A Static Analysis of I/O Characteristics of Scientific Applications
in a Production Workload

Barbara K. Pasquale and George C. Polyzos

Computer Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0114

{bittel, polyzos }@cs.ucsd.edu

Abstract

Past research on high performance computers for scien-
tific applications has concentrated on CPU speed and
exploitation of parallelism, but has, until very recently,
neglected I/0 considerations. This paper presents a study
of the production workload at the San Diego Supercom-
puter Center from an 1/0 requirements and characteristics
perspective. Results of our analyses support our hypothesis
that a significant proportion of I/O intensive, long running,
frequently executed scientific applications have predictable
I/O requirements.

1.0 Introduction

Past efforts in the development of high performance
computer systems have been primarily focused on the com-
putational speeds of processors, often ignoring other
important system components, such as the I/O subsystem
and the operating system [3, 8, 18, 20]. Resulting progress
in the areas of raw processor speed and parallelism, both in
hardware and software, has produced GFLOPS machines,
but has done little to close the ever widening gap between
CPU performance and that of the attached 1/O subsystem
[1, 8,91

Until recently, little concern has been expressed over the
growing system imbalance between CPU and 1/O perfor-
mance. Now however, scientific research based on compu-
tational approaches has intensified and the number of I/O
intensive scientific applications is increasing. For example,
applications involving simulation based modeling require
and produce massive amounts of data ranging from hun-
dreds of megabytes up to tens of gigabytes per execution.
Relying on these large-scale computations and data analy-
sis techniques, progress in many scientific disciplines is
limited only by the available capacity of high performance
computing [4]. The sheer volume of this data and the need
to access, store, distribute and visualize this data intensifies

This work is funded in part by grants from DEC, the U.C.
Micro program, and the Sequoia 2000 Project.

© 1993 ACM 0-8186-4340-4/93/0011 $1.50

388

1/O demands within the local system and communication
requirements across networks [17].

Continuing to increase CPU speeds and to further
exploit parallelism without improving the I/O system will
create more I/O bound jobs which can become a bottleneck
to system performance [1, 8, 9, 11, 12, 19]. In a recent
study of the San Diego Supercomputer Center (SDSC), an
increase in CPU idle time was directly attributed to I/O
blocking {13]. In order to maintain well-balanced systems,
we must establish a thorough understanding of the I/O
behavior of scientific applications, and from this knowl-
edge, design the mechanisms and implement the policies
that are needed to improve the I/O subsystem and provide
these I/O intensive applications with their needed resources
without degrading overall system performance.

The research presented in this paper describes an I/O
workload characterization study of the Cray Y-MP8/864 at
SDSC intended to identify I/O intensive applications and
to quantify their resource demands. Our goal here is to
present some of the observations of that study and to inves-
tigate the hypothesis that a high proportion of I/O intensive
applications exhibit regular behavior. The I/O metrics con-
sidered in this study include the number of total bytes
transferred by an application, the virtual 1/O rate, i.e., the
number of bytes transferred per CPU second, and the num-
ber and average virtual rate of logical 1/O requests. We are
interested in identifying a set of I/O intensive applications
and in summarizing their I/O resource usage in a way that
describes the relationship between the applications, their
resource usage, and their contribution to the entire system
workload.

The remainder of this paper is organized as follows. In
section 2 we discuss the motivation for investigating 1/O
behavior, and particularly, the roles of static and dynamic
characterizations. We also discuss two recent scientific
application I/O studies, and present our hypothesis. In sec-
tion 3 we provide a description of the observed environ-
ment at the SDSC. In sections 4 and 5 we progressively
present our selection of interesting subsets of the workload
and we describe the analyses performed and results
obtained. Our conclusions are presented in section 6.

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct ial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permussion of the
Association for Computing M y. To copy otherwise, or to republish,
requires a fee and/or specific permission.

2.0 Motivation

Little attention has been given to the study and analysis
of 1/O behavior on high performance systems. As a result,
our understanding of the effects of current application I/O
and projected increases in application 1/O is not well estab-
lished. Scientific applications form an interesting set of
programs worthy of study because they absolutely need
high performance supercomputers and, therefore, systems
should be designed to meet their requirements. Before we
can do the latter, we must understand these requirements.
We believe that it is necessary to undertake a thorough
study of production workloads in order to extract the char-
acteristic behavior of I/O intensive applications.

