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Abstract L ero
Void task_A() 2/0"1 task_A() E/ma task_B()

We propose a method of automatic generation of apph- Value:=read(port_Ain); Value:=IN_FIFO_16(&port_Ain) value:=IN_SHM_16(&port_Bin);

. . . , . write(port_Aout,value); OUT_SHM_16(&port_Aout value); OUT_FIFO_16(&port_bout,value);
cation specific operating systems (OS’s) and automatic tar{ | - -
geting of application software. OS generation starts from a s
very small but yet flexible OS kernel. OS services, which are =5 I senbauiing ST schpauiing
specific to the application and deduced from dependencies {'calue-:,ead(&pm o
between services, are added to the kernel to construct the witeepor_soutvaiue) os
whole OS. Communication and synchronization functions | e cPu
in the application code are adapted to the generated OS. As f
a preliminary experiment, we applied the proposed method @ ®

to a system example called token ring system. Figure 1. An example of OS-based SW imple-

mentation of multiple tasks.

1. Introduction

, One of crucial problems in such OS-based SW imple-
SW parts of embedded systems are taking more andmentaion is that porting or configuring the OS on the tar-
more system resources in terms of numbers and sizes Ofjet architecture (the target processor and memory archi-
processors, memory usage [9] or power consumption [4]. tectyre) and targeting SW application code on the OS are
To implement complex SW on the target processors, 0per-mastly done by manual work, i.e. the designer ports the
ating systems (OS's) are usually adopted to serialize SWog (sets OS configurations) on his/her specific target archi-
exgcunon and to interface SW application to the target ar- ioctyre and modifies the application SW code to meet the
chitecture. ported/configured OS. Such a design practice is time con-
Figure 1 exemplifies OS-based SW implementation of syming and error prone. Moreover, change of target archi-
concurrent multiple tasks on a processor. Figure 1 (a) showsecture can require significant re-porting/re-configuration
two concurrent tasks that communicate with other tasks viaof OS and, possibly, re-targeting of SW application code.
high abstraction level channels like FIFO and shared mem-Thys, in such a design practice, finding the optimal target
ory. In the OS-based SW implementation, the OS sched-architecture and OS configuration, i.elesign space ex-
ules the execution of tasks and executes communication beploration (DSE) of OS and OS-related target architecture,
tween tasks via system calls. Figure 1 (b) shows a caseseems to be hard within the even tighter time-to-market.
of OS-based SW implementation gf the ta?"s- In the fig- To enable DSE of OS implementation, methods for auto-
ure, two tasks A 'and .B communicates with other tasks matic generation of application specific OS’s are required.
via system calls (in this case, IRFQ16, IN.SHM.16, In this paper, we present a method that gives automatic gen-
OUT.FIFO.16, and OUTSHM.16). eration of application specific OS’s and automatic targeting

1in this paper, the target architecture represents processor(s), memorymc the appllcat|on code to the generated OS.

modules, devices, etc. This paper is organized as follows. We give a review of
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Figure 2. SW implementation with the ported

OS.

Table 1. Comparisons of different approaches
of multi-task SW implementation.

| Approaches | speed] size | flexibility | efforts |
OS Porting * % k * * *
OS Configuration | %% | xx *% *%
Sequential code gen. * * % (%) * % %

tion [5]. In this approach, there is a trade off between
the reduction of OS overhead and the increase of se-
guential code overhead in terms of code size, system
runtime, etc.

Recently, there are a few approaches that mix sequential
code generation (i.e. maximizing sequential code parts in
the application) and (then) OS usage [2][10]. To enable OS-
based system design at a higher abstraction level, a high
level model of OS called SoCOS is presented in [3]. In [8],
an analysis is given on context switching overhead of three
context switching methods (pico-kernel, code merging and
table-based sequencing) in non-preemptive task scheduling.

Table 1 compares the above three approaches in terms
of OS execution time (speed), memory requirement (size),

related work in Section 2. We propose a method of auto- scalability and portability (flexibility), and designer’s ef-
matic generation of application specific OS and automatic forts (efforts). In the table, three (two and one) stars rep-
targeting of application SW code in Section 3. In Section 4, resent an excellent (average and poor) note. In the case
we present a case study of applying the proposed methodof OS configuration, we put two stars in size, flexibility

In Section 5, we give conclusion.

