-i-j(k) 
end 

end 
end 

This corresponds to an incremental specialization pro- 
cess: further specialization are performed as data for 
later stages become available. 

1.3 Benefits of Incremental Specialization 

Just as ordinary specialization, incremental specializa- 
tion is beneficial only if specialized functions are used 
enough times to amortize the time to construct them. 

Specialization can be performed at compile time as a 
source-to-source transformation. For example, a generic 
microprocessor simulator can be first specialized with 
respect to a given instruction set, yielding a simulator 
dedicated to a processor, and then be further special- 
ized with respect to a program to speed up its simula- 
tion time. Similarly, a generic program-analysis engine 
(e.g., 21 [36], BANE [2]) could be specialized with re- 
spect to a language (abstract interpreter or equation 
generator) and an analysis (precision and abstract do- 
mains). Other applications include meta-interpreters 
taking as successive input a language definition, a pro- 
gram and its data, and the generation of a compiler 
generator capable of supercompilation from a two-level 
driving interpreter [Ia, 131. 

However, compile-time specialization, whether or 
not incremental, is limited. For example, it cannot be 
applied to the above loop nest because of the compila- 
tion overhead at each stage would make it impractical. 
To eliminate this overhead, we must resort to run-time 
specialization, i.e., run-time code generation. In the 
loop nest example, the benefit of incremental special- 
ization varies according to the amount of computations 
depending on the quasi-invariants (i.e., the execution 
cost of pre-computed static expressions), the number 
of loop iterations (i.e., the amount of re-use) and the 
time taken for code generation. Besides loop nests, in- 
cremental run-time specialization can be used to speed 
up staged computations that are inherently dynamic 
such as configuring a system with respect to run-time 
parameters. 

In fact, the Synthetix project has been advocating 
the use of incremental specialization to optimize oper- 
ating systems [S]. They used the technique successfully 
to optimize the HP-UX file system by exploiting staged 
invariants of this subsystem [29]. 

Also, a combination of compile-time and run-time 
specialization was used by Volanschi to optimize the 
Chorus IPC [34]. 

1.4 This paper 

In this paper, we study how a practical multi-level spe- 
cialization process can be derived from a simple two- 
level model. In particular we show how Tempo, a two- 
level run-time specializer for C, can be turned into an 
efficient incremental partial evaluator. Our contribu- 
tions are the following: 

l We present a realistic and flexible approach to 
achieve efficient incremental run-time specializa- 
tion. 

l This provides some practical insight into the na- 
ture of incremental partial evaluation. 

l Our approach is simpler than existing techniques 
and relies on well-known and available technology. 

l It is implemented in an existing program special- 
izer named Tempo and a preliminary experiment 
confirm that it can considerably speed up the spe- 
cialization process. 

The paper is organized as follows. Section 2 presents 
two approaches for achieving incremental partial eval- 
uation, namely “native” multi-level specialization and 
iterated two-level specialization. Section 3 describes our 
implementation of the latter approach in Tempo. Sec- 
tion 4 analyzes our iterative specialization approach and 
Section 5 compares it with related work. Section 6 lists 
ongoing and future work. Section 7 concludes. 

2 Incremental Partial Evaluation 

Most offline partial evaluators rely on the concept 
of generating extension [16]. A generating extension 
p-gen is a generator of specialized p programs. 

p-res = [p-gen] in, 

out = up-res] ind 

A generating extension is generally obtained using a 
compiler generator cogen given a binding-time specifi- 
cation. 

p-g- = [cogen] p ‘SD’ 

A compiler generator provides a specializer: 

[spec] p ‘SD’ in, Ef [[cogen] p ‘SD’] in, 

The question is: how can this two-level staging of com- 
putations be extended to n levels in the case of a pro- 
gram p with n arguments? 

out = I[pJ ini . . . in, 
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(Without loss of generality, we assume that p has ex- 
actly n inputs, provided in the staging order inr, . . . , 
in, .) 

There exists basically two main approaches to 
achieve incremental partial evaluation [13]. These ap- 
proaches extend the concept of generating extensions to 
multi-level specialization. 

2.1 Multi-Level Generating Extension 

The idea of multi-level offline specialization [ll, 131 can 
be described as follows. 

An n-level generating extension is a program 
that produces (n- l)-level generating exten- 
sions. 

The base case is a two-level generating extension, which 
corresponds to the classic definition of p-gen given 
above. 

An n-level generating extension p-mgen, for pro- 
gram p is used as follows. 

p-wn,-l = [p-mgen,] inr 

p-mgenl = [p-rnge$l in,-1 

out = [p-mgenll in, 

At step i, when computing the (n-+)-level generating 
extension p-mgen,+, only computations of p that de- 
pend on stages i and before (i.e., on arguments inr, . . . , 
ini) are performed. 