2.1 Related Research

The analysis of application I/O has been seriously
addressed in two recent studies by Miller and Katz [12] and
Lim and Condry [10]. By recording detailed information
about each I/O request (e.g., type of I/O, request size, num-
ber of bytes transferred, file accessed, and file position),
they were able to construct run-time profiles depicting an
application's I/O behavior over time,

Miller and Katz characterized and modeled the behavior
of seven computational fluid dynamics and climate appli-
cations to study the effects of proposed software buffer
sizes and policies to mitigate the effects of peak I/O band-
width. Applications analyzed had high I/O rates and used
massive data files. The resulting run-time profiles revealed
very interesting characteristics about scientific application
J/O. Three types of I/O requests were observed: compul-
sory (I/O accesses to read an initial state and to write
interim and final results), checkpointing, and data staging.
After the brief initial phase of compulsory I/O, the applica-
tions produced bursts of high-volume I/O activity at regu-
lar intervals which created a cyclical pattern and ended in a
burst of final phase compulsory 1/0. They also observed
that file accesses were sequential and that request sizes
remained constant during the cyclical phase of I/O. They
attributed this regularity to the iterative nature of the under-
lying algorithms.

Lim and Condry analyzed the I/O behavior of four
chemistry applications and the Perfect Club benchmark
suite to determine how these applications could better
exploit gigabit networks. The individual executions of each
chemistry application analyzed exhibited a high degree of
consistency with respect to the number of read/write
accesses, total bytes read or written, disk space usage, data
request sizes, and sequential access patterns. Looking at
these I/O activities over time, revealed one general pattern
of dynamic I/O behavior.

These studies are extremely valuable sources for instru-
mentation and analysis methodology. They also demon-
strate that characterizing application I/O is possible. Their
initial results indicate that for the classes of scientific appli-
cations considered, I/O activity has, in general, a cyclical
pattern, possibly augmented with distinct initial and final
phases. However, these studies have dealt with relatively

389

few applications chosen from very specific disciplines, and
extrapolating from these results to the I/O behavior prob-
lem in general might be questionable. In particular, these
studies do not address the question of how prevalent are the
selected applications in the system workload, and how
intense is their I/O activity in comparison with the remain-
der of the workload.

2.2 Our Working Hypothesis

The hypothesis we investigate here is that scientific
application /O is predictable. This hypothesis is based on
characteristic /O behaviors discovered in previous studies
(described above, but also in our own preliminary investi-
gations of the dynamic behavior of scientific applications),
and the following two key observations: (1) scientific
applications are highly structured, regular codes, and (2)
system configuration and policies influence how resources
are used.

Although sophisticated and complex, most scientific
applications are based on components that are implementa-
tions of welil-known algorithms. For example, sparse linear
system solvers, FFTs, rapid elliptic problem solvers, multi-
grid schemes, integral transforms, etc. Given the underly-
ing algorithms of the applications and some specifics of
their implementations (e.g., number and type of operations
performed, size of data set), an estimate of the required
CPU time and memory requirements can usually be
obtained.

However, even supercomputer resources are finite, and
therefore, the coded application must conform to the physi-
cal limitations of the system. The best example of this con-
formity deals with the use of in-core memory. On a real
memory machine like the Cray Y-MP, the entire application
and its data set must be resident in memory during execu-
tion. Since data sets often eclipse the maximum available
memory partition, the technique of data overlaying or data
staging is used {12]. At regular intervals in the computa-
tion or at each iteration of a looping construct, processing
is temporarily suspended while the entire in-core data set is
replaced with a new data set. As a result of this data swap-
ping, a cyclic pattern of same size I/O requests is generated
by the application. The same is also true when check-
pointing is performed [12]. Checkpointing involves writing
a portion of the in-core data set to disk to save the state of
the computation should the system fail. If failure does
occur, the application can then be restarted from the last
checkpoint, with minimal recomputation.

Based on the inherent structure of scientific applications
and the physical constraints of the system, it is likely that
the resource usage of scientific applications, especially I/O,
follows a regular and predictable pattern.

