
Automatic Generation and Targeting of Application Specific Operating Systems
and Embedded Systems Software

Lovic Gauthier Sungjoo Yoo Ahmed A. Jerraya

SLS Group, TIMA Laboratory
46 Avenue Felix Viallet, 38031 Grenoble, France

fLovic.Gauthier,Sungjoo.Yoo,Ahmed.Jerrayag@imag.fr

Abstract

We propose a method of automatic generation of appli-
cation specific operating systems (OS’s) and automatic tar-
geting of application software. OS generation starts from a
very small but yet flexible OS kernel. OS services, which are
specific to the application and deduced from dependencies
between services, are added to the kernel to construct the
whole OS. Communication and synchronization functions
in the application code are adapted to the generated OS. As
a preliminary experiment, we applied the proposed method
to a system example called token ring system.

1. Introduction

SW parts of embedded systems are taking more and
more system resources in terms of numbers and sizes of
processors, memory usage [9] or power consumption [4].
To implement complex SW on the target processors, oper-
ating systems (OS’s) are usually adopted to serialize SW
execution and to interface SW application to the target ar-
chitecture1.

Figure 1 exemplifies OS-based SW implementation of
concurrent multiple tasks on a processor. Figure 1 (a) shows
two concurrent tasks that communicate with other tasks via
high abstraction level channels like FIFO and shared mem-
ory. In the OS-based SW implementation, the OS sched-
ules the execution of tasks and executes communication be-
tween tasks via system calls. Figure 1 (b) shows a case
of OS-based SW implementation of the tasks. In the fig-
ure, two tasks A and B communicates with other tasks
via system calls (in this case, INFIFO 16, IN SHM 16,
OUT FIFO 16, and OUTSHM 16).

1In this paper, the target architecture represents processor(s), memory
modules, devices, etc.

Void task_A()
{

...

 value:=IN_FIFO_16(&port_Ain);

 OUT_SHM_16(&port_Aout,value);
...

}

Void task_B()
{

...

 value:=IN_SHM_16(&port_Bin);

 OUT_FIFO_16(&port_bout,value);
...

}

Void task_A()
{

 value:=read(port_Ain);
...

...
}

 write(port_Aout,value);

Void task_B()
{

 value:=read(&port_Bin);
...

...
}

 write(&port_Bout,value);

SHM

FIFO

FIFO

OS

CPU

system

callcall Scheduling Scheduling
system

(a) (b)

Figure 1. An example of OS-based SW imple-
mentation of multiple tasks.

One of crucial problems in such OS-based SW imple-
mentation is that porting or configuring the OS on the tar-
get architecture (the target processor and memory archi-
tecture) and targeting SW application code on the OS are
mostly done by manual work, i.e. the designer ports the
OS (sets OS configurations) on his/her specific target archi-
tecture and modifies the application SW code to meet the
ported/configured OS. Such a design practice is time con-
suming and error prone. Moreover, change of target archi-
tecture can require significant re-porting/re-configuration
of OS and, possibly, re-targeting of SW application code.
Thus, in such a design practice, finding the optimal target
architecture and OS configuration, i.e.design space ex-
ploration (DSE) of OS and OS-related target architecture,
seems to be hard within the even tighter time-to-market.

To enable DSE of OS implementation, methods for auto-
matic generation of application specific OS’s are required.
In this paper, we present a method that gives automatic gen-
eration of application specific OS’s and automatic targeting
of the application code to the generated OS.

This paper is organized as follows. We give a review of

0-7695-0993-2/2001/$10.00 © 2001 IEEE
679

Abstract model
of application

(multitask)

hand

coding

specific

manual
reference

OS

software
code

unique OS

code

compile/link

executable
software

code

direct transmission

human interpretation

Figure 2. SW implementation with the ported
OS.

related work in Section 2. We propose a method of auto-
matic generation of application specific OS and automatic
targeting of application SW code in Section 3. In Section 4,
we present a case study of applying the proposed method.
In Section 5, we give conclusion.