As an example, consider the loop nest pattern pre- 
sented in the introduction. A three-level generating ex- 
tension f -mgen3 for function f can be used as follows. 

for i = ,.. 
f-mgen2 = f_mgen3(i) 
for j = . . . 

f-mgenl = f_mgen2(j) 
for k = . . . 

f-mgenl(k) 
end 

end 
end 

The fact that some computations at a given stage do 
not vary in deeper stages in now made explicit. 

2.2 Multi-Level Compiler Generator 

To construct multi-level generating extensions, Gliick 
and Jorgensen [12] propose to extend the two-point 
binding-time domain {S, D} to a domain { 1, . . . , n} of 
cardinality n. A multi-level binding time i in this do- 
main corresponds to input that is available only at 
stage i and subsequently. Two-level binding-time anal- 
yses (BTA) can be extended to multi-level binding-time 

analyses (MBTA) in order to treat n stages. For exam- 
ple, L‘LJ” in the “S C D” lattice becomes “max” in the 
“1 6 . . . 6 n” lattice. 

A multi-level compiler generator mcogen can then be 
defined to exploit this multi-level binding-time analysis 

and produce multi-level generating extensions. 

p-men, = [mcogen]l p ‘1.-.n’ 

However, defining an mcogen is not a trivial task [13]. 

2.3 Iterated Two-Level Specialization 

Instead of specifically developing a multi-level binding- 
time analysis and a multi-level compiler generator 
mcogen, we consider an alternative construction called 
incremental self-application [ll, 121 or incremental gen- 
eration [13]. 

To first get some intuition, consider again the loop 
nest case, given only a two-level generating extension. 

for i = . . . 
for j = . . . 

f-res = f-gen(i,j) 
for k = . . . 

f -res(k) 
end 

end 
end 

To further factorize computations depending only on 
i inside the j loop, the function f-gen itself could be 
specialized. 

for i = . . . 
f-gen-res = f-gen-gen(i) 
for j = . . . 

f-res = f-gen-res(j) 
for k = . . . 

f-res(k) 
end 

end 
end 

Specialization is advantageous only if the residual code 
is used enough times to compensate for the building 
cost. In our example, whether to further specialize 
f-gen or not depends on the number of iterations on 
j, the amount of computations depending only on i in 
f -gen, and the time required for generating f -generes. 

This re-specialization further stages computations 
that were previously declared as static. It suggests an 
alternative to n-level generating extensions: 

p-igen, = (p-igen,-,)-gen 

More precisely, given a two-level cogen and a pro- 
gram p, we define: 

p-igen, = p n-1 

p-igenz = [cogen] p-igen, ‘!???D, 

p-igen, = [cogen] p-igen,-r ‘SD’ 
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Program p-igeq achieves multi-level specialization in 
the sense that: 

p-igen, is an n-level generating extension 

This statement says that iterated applications of 
p-igen, to the sequence of inputs ini, _ . . , in, yields 
the result out. The proof is by induction on the level n; 
the induction hypothesis is applied to program p- igen,. 

Another way to understand p-igen, is the following. 
Let spec be the specializer defined from cogen. Then, 
for all 0 < i < n, 

[. . . [p-igen,] ini . . .I ini = 
[specl p-igennpi ‘SiD’ inI . . . ini 

The proof is by induction on i. 
These facts are important to capture the nature of 

this iterated generating extension: each additional level 
in the construction merely consists in specializing the 
preceding level. In particular, compared to traditional 
two-level specialization, incremental specialization does 
not discover more specialization. Indeed, consider the 
case where i = n-l and compare it with the two-level 
specialization of p with binding times ‘Sn-‘D’: 

8.. . Bp-igen,] inI . . *]I in,-1 = 
[spec] p ‘Sn-‘Dj inI .. . in,-1 

Thus, given a two-level specialization, further staging 
the static inputs does not alter final the specialized pro- 
gram. What incremental specialization does is just to 
optimize the specialization process itself. Incremental- 
ity may thus lower the specialization break-even point, 
which is the number of times that the specialized pro- 
gram must be executed to amortize the cost of special- 
ization. This is especially useful at run time (as opposed 
to compile time) because specialization must be as fast 
as possible. 

3 Implementation 

This iterated approach for incremental specialization 
has been implemented using Tempo. 

Tempo is an offline partial evaluator for C pro- 
grams [5, 61. It allows programs to be specialized 
both at compile time and run time. It has been ap- 
plied in various domains, including operating system 
and networking [22], domain-specific languages [31, 321, 
software architectures [20], and numerical computa- 
tion [18]. Tempo is publicly available2. 