2. Related Work

In this Section, we review previous studies on (1) imple-

and efforts since there are several configurable OS’s, but
their quality (degree of configuration) differs from one to
another. In the case of sequential code generation, the rea-
sons of poor note in speed are (1) synchronization can be
done only by polling and (2) a lot of conditional jumps in

menting concurrent multiple tasks on a single processor and"€ sequential code do not fit well with the pipelines and

(2) application specific OS generation. k -
There are three approaches in SW implementation from@°0ve-mentioned approaches of OS-based SW implementa-

multi-task descriptions. The first two approaches use OS adion, targeting the application SW on the ported/configured

a scheduler and an interface of multiple tasks to the targe

architecture.

caches of the state-of-the-art processors. Note that in the

{OS still requires a lot of hand coding.

In our method proposed in this paper, the OS is gener-
ated, from a very small and flexible OS kernel, including

1. The designer ports existing OS’s on the target architec-only the application specific functions. Compared with the

ture, targets multiple tasks to the OS’s, and runs them OS configuration approach, the proposed method can give
on the OS's. Figure 2 shows the OS porting and SW more efficient adaptation of OS to the application SW since
targeting flow in this approach. determining application specific functions is done automat-
ically and we start OS generation with a very small and flex-

. To improve the performance of OS (e.g. system call ible OS kernel.

execution times) and/or to reduce the overhead of OS In terms of adapting the OS to the specific application,

(e.g- OS code size), the designer can configure exIStIngthe proposed method is related with (1) the work in [11][10]

OS's [12][6]. For instance, the Qe5|gner can determme and (2) a method calle@S specialization[1]. In [11], the
the usage of message queue in the OS depending O uthors present a strategy of automatic targeting of commu-
whether the application SW uses it or not. The granu- b 9y geting

larity of such a configuration depends on OS vendors. nication in OS’s (based on a parameterized communication

. 2In physical implementation, interrupt can be used to propagate the
. To prevent the usage of OS, a sequential code can b&ynchronization event. However, detection of such an event is done by

generated from the concurrent multi-task representa-poliing the event.
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fifo_portA : 0x9000
Shm_B : 0xA00

High level tasks description

void taski()
{

val=read_port(portA);

write_port(PORTB,val):;
}
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Figure 4. Hierarchical network of modules.

s S5m e . T and SW targeting flow is a system description consisting
of hierarchically structural representation of communica-
tion between modules, module behavior, and memory al-
! location information. As shown in the figure, Architec-

ture Analyzer takes the structural information and the mem-
ory allocation information. Code Selector receives a list of
services specific to the application from Architecture an-
alyzer and finds the full list of (original and deduced) ser-

library and a simple scalable target architecture) with al- vices, Code Expander generates the source code of OS. Task
ready targeted OS’s. In [1], an automatic synthesis methodCode Adapter performs SW targeting and Makefile Genera-
of task scheduler is presented. Compared with the worktor gives makefiles. Thus, the outputs of the design flow are
in [11][10], the proposed method automates both (1) the the source code of generated OS, targeted application code,
generation of the whole OS (i.e. scheduler and inter-taskand a makefile for each processor. To obtain the binary code
communication implementation) specific to the application to be downloaded onto the target processor memory, the de-
and target architecture (in a systematic construction of OSsigner runs compilation of both generated OS and targeted
with application-specific and derived OS services) and (2) application using the generated makefile.

the targeting of high-level inter-task communication of the

application to the generated OS. The difference between the3.2. Application domain

proposed method and the OS specialization method is that

we focus on generating the OS with the minimum and suffi- e focus our targeting tool on heterogenous embedded
cient services required in the application while the OS spe-ppjications (e.g. cellular phones, car controllers, etc.).
cialization methods optimize OS services themselves ex-These applications require various communication proto-
ploiting quasi-static behavior of OS in the specific appli- ¢ols, and may have very different time constraints (even

cation. . o ~ within the same processor).
Our method is also very similar to the one proposed in

[7]. The main difference is the application domain: while
their method mainly focus on dataflow application, our am-
bition is to focus on more heterogenous application domain.
Due to such a difference the input model of the application
changes and the OS library has to be more complex (se
Section 3.3 and Section 3.4).