2. Related Work

In this Section, we review previous studies on (1) imple-
menting concurrent multiple tasks on a single processor and
(2) application specific OS generation.

There are three approaches in SW implementation from
multi-task descriptions. The first two approaches use OS as
a scheduler and an interface of multiple tasks to the target
architecture.

1. The designer ports existing OS’s on the target architec-
ture, targets multiple tasks to the OS’s, and runs them
on the OS’s. Figure 2 shows the OS porting and SW
targeting flow in this approach.

2. To improve the performance of OS (e.g. system call
execution times) and/or to reduce the overhead of OS
(e.g. OS code size), the designer can configure existing
OS’s [12][6]. For instance, the designer can determine
the usage of message queue in the OS depending on
whether the application SW uses it or not. The granu-
larity of such a configuration depends on OS vendors.

3. To prevent the usage of OS, a sequential code can be
generated from the concurrent multi-task representa-

Table 1. Comparisons of different approaches
of multi-task SW implementation.

Approaches speed size flexibility efforts

OS Porting � � � � � �

OS Configuration � � � �� �� ��

Sequential code gen. � � � � (�) � � �

tion [5]. In this approach, there is a trade off between
the reduction of OS overhead and the increase of se-
quential code overhead in terms of code size, system
runtime, etc.

Recently, there are a few approaches that mix sequential
code generation (i.e. maximizing sequential code parts in
the application) and (then) OS usage [2][10]. To enable OS-
based system design at a higher abstraction level, a high
level model of OS called SoCOS is presented in [3]. In [8],
an analysis is given on context switching overhead of three
context switching methods (pico-kernel, code merging and
table-based sequencing) in non-preemptive task scheduling.

Table 1 compares the above three approaches in terms
of OS execution time (speed), memory requirement (size),
scalability and portability (flexibility), and designer’s ef-
forts (efforts). In the table, three (two and one) stars rep-
resent an excellent (average and poor) note. In the case
of OS configuration, we put two stars in size, flexibility
and efforts since there are several configurable OS’s, but
their quality (degree of configuration) differs from one to
another. In the case of sequential code generation, the rea-
sons of poor note in speed are (1) synchronization can be
done only by polling2 and (2) a lot of conditional jumps in
the sequential code do not fit well with the pipelines and
caches of the state-of-the-art processors. Note that in the
above-mentioned approaches of OS-based SW implementa-
tion, targeting the application SW on the ported/configured
OS still requires a lot of hand coding.

In our method proposed in this paper, the OS is gener-
ated, from a very small and flexible OS kernel, including
only the application specific functions. Compared with the
OS configuration approach, the proposed method can give
more efficient adaptation of OS to the application SW since
determining application specific functions is done automat-
ically and we start OS generation with a very small and flex-
ible OS kernel.

In terms of adapting the OS to the specific application,
the proposed method is related with (1) the work in [11][10]
and (2) a method calledOS specialization[1]. In [11], the
authors present a strategy of automatic targeting of commu-
nication in OS’s (based on a parameterized communication

2In physical implementation, interrupt can be used to propagate the
synchronization event. However, detection of such an event is done by
polling the event.

2

680

void task1()
{
 ...

 ...

}
 write_port(PORTB,val);

 val=read_port(portA);

High level tasks descriptionAllocation table

...

fifo_portA : 0x9000

shm_B : 0xA000T1 T2 T3

descriptionArchitecture

void task1()
{
 ...
 val=read_FIFO_16(fifo_port_A);
 ...
 write_SHM_16((shm_B+10),val);
 ...
}

Targeted task descriptionMakefile

CC=m68k-coff-gcc
CFLAGS=-O3
LDFLAGS=-nostdlib

OBJS=boot.o FIFO.o
void* shm_B=0xA000;
FIFO fifo_port_A=0x9000;
/* Ports declaration */