In this section, we describe how Tempo can be ap- 
plied multiple times to the run-time generating exten- 
sions that it generates, thus yielding incremental run- 
time specialization. The basic concepts and implemen- 
tation of the run-time specializer have been described 

2Tempo’s home page: http://uvv.irisa.fr/compose/tempo 

int dotprodcint size, int UC] , int v [I ) 
f. 

int i, res = 0; 
for(i = 0; i < size; i++) 

c 
res += u[il * v[i]; 

It 
return res; 

I 

Figure 1: Inner product function dotprod 

int dotprodcint size, int UC], int v[]) 

i 
int i, res = 0; 
for(i = 0; i < size; i++) 
c 

res += u[il * v[i]; 
1 

I return x-es; 

1 
1 

Figure 2: [btaj dotprod ‘SSD’ 

elsewhere [7, 23, 241. Still, we mention here specific 
features of Tempo that make incremental specialization 
particularly fast. 

We explain the process of incremental specialization 
only through an example: the function dotprod given 
in Figure 1. 

3.1 Binding-Time Analysis 

Assume arguments size and uC1 of function dotprod 
are static. The result of the corresponding binding- 
time analysis is shown in Figure 2. Dynamic expressions 
and statements are underlined; the other constructs are 
assumed static. (Tempo displays similarly the results 
of its BTA, using colors for different binding times.) 

A compile-time generating extension based on this 
binding-time division would3 look like the function Fig- 
ure 3. The static slice of function dotprod determines 
the control of the specialization process; the dynamic 
slice is printed into some specialization output stream. 
Dynamic code may contain holes (denoted with Xd) to 
be filled by the result of static expressions; these frag- 
ments are called templates. 

Note that, even though 0 is a static constant, the ini- 
tial definition of res (i.e., the assignment“res = 0;“) 
has to be residualized because the variable becomes dy- 
namic in the body of the loop [15]. In fact, rather than 
assigning the binding time “res = 01” as one would 
expect since 0 is static, Tempo treats it a fully dynamic 
statement: ‘Yes = 0;“. The reason is that it is useless 
to consider literal constants as static when they are in 
a dynamic context: they cannot be exploited for any 

3Tempo’s compile-time specializer does not rely on a generating 
extension technology; it interprets specialization actions. 
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dotprod-ctgen(int size, int UC]) 
I 

int i; 
printf("int dotprod-res(int v[I)"); 
printf("{"); 
printf("int res = 0;"); 
for(i = 0; i < size; i++) 
c 

printf("res += %d * vc%d];",u[i],i); 
> 
printf("return res;"); 
printf("I") ; 

1 

Figure 3: Compile-time generating extension 

int dotprod-res(int v[I) 
c 

int res = 0; 
res += 7 * v[Ol; 
res += 4 * v[l]; 
res += 6 * vC23 
return res; 

1 

Figure 4: Compile-time specialization 

static computation. Furthermore, for the generation 
process - which must be as fast as possible at run time 
-7 it is less expensive to directly produce “res = 0;” 
in the specialized code rather than first lift the value 
0 (i.e., turn it into text in the “template language”) 
and then insert it in the hole of template “res = 0 ; “. 
Because the constant is present at template compila- 
tion time rather than specialization time, the resulting 
binary code can also be more efficient (e.g., multipli- 
cation of a dynamic value by a literal integer can be 
turned into bit shifts). This binding-time feature will be 
used later when Tempo is applied iteratively (cf. Sec- 
tion 3.3). More features (not shown in this example) 
related to static pointer lifting and modular specializa- 
tion will also be necessary. 

An example of a specialized version of dotprod pro- 
duced by dotprod-ctgen and invoked with actual val- 
ues size=3 and u [] =(7,4,6) is shown in Figure 4. 

3.2 Two-Level Run-Time Specialization 

Tempo’s strategy for run-time specialization relies on 
generating extensions. The difference with compile- 
time generating extensions is that templates are now 
binary rather than textual (source code). For this, 
source templates are pre-compiled into binary tem- 
plates. The resulting fragments are assembled at spe- 
cialization time. Holes in the binary code are patched 
(i.e., filled) similarly. 