CC=m68k-coff-goc void task1()
CFLAGS=03 {
LDFLAGS=-nostdlib

val=read_FIFO_16(ifo_port_A);
0BJS=b00t.0 FIFO.0 ..

wiite_SHM_16((shm_B+10)val;

Figure 3. A flow of automatic generation of
application specific OS and automatic SW tar-
geting.

3.3. System Description Input

As the system description input, the flow takes (1) a
estructural representation of communication in a hierarchi-
cal network of modules, (2) behavior code of tasks and (3)
a memory allocation table.

Figure 4 shows an example of hierarchical network of
modules. In the structural representatiommdulesare con-
nected viacommunication channels In the hierarchical
representation, each module can be a leaf module or a mod-
ule that has a network of modules inside of it. We call a
leaf module atask. A module consists obehavior and
port(s) i.e., in the representation, behavior and communica-

Figure 3 shows our design flow of automatic OS gen- tion are separated. The behavior part uses the ports (via call-
eration and SW targeting. The input to the OS generationing port functions) to communicate with other modules. In

3. Automatic Synthesis and Targeting of Ap-
plication Specific OS’s and Application SW
Codes

3.1. Design Flow for SW Implementation
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High level task description targeted task description

void task1() void task1()
{ {

val=read_port(portA); val=read_FIFO_16(&fifo_port_A);
write_port(PORTB,val); write_SHM_16(&(shm_BJ[5]),val);

) )

(@) (b)
Figure 5. An example of task behavior.

the viewpoint of behavior, ports give high-level communi-

cation functions encapsulating communication details (i.e.
communication protocols). Figure 5 (a) shows an example

of communication via ports in a task. In the figure, the be-
havioral part just calls a high-level communication function
(i.e. a port function)read_port(portA) for communication
via portportA.

SW targeting should refine calls to port functions. Fig-
ure 5 (b) exemplifies a case of SW targeting of the
task description in Figure 5 (a). In the figure, port
function readport(portA) is replaced by a system call,
readFIFO_16(fifo_port A) of the generated OS.

In the structural descriptiothe information of behav-
ior mapping on the multi-processor target architecture is

also given Figure 4 that shows each module (in this case, ) L . . o
dtems. communication services (e.g. fifo communication),

task) is mapped to processor A or B. The OS is generate
on a processor basis. For OS scheduling, each task has
task priority . Mapping information and task priority are
represented with attributes of the module.

In the memory allocation table, the information of
memory allocation for inter-processor communication (e.g.
memory allocation for fifo or shared memory for inter-
processor communication) is given.

3.4. Operating System Library

The OS library provides (1) a very small and flexible OS
kernel and (2) OS services.

3.4.1 OSKernel

The main functionality of OS kernel is scheduling multi-

Table 2. Basic functions of OS kernel.

| Function | Behavior | Code type |

ContextSwitch| Context switching| C + assembly]
Sleep Task sleeping C
Wake-up Waking up the task C
Schedulers Task scheduling C

Table 2 shows the basic functions of OS kernel. Func-
tion ContextSwitch performs context switching between
the currently running task and the next task to be executed.
Since context switching operation differs from processor to
processor, the function consists of two kinds of code: C
code and assembly code. The C code part is called by other
schedulers in C code (e.g. by a priority based scheduler or a
round-robin scheduler). The assembly code part performs
processor specific context switching operation. Function
SleepandWake-up are used for preemptive task schedul-
ing. For task scheduling, schedulers required by the appli-
cation SW are selected from the OS library (as scheduler
services).

3.4.2 OS Services

The OS library provides services specific to embedded sys-

go services (e.g. PCI bus drivers), memory services (e.g.
cache or virtual memory usage), etc.

Each service may be provided by one or more OS el-
ement described into the library. OS elements represent
some part of the OS. They provide some services, and may
require some other services. They may have several imple-
mentations compatible with different architectures.

Implementations of the OS elements contain two types
of code: re-usable (or existing) code and expandable code.
As an example of existing code, a fifo code can exist in the
OS library in the form of C language. As an example of
expandable code, OS kernel functions can exist in the OS
library in the form of macro code. In Figure 3, examples of
existing and expandable codes are shown in the OS library.
In Section 3.5.3, we explain the code expansion in detail.