Targeted
codeoperating system

void IN_FIFO_16(struct FIFO_16 *port)
{ short res;
 if (port->head==port->queue)
 sleep(port->signal);
 res=port->data[port->queue];
 port->queue=(port->queue-1)&FIFOSIZE;
 return res;
}

/* Ports declaration */
@DEFINE PORTS=
@ FOR i FROM 0 TO IONUM
@ DO
@ IOTYPE[i] " " IONAME[i]
@ "=" IOADR[i]";"
@ ENDFOR
@ENDDEFINE
...

selector

Task code

expanser
Code

Architecture
analyser

Code

Makefile
generator

adapter

Operating
library

system

Existing code

Adaptable code

Parameters

Communication protocols, parameters

Tasks code
file names

Macro
files

services
Required

file names
OS code

targeted processor

Figure 3. A flow of automatic generation of
application specific OS and automatic SW tar-
geting.

library and a simple scalable target architecture) with al-
ready targeted OS’s. In [1], an automatic synthesis method
of task scheduler is presented. Compared with the work
in [11][10], the proposed method automates both (1) the
generation of the whole OS (i.e. scheduler and inter-task
communication implementation) specific to the application
and target architecture (in a systematic construction of OS
with application-specific and derived OS services) and (2)
the targeting of high-level inter-task communication of the
application to the generated OS. The difference between the
proposed method and the OS specialization method is that
we focus on generating the OS with the minimum and suffi-
cient services required in the application while the OS spe-
cialization methods optimize OS services themselves ex-
ploiting quasi-static behavior of OS in the specific appli-
cation.

Our method is also very similar to the one proposed in
[7]. The main difference is the application domain: while
their method mainly focus on dataflow application, our am-
bition is to focus on more heterogenous application domain.
Due to such a difference the input model of the application
changes and the OS library has to be more complex (see
Section 3.3 and Section 3.4).

3. Automatic Synthesis and Targeting of Ap-
plication Specific OS’s and Application SW
Codes

3.1. Design Flow for SW Implementation

Figure 3 shows our design flow of automatic OS gen-
eration and SW targeting. The input to the OS generation

Module B : processor

Module Z :

task

Module A : processor

tasktask

Module X : Module Y :

Figure 4. Hierarchical network of modules.

and SW targeting flow is a system description consisting
of hierarchically structural representation of communica-
tion between modules, module behavior, and memory al-
location information. As shown in the figure, Architec-
ture Analyzer takes the structural information and the mem-
ory allocation information. Code Selector receives a list of
services specific to the application from Architecture an-
alyzer and finds the full list of (original and deduced) ser-
vices, Code Expander generates the source code of OS. Task
Code Adapter performs SW targeting and Makefile Genera-
tor gives makefiles. Thus, the outputs of the design flow are
the source code of generated OS, targeted application code,
and a makefile for each processor. To obtain the binary code
to be downloaded onto the target processor memory, the de-
signer runs compilation of both generated OS and targeted
application using the generated makefile.

3.2. Application domain

We focus our targeting tool on heterogenous embedded
applications (e.g. cellular phones, car controllers, etc.).
These applications require various communication proto-
cols, and may have very different time constraints (even
within the same processor).

3.3. System Description Input

As the system description input, the flow takes (1) a
structural representation of communication in a hierarchi-
cal network of modules, (2) behavior code of tasks and (3)
a memory allocation table.

Figure 4 shows an example of hierarchical network of
modules. In the structural representation,modulesare con-
nected viacommunication channels. In the hierarchical
representation, each module can be a leaf module or a mod-
ule that has a network of modules inside of it. We call a
leaf module atask. A module consists ofbehavior and
port(s) i.e., in the representation, behavior and communica-
tion are separated. The behavior part uses the ports (via call-
ing port functions) to communicate with other modules. In

3

681

void task1()
{
 ...
 val=read_port(portA);
 ...
 write_port(PORTB,val);
 ...
}

High level task description

void task1()
{
 ...
 val=read_FIFO_16(&fifo_port_A);
 ...
 write_SHM_16(&(shm_B[5]),val);
 ...
}

targeted task description

(a) (b)

Figure 5. An example of task behavior.

the viewpoint of behavior, ports give high-level communi-
cation functions encapsulating communication details (i.e.
communication protocols). Figure 5 (a) shows an example
of communication via ports in a task. In the figure, the be-
havioral part just calls a high-level communication function
(i.e. a port function),read port(portA) for communication
via portportA .