To obtain those binary templates, Tempo generates 
an extra file which defines the function dotprod-temp 
given in Figure 5. The code of this function is struc- 

for(;dummy test;) t 

res += HI * v[H2]; TzIH1, Hz] 

2- 
I I 

return res ; 
1 r3 

I I 

Figure 5: Templates 

dotprod-gen(int size, int UC]) 
( 

char *buf, *bufp; 
int i; 
bufp = buf = rts-buf-alloc(); 
dump-template(bufp,t+tl ,sl); 
bufp += sl; 
for(i = 0; i < size; i++) 
c 

dump_template(bufp,t+tz,s2); 
patch-hole(bufp+hl ,u[iI); 
patch-hole(bufp+hz,i); 
bufp += ~2; 

) 
dump_template(bufp,t+t3,~3); 
bufp += ~2; 
return buf; 

I 

Figure 6: Run-time generating extension 

tured so that a standard C compiler can process the 
templates. This strategy contrasts with other ap- 
proaches to run-time specialization which require a 
special-purpose compiler to be developed 13: 191. 

For example, there are three templates in function 
dotprod-temp which correspond to code regions Tl , Tz 
and T3. Template Tz contains two holes HI and HZ, 
that can be patched later at specialization time. A 
dummy loop has been inserted to instruct the compiler 
that code fragment T2 can be executed many times. 
Compiling this function and performing some surgery 
on the binary code gives access to binary template de- 
limitation and hole locations. (See [23, 241 for imple- 
mentation details.) 

Tempo then builds a run-time generating extension 
dotprod-gen that manipulates these code templates, as 
shown in Figure 6. In this figure, the symbol t stands for 
the function pointer dotprod,temp (an address known 
at load time); ta is the offset of template Ti in t (a known 
integer constant); si is the size of the corresponding Ti 
templates (a known integer constant); hj symbols are 
offsets of holes inside the templates (known integer con- 
stants). Operation dump-template (actually memcpy) 
copies the template into the specialization buffer. Op- 
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dotprod-gen(int size, int UC]) 
I 

char *buf, *bufp; 
int i; 
bufp = buf = rts-buf-alloc(); 
dump_template(bufp,t+tl, 
bufp += ~1; 
for(i = 0; i < size; i++) 
t 

dump_template(bu~t+tz,sz); 
patch-hole(bufp+hl,uCil); 
patch-hole(bufp+hz,i); 
bufp += ~2; 

) 
dump-template(bufp,t+tg& 
bufp += s 
return bu3fi 

1 

Figure 7: BTA with dynamic buffer allocation (1) 

eration patch-hole (actually a macro) stores a value 
in the buffer at a specific hole offset; this operation is 
processor-dependent. 

Running dotprod-gen with actual values size=3 
and u [I ={7,4,6) allocates the buffer buf and fills it 
as follows. (Filling a hole in a template T with the 
result ‘u of a static expression is noted T[v].) 

buf + (TI IT2[7,0] IT2[4,1] IT2[6,2] IT3 1 
At the end, the function returns a pointer to the be- 
ginning of the buffer where binary templates have been 
assembled. 

3.3 Iterated Run-Time Specialization 

Now assume that arguments size, u [I and v [I of func- 
tion dotprod are available in this order at successive 
stages. We want first to specialize with respect to 
the size, and then with respect to a given vector. As 
seen in Section 2, such an incremental specialization 
can be obtained by specializing the generating exten- 
sion dotprod-gen with respect to argument size. This 
requires running the binding-time analysis on the gen- 
erating extension; the resulting binding times are pre- 
sented in Figure 7. 

As was the case for the static value 0 in the dynamic 
assignment “res = 0 ;” of Figure 2, the analysis does 
not treat the literal integers hi and si as static because 
they are in a dynamic context. Without this optimiza- 
tion, incremental specialization would incur the cost of 
a useless hole-patching for each code generation oper- 
ation (template dumping and hole filling) in the first 
generating extension. 

Tempo’s BTA also has a special treatment of static 
pointers. It considers static the pointer expressions t+ti 
because t is an address known at load time and integers 
ti are literal constants. However, these expressions oc- 
cur in a dynamic context (i.e., a call to dump-template). 

#I ?[H;] 
bufp = buf = rts-buf-alloco; 

for(;dmamy test;) C 

Figure 8: Multi-level templates (1) 

In the case of compile-time specialization, static pointer 
values cannot be lifted (i.e., translated into a textual 
representation in the specialized code) when they are 
in a dynamic context. Indeed, pointer values can vary 
from one execution to another; moreover, pointed val- 
ues might have to be lifted as well. Thus, such pointer 
expressions are usually turned into dynamic by the 
BTA [15]. As mentioned above, because there is no 
need to consider literal constants as static when they 
are in a dynamic context, this would actually result in 
the binding time “dump-template(bufp,t+ti,si) ;“. 