3.5. OS Code Generation

ple tasks. There are several preemptive schedulers available
in the OS library such as round-robin scheduler, priority- -

based scheduler, etc. In the case of round-robin scheduler?'s'1 Architecture Analyzer
time-slicing (i.e. assigning different CPU load to tasks) is Architecture Analyzer finds the following information from
supported. To make the OS kernel very small and flexi- the system description input.

ble, (1) the task scheduler can be selected from the require-
ment of the application code and (2) a minimal amount (less
than 10% of kernel code size) of processor specific assem-
bly code is used (for context switching and interrupt service
routines).

¢ Application specific services and their detailed param-
eters

¢ Module specific parameters
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Application specific OS services are found from the
tributes of modules, channels and ports in the syster
scription input. For instance, if a channel has an attribu
fifo implementation, fifo service is selected to be inclt
into the OS to be generated. The detailed parameters
quired services are also found from the allocation table
instance, the address range of fifo communication ar
interrupt priority of interrupt-driven port can be found fr
the allocation table. The information of required servic
sent to Code Selector.

Module specific parameters (e.g. task priority, CPU |
the type of mapped processor, etc) are also found from
ule attributes. The type of processor is sent to Mak
Generator to choose the right compiler and to Code
pander to target the OS code to the processor.

3.5.2 Code Selector

Code Selector takes as input a list of required services
Architecture Analyzer. It looks up the OS library to ch
service dependencies and finds all tlementsthat hav
dependency relation with the required services and th
compliant with the target architecture. An element is ¢
pliant with an architecture if one of its implementation
compliant with the architecture, and if all the services i
quires can be provided by a compliant element. Sinc
element may require some services, the above algc
repeated recursively. For instance, a required service
communication should need an interrupt handling set
In this case, an element providing the interrupt handling
vice should be also chosen to be included to the OS
generated. Sometimes, several elements compliant wi
architecture may provide the same required service. In
a case, it is up to the user to choose the good one.
After the element selection is done, Code Selector ¢

the macro file names to Code Expander.

3.5.3 Code Expander

@DEFINE schedule=IF ((  Pr_max>0)[|( G_size >1)) DO"

@void ContextSwitch()

@{

@ intoldtid=curtid;

@ i (switching) { void ~ ContextSwitch()

@ "getactivetask” {

@ " taskswap " int oldtid=curtid;

@ } if (switching) {

@} curtid=circlepos;

@" ENDIF taskswap_68k  (tasksoldtid].cxt,
@ENDDEFINE tasksfcurtid].cxt);
@schedule@ ) }

@DEFINE round_robbin=IF (  G_size >1) DO"

@void Circle() }/wd Circle()

@  arciclepos=circlepos; afClC|Ep°S=CIFC|EDOS:_

@ circlepos=circletabl[circlepos]; circlepos=circletabl[circlepos];

@} }

@" ELSE " ENDIF

@ENDDEFINE

@round_robbin@

(a) Macro code example (b) Expanded code example

Figure 6. An example of macro code expan-
sion.

tasks (5_size that have the same priority value, the con-
text switch function ContextSwitch()) or the round-robin
scheduler functionircle()) can be selected or not. In the
example, if there is only one priority value (i.Br_max=1)

and G_size=1, then there is no need of context switch-
ing. Thus, in the case, the context switching co@er-
textSwitch()) is not selected. If there are more than one
tasks that have the same priority value, &size>1, then

the context switching cod€pntextSwitch()) as well as the
round-robin scheduler cod€ifcle()) are selected to be ex-
panded. Figure 6 (b) shows an example of expanded code
in C for this case. Note that, in this case, another scheduler
can be selected to schedule tasks that have different priority
values.

Figure 6 shows an example of expanding a macro,
“taskswap " (in Figure 6(a)) to a processor specific code,
“taskswap _68k” (in Figure 6(b)). Processor-specific
code expansion is limited to functions such as context
switching, synchronization primitives (e.g. semaphore
functions), and interrupt service routines.