SW targeting should refine calls to port functions. Fig-
ure 5 (b) exemplifies a case of SW targeting of the
task description in Figure 5 (a). In the figure, port
function readport(portA) is replaced by a system call,
readFIFO 16(fifo port A) of the generated OS.

In the structural description,the information of behav-
ior mapping on the multi-processor target architecture is
also given Figure 4 that shows each module (in this case,
task) is mapped to processor A or B. The OS is generated
on a processor basis. For OS scheduling, each task has a
task priority . Mapping information and task priority are
represented with attributes of the module.

In the memory allocation table, the information of
memory allocation for inter-processor communication (e.g.
memory allocation for fifo or shared memory for inter-
processor communication) is given.

3.4. Operating System Library

The OS library provides (1) a very small and flexible OS
kernel and (2) OS services.

3.4.1 OS Kernel

The main functionality of OS kernel is scheduling multi-
ple tasks. There are several preemptive schedulers available
in the OS library such as round-robin scheduler, priority-
based scheduler, etc. In the case of round-robin scheduler,
time-slicing (i.e. assigning different CPU load to tasks) is
supported. To make the OS kernel very small and flexi-
ble, (1) the task scheduler can be selected from the require-
ment of the application code and (2) a minimal amount (less
than 10% of kernel code size) of processor specific assem-
bly code is used (for context switching and interrupt service
routines).

Table 2. Basic functions of OS kernel.
Function Behavior Code type

ContextSwitch Context switching C + assembly
Sleep Task sleeping C

Wake-up Waking up the task C
Schedulers Task scheduling C

Table 2 shows the basic functions of OS kernel. Func-
tion ContextSwitch performs context switching between
the currently running task and the next task to be executed.
Since context switching operation differs from processor to
processor, the function consists of two kinds of code: C
code and assembly code. The C code part is called by other
schedulers in C code (e.g. by a priority based scheduler or a
round-robin scheduler). The assembly code part performs
processor specific context switching operation. Function
SleepandWake-up are used for preemptive task schedul-
ing. For task scheduling, schedulers required by the appli-
cation SW are selected from the OS library (as scheduler
services).

3.4.2 OS Services

The OS library provides services specific to embedded sys-
tems: communication services (e.g. fifo communication),
i/o services (e.g. PCI bus drivers), memory services (e.g.
cache or virtual memory usage), etc.

Each service may be provided by one or more OS el-
ement described into the library. OS elements represent
some part of the OS. They provide some services, and may
require some other services. They may have several imple-
mentations compatible with different architectures.

Implementations of the OS elements contain two types
of code: re-usable (or existing) code and expandable code.
As an example of existing code, a fifo code can exist in the
OS library in the form of C language. As an example of
expandable code, OS kernel functions can exist in the OS
library in the form of macro code. In Figure 3, examples of
existing and expandable codes are shown in the OS library.
In Section 3.5.3, we explain the code expansion in detail.

3.5. OS Code Generation

3.5.1 Architecture Analyzer

Architecture Analyzer finds the following information from
the system description input.

� Application specific services and their detailed param-
eters

� Module specific parameters

4

682

Application specific OS services are found from the at-
tributes of modules, channels and ports in the system de-
scription input. For instance, if a channel has an attribute for
fifo implementation, fifo service is selected to be included
into the OS to be generated. The detailed parameters of re-
quired services are also found from the allocation table. For
instance, the address range of fifo communication and the
interrupt priority of interrupt-driven port can be found from
the allocation table. The information of required services is
sent to Code Selector.