2.3 Our Approach
We focus on the characterization of a prominent set of

I/O intensive applications rather than overall system
behavior because our intent is to investigate current 1/O

demands as well as future ones, which are not limited to
what is observable in current systems. Specifically, we are
interested in understanding the issues involved around a
potential I/O bottleneck in future supercomputers and to
provide tools to prevent it. This scenario is associated with
supercomputers that are computationally much more pow-
erful than those of today and also with workloads that are
much more I/O intensive. The latter is driven by user
expectations about performance of the future machines.
Based on current application I/O characterizations one can
extrapolate future I/O application requirements, and then
through synthesis determine overall I/O workload intensi-
ties and patterns.

The first issue that needs to be resolved is how to deter-
mine which applications are most worthy of study. The
applications selected should span a variety of disciplines
and cover the major scientific codes used in these disci-
plines, as well as represent a frequently executed, /O
intensive component of the workload. In general, this
would require a survey of a large number of supercomputer
centers, where it would be necessary to analyze the compo-
sition of their workloads. Once the major scientific applica-
tions of each center are recognized, the results would have
to be combined. This is a major undertaking, and outside
the scope of our study. However, we conducted such a sur-
vey at SDSC, which already supports a diverse workload
of many scientific applications. We isolated a sct of fre-
quently executed, I/O intensive applications based on mea-
sured volumes and rates of 1/O activity. The methodology
developed for this study can be used to conduct similar
studies at other centers. :

The second question revolves around how to character-
ize an application’s I/O, in particular, what are the appro-
priate descriptors. In general, an answer to this question
depends on the purpose of the characterization, and charac-
terizations are expected to be objects of study themselves.
However, there is one basic dichotomy: static or dynamic
characterization. Dynamic characterizations (particularly if
they can be made independent of the system and the
remainder of the executing workload) are the most power-
ful, and thus, the most desirable ones. However, they are
also expensive to obtain and cumbersome to work with.
Therefore, only a limited number of applications can be
followed closely in order to provide dynamic profiles of
them. On the other hand, static analysis can be applied to a
much wider set of scientific applications and should there-
fore be the first and guiding step for the dynamic analysis.

3.0 The San Diego Supercomputer Center

The system and workload observed for this study was
that of the San Diego Supercomputer Center (SDSC) Cray
Y-MP8/864. SDSC is one of the five U.S. National Science
Foundation sponsored Supercomputer Centers. The SDSC
workload spans all major scientific disciplines, including
materials science, physics, biochemistry, atmospheric sci-
ence, chemistry, chemical engineering, astronomy,
mechanics, oceanography, and electrical engineering. The
user community consists of 2500 researchers from over

390

150 academic institutions. The amount of data manipulated
daily exceeds 1 TB. The broad base of this system's work-
load and the scientific significance of its applications,
makes it an important and appealing environment to study.

Of all the supercomputing resources at SDSC, the Cray
Y-MP supports the most diverse I/O workload and contains
a wide variety of hardware resources. The Y-MP has a 6 ns
clock, 8 CPUs, and 512 MB (or 64M 64-bit words) of
memory. For this installation, the Cray Y-MP has been
tuned to maximize utilization, with supercomputer idle
time only 1% of the available wall clock time. A job mix
scheduler attempts to dynamically select an optimal job
mix to execute within the real-memory architecture of the
Y-MP. Keeping approximately 12 to 15 jobs in memory
typically allows a context switch to be made whenever a
job is waiting for I/O completion. This tends to maximize
the amount of generated I/O in addition to maximizing
CPU utilization. The average file system I/O rate of the
workload is on the order of 20 MB/s.

To support the I/O requirements of a combined interac-
tive and production workload, the storage system for
SDSC's Cray Y-MP is a 5-level buffer and cache hierarchy.
Tablel details the levels in this hierarchy and their charac-
teristics [13].