Fortunately, there is no such constraint in the con- 
text of run-time specialization. Indeed, lifting a static 
pointer is just like lifting an integer, i.e., the identity 
function. However, the lifetime of the pointed memory 
space should be considered carefully: not only should 
it exist at specialization time but it should also ex- 
ist at execution time. This condition is not guaran- 
teed for pointers to heap-allocated memory (that can 
be freed) nor stack-allocated memory (that becomes in- 
valid when the corresponding function returns; more- 
over, the address of local variables can vary from one 
call to another). In order for pointer lifting to be safe, 
it is enough to restrict this operation to global loca- 
tions. Tempo implements such a feature, and thus may 
produce different binding-time annotations depending 
on the type of specialization chosen (compile-time or 
run-time). In our example, the BTA produces the an- 
notation “dump-template(bufp,t+ti ,si) ;“. The im- 
provement over a traditional BTA is small in this case: 
size+2 additions are now performed at specialization 
time rather than execution time. However, this feature 
will be crucial when further optimizing the incremental 
specialization process (cf. Section 3.4). 

The binding-time analyzed version of the generat- 
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dotprod-gen-gen’(int size) 
I 

char *buf’, *bufp’; 
int i; 
buf p’ = buf’ = rts-buf-alloco; 
dump-templatecbufp’ ,t’+t; ,s;); 
patch-hole(bufp’+h\ ,t+tl) ; 
bufp’ += s’l ; 
for(i = 0; i < size; i++) 
c 

dump-templatecbufp’ ,t’+$ ,.si) 
patch-hole(bufp’+/$ ,t+tz) ; 

;;;:;:;;;: ;;;;;: 1;; ; ;; ; 

bufp’ += sl,; 
1 
dump-templatecbufp’ .t’+ti ,si) ; 
patch-hole(bufp’+h; ,t+t3) ; 
bufp’ += s;; 
return buf’; 

1 

Figure 9: Multi-level run-time generating extension (1) 

ing extension leads to templates shown in Figure 8. 
These templates contain operations depending on the 
data available at this stage, e.g., uCH$l . They also con- 
tain template management of the previous stage. From 
this binding-time analysis is also produced the three- 
level generating extension shown in Figure 9. 

The overall behavior is the following. Running the 
function dotprod-gen-gen’ with the actual value 3 for 
size allocates a first buffer for the intermediate spe- 
cialization; it then loads it with templates Ti and fills 
them. 

buf’ -+ T;[t+tl] IT;[t+tz,O,O] )T;[t+t2,1,11 

T;[t+ta, 2,2] (T;[t-tts] 

Then, running the function at address buf’ on a given 
u[] produces the same effect as dotprod-gen as de- 
scribed earlier in Section 2.3. 

Note that each time the code at buf’ is run, a new 
buffer buf is allocated. Hence, many specializations 
with respect to size and uC1 may coexist. However, 
there are cases where this is not needed. For example, 
in the case of our loop nest program, the uses of func- 
tion f -gen-res are not simultaneous but successive (for 
each j). If we know that coexisting specializations are 
not needed at a given stage, further optimization can 
be achieved, as described in the next section. 

3.4 Optimized Iterated Specialization 

Assuming that coexisting specializations with respect 
to UC] are not needed, we may allocate a single spe- 
cialization buffer for each given size. This amounts to 
considering the allocation of the specialization buffer in 
dotprod-gen as static rather than dynamic. This infor- 

dotprod-gen(int size, int UC]) 
r 
2 

char *buf, *bufp; 
int i; 
bufp = buf = rts-buf-alloc(); 
dump-template(bufp,t+tl ,sl); 
bufp += SI; 
for(i = 0; i < size; i++) 
c 

dump_template(bufp,t+t2 ,sz); 
patch-hole(bufp+hl,uCil); 
patch-hole(bufp+hz.i); 
bufp += ~2; 

) 
dump_template(bufp,t+t3 .s3); 
bufp += s3; 
return bufi 

1 

Figure 10: BTA with static buffer allocation (2) 

mation can be exploited to further factorize the special- 
ization process. In particular, calls to dump-template 
can now be performed at the first specialization stage. 
The resulting binding-time analyzed program is shown 
in Figure 10. As can be noticed, compared to the an- 
alyzed program in Figure 7, many more computations 
have been made static. 

It must be noted that expression bufp+hl is a static 
pointer in a dynamic context, as was the case for ex- 
pressions t+ti in Section 3.3. If static pointers in dy- 
namic contexts could not be lifted, they would have to 
be dynamic. Then the initial buffer allocation as well 
as calls to dump-template would have to be residual- 
ized. This would lead to binding times similar to those 
in Figure 7. Thus, it would not be possible to exploit 
the static buffer allocation. 

To specify that the buffer allocation should be static, 
we rely on Tempo’s support for modular specialization, 
i.e., the ability to specialize only a part of a program. 
In Tempo, a model of the operational behavior can be 
specified for all external functions. In our case, we 
model rts-buf-allot as a function returning a con- 
stant global pointer. It is also possible to specify if 
external functions can be called at specialization time, 
provided they do not contain any dynamic fragment. 
We thus declare function rts-buf -allot as executable 
at specialization time. 