Module specific parameters (e.g. task priority, CPU load,
the type of mapped processor, etc) are also found from mod-
ule attributes. The type of processor is sent to Makefile
Generator to choose the right compiler and to Code Ex-
pander to target the OS code to the processor.

3.5.2 Code Selector

Code Selector takes as input a list of required services from
Architecture Analyzer. It looks up the OS library to check
service dependencies and finds all theelementsthat have
dependency relation with the required services and that are
compliant with the target architecture. An element is com-
pliant with an architecture if one of its implementations is
compliant with the architecture, and if all the services it re-
quires can be provided by a compliant element. Since an
element may require some services, the above algorithm
repeated recursively. For instance, a required service, fifo
communication should need an interrupt handling service.
In this case, an element providing the interrupt handling ser-
vice should be also chosen to be included to the OS to be
generated. Sometimes, several elements compliant with the
architecture may provide the same required service. In such
a case, it is up to the user to choose the good one.

After the element selection is done, Code Selector sends
the list of the code file names to Makefile Generator, and
the macro file names to Code Expander.

3.5.3 Code Expander

Code Expander takes as input a list of macro code from
Code Selector and parameters (processor and allocation in-
formations) from Architecture Analyzer. It generates the
final OS code by expanding the macro codes of elements to
source codes (in C or assembly).

Figure 6 shows an example of code expansion. In Fig-
ure 6 (a), a macro code Section is shown for two OS kernel
functions: a context switch function (in the figure,Con-
textSwitch()) and a round-robin scheduler function (Cir-
cle()). First, Code Expander determines the necessity of
services based on the information of requested services.
For instance, in Figure 6 (a), depending on the number of
priority values (in the figure,Pr max) and the number of

@DEFINE schedule=IF ((Pr_max >0)||(G_size >1)) DO"
@void ContextSwitch()
@{
@ int oldtid=curtid;
@ if (switching) {
@ "getactivetask"
@ " taskswap "
@ }
@}
@" ENDIF
@ENDDEFINE
 @schedule@

@DEFINE round_robbin=IF (G_size >1) DO "
@void Circle()
@{
@ arciclepos=circlepos;
@ circlepos=circletabl[circlepos];
@}
@" ELSE "" ENDIF
@ENDDEFINE
 @round_robbin@

void ContextSwitch()
{
 int oldtid=curtid;
 if (switching) {
 curtid=circlepos;

 taskswap_68k (tasks[oldtid].cxt,
 tasks[curtid].cxt);

 }
}

void Circle()
{
 arciclepos=circlepos;
 circlepos=circletabl[circlepos];
}

(a) Macro code example (b) Expanded code example

Figure 6. An example of macro code expan-
sion.

tasks (G size) that have the same priority value, the con-
text switch function (ContextSwitch()) or the round-robin
scheduler function (Circle()) can be selected or not. In the
example, if there is only one priority value (i.e.Pr max=1)
and G size=1, then there is no need of context switch-
ing. Thus, in the case, the context switching code (Con-
textSwitch()) is not selected. If there are more than one
tasks that have the same priority value, i.e.G size>1, then
the context switching code (ContextSwitch()) as well as the
round-robin scheduler code (Circle()) are selected to be ex-
panded. Figure 6 (b) shows an example of expanded code
in C for this case. Note that, in this case, another scheduler
can be selected to schedule tasks that have different priority
values.

Figure 6 shows an example of expanding a macro,
“ taskswap ” (in Figure 6(a)) to a processor specific code,
“ taskswap 68k ” (in Figure 6(b)). Processor-specific
code expansion is limited to functions such as context
switching, synchronization primitives (e.g. semaphore
functions), and interrupt service routines.

3.6. Targeting of Application SW Code

To target the application SW code to the generated OS,
Task Code Adapter replaces function calls of communica-
tion and synchronization in the original application SW by
OS service calls (i.e. system calls). For instance, function
call of communication calledread port(portA) is replaced
by a OS service function call
read FIFO 16(&fifo port A). Note that original function
arguments are also replaced by arguments specific to the OS
service function. In the example, the argument of original

5

683

functionportA is replaced by an argument of fifo service
function&fifo port A that is a pointer to the fifo address in
this case.