the list of the code file names to Makefile Generator, and

Code Expander takes as input a list of macro code from

Code Selector and parameters (processor and allocation in- ] o

formations) from Architecture Analyzer. It generates the 3.-6. Targeting of Application SW Code

final OS code by expanding the macro codes of elements to

source codes (in C or assembly). To target the application SW code to the generated OS,
Figure 6 shows an example of code expansion. In Fig- Task Code Adapter replaces function calls of communica-

ure 6 (a), a macro code Section is shown for two OS kerneltion and synchronization in the original application SW by

functions: a context switch function (in the figur€pn- OS service calls (i.e. system calls). For instance, function

textSwitch()) and a round-robin scheduler functio@if- call of communication callecead_port(portA) is replaced

cle()). First, Code Expander determines the necessity ofby a OS service function call

services based on the information of requested servicesread_FIFO _16(&fifo _port_A). Note that original function

For instance, in Figure 6 (a), depending on the number ofarguments are also replaced by arguments specific to the OS

priority values (in the figurePr_max) and the number of  service function. In the example, the argument of original
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function portA is replaced by an argument of fifo service
function&fifo _port_A that is a pointer to the fifo address in
this case.

os os os

OS generation
and SW targeting

processor processor processor

i i !

| Communioaon ayer |

3.7. Makefile Generator

Makefile Generator takes as input (1) processor type in- @ ®

formation from Architecture Analyzer, (2) a list of source
codes of OS (in C and assembly) from elements of Code
Selector and (3) a list of the application SW codes. It deter-
mines the right compiler and linker and generates a makefile
(for each processor) that includes the two code lists of OS
and application SW.

Figure 7. An implementation of token ring
system on a multi-processor target architec-
ture.

Note that compared with the original flow of automatic

3.8. Application to Existing OS’s OS generation proposed in this paper, in the case of inte-
grating the existing OS into the flow, there is no change
The existing OS's can be integrated into the proposedi” automatic execution of service extraction (by Architec-
flow of automatic generation (to be specific, in this case, lUré Analyzer), makefile generation, and adaptation of ap-
automatic configuration) of application specific OS. To ex- Plication code to the automatically configured OS. In terms
plain the integration, we assume that the existing OS sup-°f code quality (size, execution time, etc) of automatically
ports OS configuration bffifdef ~ statements (i.e. config- configured OS, it depends on the granularity of OS services
uration by defining required macros) without modifying the I the existing OS. Thus, if the existing OS supports as fine
OS source code since most commercial OS’s allow such agranulantyln OS services as our OS kernel and services, the
configuration. The integration can be done as follows. quality of automatically configured OS can be comparable
to that of automatically generated OS.
1. Information of available OS services (e.g. service
functions, macros to be defined for services, etc.) and4. Experiment
dependency relations between services of the existing

OS are taken into the OS library. 4.1. System Example and Target Architecture

2. To the OS generation flow in Figure 3, the designer lied th d method |
gives the same system description input as explained We applie . the propose met' 0 t.o a system example
gives the sam called token ring system (1,245 lines in SystemC). It con-

sists of four tasks (called Token) that exchange tokens with
3. Architecture Analyzer performs the same operation each other and one counter task (called Cnt) that counts the
(extracting required information such as services, tar- number of tokens exchanged. Figure 7 (a) shows the inter-
get processor information, etc) as described in Sectionconnection of tasks (in this example, a task corresponds to
3.5.1. a module in the figure) in the example. As shown in the fig-
ure, four Token tasks make a bidirectional ring connection
4. Code Selector finds all the required (derived) servicesyith each other. The counter task is connected to all Token
from the OS library as explained in Section 3.5.2. a5ks. Note that the structural description in Figure 7 (a)
Then, it selects, from the OS library, macro definitions belongs to the system description input.
corresponding to the required services instead of se- |, our experiment, we implement the system example on
lecting existing/adaptable files as explained in Section 5 myti-processor target architecture of three 68000 proces-
3.5.2. Note that in the case of automatic configuration sors. Figure 7 (b) shows the result of implementation. In the
of existing OS, Code Expander does not generate thefigre, four Token tasks are mapped to two processors (two
OS source code since the existing OS source code isasks on each processor) and the counting tasks is mapped
not modified. to the other processor.

5. Task Code Adaptor performs the same operation (as . . -
explained in Section 3.6) for the automatically config- 4.2. Synthesis of Application Specific OS and SW

ured OS. targeting

6. Makefile Generator outputs a makefile with the se- In the system description input, we assigned the infor-
lected macro definitions received from Code Selector. mation of processor mapping in the attributes of each mod-
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