The combination of all these features are required to 
obtain the binding times in Figure 10. The only dy- 
namic action is the patch of the values uCi1 at given 
addresses. Compared to the dynamic buffer allocation 
case, corresponding templates are much smaller and 
simpler, as shown in Figure 11. The resulting three- 
level generating extension is shown in Figure 12. 

The overall behavior is the following. Running the 
function dotprod-gen-gen” with the actual value 3 for 
size generates two specialization buffers in a row and 
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dotprod-gen-temp” (int uC1) 
I 

for-(; dummy test;) t 

patch-hole(H; ,u[H;I 1; 

1 

T{’ 
I 

T; [H;’ , H;] 

return H:; 
) 

Tl[H;] 

Figure 11: Multi-level templates (2) 

dotprod-gen-gen”(int size) 
c 

char *buf”, +bufp” ; 
char *buf, *bufp; 
int i; 
bufp” = buf” = rts-buf-&loco; 
dump-template(bufp” ,t”+t;’ ,s;); 
buf p” += s:‘; 
bufp = buf^= rts-buf-alloc(); 
dump-template(bufp,t+tl ,sl); 
bufp += 31; 
for(i = 0; i < size; i++) 
c 

dump_template(bufp,t+t2 ,sz); 
dump-templatecbufp” ,t”+t$ ,sy) ; 
,‘~~:~~~~:.“:~~~:::~~;~~~“l) ; 

bufp” += s; ; 
patch-hole(bufp+hz , i) ; 
bufp += sz; 

1 
dump_template(bufp,t+t3 ,sg); 
bufp += 53; 

dump-template(bufp”,t”+tj’,sj’); 
patch-hole(bufp”+hy,buf); 
buf p” += s”. 
return buf 3’ ; 

) 

Figure 12: Multi-level run-time generating extension 

(2) 

loads them both with pre-filled templates Ti and T,!‘. 
Values ai are pre-computed addresses buf + s1 + i x 
ss + hl; they are the addresses of the three holes in buf 
(denoted by “0”). 

buf -+ T~)Tz[O,O]~TZ[O,~])T~[~,~]~T~] 

buf”+ T:‘IT,“[ao,O]jT,“[al,l]IT~[az,2])Tj’[buf]I 

This completes the first specialization stage. Then, run- 
ning the function at address bzlf” merely amounts to 
filling the three holes of buf at address ai with uCi1 
values; the function at address buf is then ready for 
execution. 

Function Time 
dotprod 1.67 
dotprod-res (compile-time) 0.54 
dotprod-res (run-time) 0.87 
dotprod-gen (RT dyn allot) 24.0 
dotprod-gen (RT stat allot) 17.6 

Table 1: Traditional specialization of dotprod 

Dynamic Static 
Function allocation allocation 
dotprod-res 0.87 0.87 
dotprod-gen-res 22.8 1.96 
dotprod-gen-gen 81.1 96.4 

Table 2: Incremental specialization of dotprod 

3.5 Experiment 

We ran a preliminary experiment with incremental run- 
time specialization on our dotprod example. For this, 
we used a Spare Ultra 1 / 170 MHz running SunOS 5.5. 
All files were compiled by gee with optimization op- 
tion -01. Execution times for traditional (run-time and 
compile-time) and incremental specialization are pro- 
vided respectively in Table 1 and Table 2. All times 
are given in seconds for one million of calls, for a vector 
size of 10 and any known vector u Cl. (Actual values of 
uC1 have no impact except, possibly, at compile time.) 
Figures are given for both static and dynamic buffer 
allocations. When memory allocation is involved, the 
time also includes freeing the allocated memory. Due to 
the very small running time of all the tested functions, 
the figures should be considered with caution. 

These results show that all versions of dotprod-res 
have the same execution time. That is coherent with 
the fact that they are all identical. 

For traditional specialization, when the buffer allo- 
cation is dynamic, specializing is 2 times faster than 
the original code and 30 executions are needed for spe- 
cialization to pay off. When the specialization buffer is 
static, specialization is 3 times faster and is amortized 
after 22 executions. 

In the incremental case, as soon as the vector size is 
known, only 2.5 to 28.5 uses of the specialized function 
(whether the specialization buffer is static or not) are 
required to make it profitable. It is important to note 
that, in the static buffer case, incrementality makes the 
specialization break-even point 9 times smaller than for 
traditional specialization. Besides, incremental special- 
ization with static buffer allocation is only slightly more 
costly than in the dynamic case: it is better than dy- 
namic allocation after only 2 uses. 
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4 Discussion 

In this section, we analyze our iterative specialization 
approach and compares it with related work. 