3.7. Makefile Generator

Makefile Generator takes as input (1) processor type in-
formation from Architecture Analyzer, (2) a list of source
codes of OS (in C and assembly) from elements of Code
Selector and (3) a list of the application SW codes. It deter-
mines the right compiler and linker and generates a makefile
(for each processor) that includes the two code lists of OS
and application SW.

3.8. Application to Existing OS’s

The existing OS’s can be integrated into the proposed
flow of automatic generation (to be specific, in this case,
automatic configuration) of application specific OS. To ex-
plain the integration, we assume that the existing OS sup-
ports OS configuration by#ifdef statements (i.e. config-
uration by defining required macros) without modifying the
OS source code since most commercial OS’s allow such a
configuration. The integration can be done as follows.

1. Information of available OS services (e.g. service
functions, macros to be defined for services, etc.) and
dependency relations between services of the existing
OS are taken into the OS library.

2. To the OS generation flow in Figure 3, the designer
gives the same system description input as explained
in Section 3.3.

3. Architecture Analyzer performs the same operation
(extracting required information such as services, tar-
get processor information, etc) as described in Section
3.5.1.

4. Code Selector finds all the required (derived) services
from the OS library as explained in Section 3.5.2.
Then, it selects, from the OS library, macro definitions
corresponding to the required services instead of se-
lecting existing/adaptable files as explained in Section
3.5.2. Note that in the case of automatic configuration
of existing OS, Code Expander does not generate the
OS source code since the existing OS source code is
not modified.

5. Task Code Adaptor performs the same operation (as
explained in Section 3.6) for the automatically config-
ured OS.

6. Makefile Generator outputs a makefile with the se-
lected macro definitions received from Code Selector.

Cnt

Token Token

Token Token

1 2

3 4

OS OS OS

processor processor

Communication layer

processor

CntToken Token Token Token
1 2 43

and SW targeting

OS generation

(a) (b)

Figure 7. An implementation of token ring
system on a multi-processor target architec-
ture.

Note that compared with the original flow of automatic
OS generation proposed in this paper, in the case of inte-
grating the existing OS into the flow, there is no change
in automatic execution of service extraction (by Architec-
ture Analyzer), makefile generation, and adaptation of ap-
plication code to the automatically configured OS. In terms
of code quality (size, execution time, etc) of automatically
configured OS, it depends on the granularity of OS services
in the existing OS. Thus, if the existing OS supports as fine
granularity in OS services as our OS kernel and services, the
quality of automatically configured OS can be comparable
to that of automatically generated OS.

4. Experiment

4.1. System Example and Target Architecture

We applied the proposed method to a system example
called token ring system (1,245 lines in SystemC). It con-
sists of four tasks (called Token) that exchange tokens with
each other and one counter task (called Cnt) that counts the
number of tokens exchanged. Figure 7 (a) shows the inter-
connection of tasks (in this example, a task corresponds to
a module in the figure) in the example. As shown in the fig-
ure, four Token tasks make a bidirectional ring connection
with each other. The counter task is connected to all Token
tasks. Note that the structural description in Figure 7 (a)
belongs to the system description input.

In our experiment, we implement the system example on
a multi-processor target architecture of three 68000 proces-
sors. Figure 7 (b) shows the result of implementation. In the
figure, four Token tasks are mapped to two processors (two
tasks on each processor) and the counting tasks is mapped
to the other processor.

4.2. Synthesis of Application Specific OS and SW
targeting

In the system description input, we assigned the infor-
mation of processor mapping in the attributes of each mod-

6

684

ule. We also assigned equal priority to all the tasks. To
the communication channel between modules, we specified
one word communication with non-blocking write/blocking
read. In the example, the size of transferred data, i.e.
counter value and token, is one word.