4.1 Degree of Specialization 

An important issue about incremental specialization is 
whether the iterated approach has an impact on the 
degree of specialization. Since “native” multi-level spe- 
cialization is specially defined to achieve incremental 
specialization, the question actually is: does iterated 
specialization lose any specialization opportunity? 

It is difficult to make a general statement on this 
issue because an answer requires thoroughly formaliz- 
ing the two models (for a given language, a given BTA 
precision, a given code generation mechanisms, etc.). 
What we try here is to provide informal evidence that, 
given some assumptions, the two approaches are equiv- 
alent as far as the exploitation of data available at each 
stage is concerned. 

Obviously, to achieve iterated specialization, a par- 
tial evaluator must first of all be able to handle the 
language constructs that are used by the generating ex- 
tensions that it produces. Then comes the issue of bind- 
ing times that expresses the degree of specialization. As 
illustrated by the examples in Figures 3 and 6, a gener- 
ating extension contains two intertwined pieces of code: 
one that is a copy of the static slice of the original pro- 
gram (it also defines the overall control of the special- 
ization), and one that manages code generation (buffer 
allocation, template assembling, hole filling). When fur- 
ther staging the static arguments, the BTA must exploit 
the specialization opportunities offered by the availabil- 
ity of more data without being disrupted by code gener- 
ation. Since template management does not affect the 
control flow and operates on separate memory states, 
the only possible interference is through the data that 
is exchanged with the static slice, i.e., the computed 
values that are put into template holes. In our case, 
this corresponds to the last argument of patch-hole. 
There are four cases to examine: whether this argument 
is static or dynamic in the new binding-time division 
of the previous static stage (e.g., expressions “i” and 
“u[i]“), and whether the hole filling operation is forced -- 
to dynamic or can be static (e.g., see Figures 7 and 10). 
The only possible impact is when the hole filling oper- 
ation is dynamic whereas the value to put into the hole 
is static (e.g., “patch-hole (buf p+hz, i&“): because it 
is in a dynamic context, the static expression should be 
turned dynamic by the BTA if it cannot be lifted. Yet, 
we know that this expression must necessarily be liftable 
since it is the argument of a hole filling operation: this 
means that it was already a static expression in a dy- 
namic context in the previous binding-time stage, which 
thus resulted in a template with a hole to be filled. 

From this informal reasoning, we can conclude that 
there is no interference between multi-level static com- 
putations and code generation. Iterated specialization 
exploits as much specialization opportunities as multi- 
level specialization. 

4.2 Engineering Effort 

Iterated run-time specialization is simple. As can be 
seen in Section 3, there is no need to turn the first tem- 
plate object file and corresponding pointers into textual 
data in order to apply specialization a second time. The 
actual values of template addresses are determined at 
load time and thus available at run time. All template 
object files; as well as the second-iteration generating 
extension are linked together into a single file. 

We implemented our incremental specialization pro- 
cess in Tempo almost “for free”. We only had to make 
very minor changes, mainly to prevent name clashes and 
multiple definitions when building a second-iteration 
generating extension of an already produced generating 
extension. All the other features that we used (modular 
specialization, static pointers lifting and dynamic literal 
constants) had already been implemented in Tempo for 
other applications. 

Iterated specialization requires applying partial eval- 
uation n - 1 times if n stages are required. This can 
be laborious although part of it could be automated. 
However, besides loop nests, for all applications we have 
considered so far, the number of levels of incremental 
specialization is actually equal to three, thus requiring 
only two applications of a partial evaluator. Yet, in 
principle, a multi-level BTA should be able to process 
a program more efficiently than our iterated process 
because of its global knowledge of the stages. The iter- 
ated process only processes two levels at a time. There 
are redundancies in the determination of binding times 
at each stepwise refinement: although staged later in 
following iterations, computations are first determined 
static as a whole. 

Besides, iterated specialization allows incremental 
partial evaluation to be tuned for each stage (e.g., static 
or dynamic buffer allocation). Even if a similar func- 
tionality could easily be defined for multi-level spe- 
cialization, developing a multi-level specializer, when a 
two-level specializer is already available, does not seem 
worth the effort; this is even more so at run time because 
run-time code generation requires complex back-ends. 

5 Related Work 

There is an obvious relationship between incremental 
partial evaluation in loop nests and code motion of 
loop invariants as found in optimizing compilers [l, 211. 
The difference is that incremental partial evaluation can 
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handle any type of invariants (structures, arrays, point- 
ers), not only scalars. Moreover, incremental partial 
evaluation factorizes computations inter-procedurally, 
whereas code motion in compilers is usually only intra- 
procedural. Autrey and Wolfe proposed a staging anal- 
ysis, named glacial variable analysis, aimed at detecting 
variables in loop nests that are good candidate for in- 
cremental runt-time specialization [4]. 