First, the system description input is read into Architec-
ture Analyzer. Then, Code Selector selects the following
four kernel functions and services for the OS’s of two pro-
cessors where two Token tasks are mapped.

� Round-robin scheduler service since tasks have the
same priority.

� A timer service since the round-robin scheduler is
used.

� Non-blocking write (calledexoutd) and blocking read
services (calledexinb).

Code Expander generates the OS source code that han-
dles two tasks of equal priority and two communication
service functions (exoutd and exinb). Task Code Adap-
tor replaces original communication functions (i.e.out-
port(Port, value) and inport(Port, value)) by OS com-
munication services (i.e.exoutd(&PortAddr, value) and
exinb(&PortAddr, value)).

For the processor where only the counter task is mapped,
the same communication services are selected. However, no
scheduler and timer services are selected since there is only
one task on the processor.

We obtained three binary executables for three proces-
sors after running compilation with the generated source
codes and makefiles. We validated the system implemen-
tation in cosimulation with three instruction set simulators
of 68000 processor and a VHDL simulator for the HW in-
terfaces of processors.

As a preliminary result, in this experiment, the generated
OS gives very small code sizes: 797 lines in C, (in assem-
bly) 1.86 KB for each of two processors with two Token
tasks and 1.62 KB for the processor with one Counter task.
In terms of performance, it gives 83 instruction cycle la-
tency in the channel read operation from interrupt trigger to
the end of single-word data access.

5. Conclusion

We proposed a method of automatic generation of appli-
cation specific operating systems and automatic targeting
of application code. The proposed method starts automatic
generation of operating system from a very small and flexi-
ble kernel and includes only the OS services specific to the
application. We applied the method to a token ring system
and obtained a promising result.

References

[1] Synthetix project. available at
http://www.cse.ogi.edu/DISC/projects/synthetix/.

[2] J. Cortadella and al. Task Generation and Compile-Time
Scheduling for Mixed Data-control Embedded Software.
Proc. Design Automation Conf., pages 489–494, June 2000.

[3] D. Desmet, D. Verkest, and H. D. Man. Operating System
based Software Generation for Systems-on-Chip.Proc. De-
sign Automation Conf., pages 396–401, June 2000.

[4] R. Dick, G. Lakshiminarayana, A. Raghunathan, and N. Jha.
Power Analysis of Embedded Operating Systems, pp.312-
315. Proc. Design Automation Conf., June 2000.

[5] S. Edwards. Compiling Esterel into Sequential Code.Proc.
Design Automation Conf., pages 322–327, June 2000.

[6] Eonic Systems, Inc. Virtuoso v.4.1. available at
http://www.eonic.com/.

[7] T. Grandpierre. Optimized Rapid Prototyping for Real-Time
Embedded Heterogeneous Multiprocessor.CODES Work-
shop on Hardware/Software Codesign, May 1999.

[8] A. �Osterling, T. Benner, and R. Ernst. Code Generation
and Context Switching for Static Scheduling of Mixed Con-
trol and Data Oriented HW/SW Systems.Proc. 4th Asia-
Pacific Conference on Hardware Description Language,
pages 131–135, Aug. 1997.

[9] B. Shackleford, M. Tasuda, E. Okushi, H. Koizumi,
H. Tomiyama, and H. Yasuura. Memory-CPU Size Opti-
mization for Embedded System Designs.Proc. Design Au-
tomation Conf., pages 246–251, June 1997.

[10] F. Thoen and F. Catthoor.Modeling, Verification and Explo-
ration of Task-Level Concurrency in Real-Time Embedded
Systems. Kluwer Academic Publishers, Boston, 2000.

[11] S. Vercauteren, B. Lin, and H. D. Man. A Strategy for
Real-Time Kernel Support in Application-Specific HW/SW
Embedded Architectures.Proc. Design Automation Conf.,
pages 678–683, 1996.

[12] Wind River Systems, Inc. VxWorks 5.4. available at
http://www.wrs.com/products/html/vxwks54.html.

7

685