There exists a variety of code generation strategies, 
depending on the target language and the specialization 
time (before compiling or while running the program). 
Since incremental specialization only amounts to opti- 
mizing the specialization process, the speed of the code 
generation process is a crucial issue for realistic appli- 
cations. 

Incremental specialization has been proposed for 
functional languages [13, 331. Because this work is lim- 
ited to compile time, a comparison with our approach 
is difficult. Indeed, when performing compile-time spe- 
cialization, the code generation process is not optimized 
for speed. 

There exist run-time code generation systems, but 
reports on these systems do not mention any support 
for incremental specialization. The Fabius system com- 
piles a pure, first-order subset of ML into native MIPS 
code [19]. Some issues like register allocation are de- 
cided at compile time whereas instruction selection is 
performed at run time. The Tick C compiler gener- 
ates code at run time from a C program where compu- 
tations are explicitly staged using Lisp-like backquote 
notations [9, 271. The DyC system compiles partially 
annotated C programs. Like Tempo, it produces tem- 
plates which are compiled by the DEC Alpha com- 
piler [3, 141. Unlike Tempo, it performs additional opti- 
mizations that can exploit template instantiation values 
and template assembly. Data are not yet available to 
assess the impact of these optimizations. 

ML’ performs incremental run-time code generation 
but do not produce native code. It compiles a subset 
of ML augmented with specific code generation con- 
structs into the CCAM, an extension of the Categorical 
Abstract Machine [35]. The consistency of the code 
generation constructs are checked by the compiler. In 
contrast, Tempo offers automatic staging based on an- 
notations produced by a binding-time analysis. Bench- 
marks on ML’ are reported in terms of a number of 
reductions steps in the CCAM. Besides ML’, a run- 
time code generation system for Scheme has been con- 
structed by composing a partial evaluator and a byte- 
code compiler [30]; incremental specialization should be 
possible with this system. Yet, as for ML’, the nature 
of the source language and the target code makes the 
comparison with our work difficult. 

6 Future Work 

Incremental run-time specialization aims at making spe- 
cialization (i.e., code generation) faster. There is a 
tradeoff between the quality of the generated code and 
the speed to produce it. Finely tuning this tradeoff is 
important for the practical use of incremental special- 
ization. Code generation in Tempo is currently very 
fast. However, Tempo does not perform any inter- 
template optimization, nor does it take advantage of 
specific values that are put into template holes. To im- 
prove the quality of the code, we are investigating the 
development a dynamic peephole optimizer. Implemen- 
tation of run-time inlining when specializing a function 
is in progress. 

Besides, we are also considering source-level trans- 
formations to encode optimizations to be performed at 
specialization time by the specializer itself; this includes 
some cases of algebraic simplifications and st.rength re- 
duction. Source-level transformations can also cache 
determined memory cells into local variables: that are 
compiled more efficiently into machine registers. -As- 
suming this caching is static, specialization is a little 
slower because it compiles the caching process: but the 
specialized function is faster because it makes less ac- 
cesses to memory. 

Beside techniques, we are also considering applica- 
tions. We are investigating the development of a generic 
virtual machine for mobile bytecode [lo]. The idea is 
to parameterize this generic virtual machine with re- 
spect to both a definition of bytecode instructions and 
a bytecode program. The mobile nature of the appli- 
cation makes it critical to use run-time specialization. 
Furthermore, it is likely that a bytecode definition will 
apply for a series of bytecode programs. This situa- 
tion creates a need to factorize the specialization of the 
generic virtual machine with respect to a given byte- 
code definition. The goal is to achieve fast: efficient 
on-the-fly compilation like a just-in-time compiler. 

7 Conclusion 

We have presented an approach to incremental run-time 
specialization which allows programs to be optimized at 
several stages, as data become available. 

The main advantage of incrementality is to factor- 
ize the specialization phase: instead of specializing a 
program all at once, as is traditionally done, incremen- 
tal specialization allows this process to be staged. As 
a result, specializing a program at a given stage costs 
considerably less than specializing it once all the data 
are available. In addition, according to the number of 
simultaneous uses of a specialized function at a given 
stage, we have shown how to further optimize the incre- 
mental specialization process. We have described how 
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incremental run-time specialization can be achieved us- 
ing an existing partial evaluator. Our approach is im- 
plemented in a program specializer for C named Tempo. 

Although our preliminary experiment is encourag- 
ing, realistic applications are now necessary to validate 
the approach. 
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