Table 1: SDSC Storage Hierarchy

Max. Daily
Caching Size Transfer 1[0) Residency
Level (GB) Rate Volume Period
(MB/s) (GB)
SSD 1 1250 | 1500 | minutes
Local Disks 65 10 /disk 1700 days
Archival Disks 70 2 5 weeks
Tape Robot 1200 - 8 | months
Shelf Tape 2000 -- 3 years

The critical levels in this hierarchy are the SSD and the
local disks. Together these devices must meet the demands
of the two major sources of I/O in the system, namely job
swapping and application disk I/O. To service the interac-
tive component of the workload, 388 MB of the SSD is
allocated as a data cache. This SSD data cache provides
for high-speed access to the root file system as well as for
interactive swap space for jobs less than 8 MB. The
remainder of the SSD is allocated as a data buffer for the
temporary file system. Data from this 42 GB file system
effectively streams through the SSD with minimal reuse.
The local disks serve as a data cache for the temporary and
scratch file systems and for swap space for large jobs (i.e.,
greater than 8 MB).

Large, long running jobs, namely those that require
more than 20 minutes of CPU time, 6 MWords of memory,
and/or 60 MWords of local disk space, may not be run
interactively. Instead, these jobs must be submitted for exe-
cution through the NQS (Network Queueing System) Uni-
cos batch facility. Based on the required resources and run-

time priority level, users submit their jobs to one of the 27
batch queues.

4.0 1/0 Workload Characterization

We first conducted a workload characterization study to
isolate the I/O intensive component of the workload. This
component represents the set of scientific applications
which have extensive demands in terms of I/O volume, i.e.,
total number of bytes transferred, and average virtual I/O
rate, i.c., number of bytes transferred per CPU second. By
analyzing this component, we can then identify these appli-
cations by name and determine their combined resource
usage with respect to the entire system workload.

Using the virtual I/O rate, rather than real 1/O rates, pro-
vides us with some basic isolation from the details of the
system architecture and the workload executing simulta-
neously with our target application (and the resource con-
tention it generates). Of course, many other factors cannot
be completely controlled, such as idiosyncrasies of the
accounting software and the way it charges CPU time to
processes. However, the degree of approximation achieved
is adequate for the purpose of this stage of the research,
where we are more interested in general trends and behav-
ior rather than the details of application dynamics.

4.1 Data Collection

Measurements of application resource usage were
obtained from the Cray System Accounting (CSA) utility
and collected over a one-month period during February
1992. On a per job-basis, the CSA utility automatically
captures an application's resource usage through the use of
kernel probes and creates a process account record that
summarizes the total resource usage. The recorded
resource usage includes: application name, process, user,
and job identification numbers, start and end times, total
CPU time (including both system and user mode times),
total number of bytes transferred, number of logical I/O
requests, number of physical 1/O requests, the memory
high water mark, CPU connect times for multitasked jobs,
and I/O wait times.

Although the CSA data only provides aggregate
resource usage, it enabled us to analyze the workload at
two important levels, the functional level and the physical
resource level [3, 5, 7]. Serazzi [16] showed that reliable
workload characterizations can capture the functionality of
the real system workload while still preserving the underly-
ing physical resource usage. By spanning these two levels,
we can describe both the higher level applications and the
lower level resource usage simultaneously, so that the rela-
tionship between I/O intensive applications and the
resources they consume can be understood.

4.2 The Workload

The collected data was separated into two categories:
system utilities and user applications. System utilities rep-
resent programs that are available to all users whereas user

391

applications are limited to a single user or a small group of
users. Table 2 shows how each component contributes to
the overall workload resource usage. As can be noted from
the figures of Table 2, the user component of the workload
has a tremendous impact on total resource usage. Even
though it represents an extremely small portion of all exe-
cuted jobs (5%), it accounts for 92% of total CPU time and
88% of total bytes transferred. The results of this workload
characterization study are consistent with an earlier study
of the SDSC workload [15] where it was found that user
applications represented 7% of the workload and con-
sumed 90% of total CPU time and 75% of 1/O channel time

Table 2: February 1992 Resource Usage

Number of | Number of . Cumulative
Apps. Distinct Cumula.tlve Bytes
Executed Apps. CPU Time | Transferred
)] (MB)
System 5,651,460 445 1,566,303 5,477,771
Utilities (95%) (12%) (8%) (12%)
User 311,408 3,366| 16,822,314 41,552,252
Apps. (5%) (88%) (92%) (88%)
Total
Workload | 5,962,868 38111 18,388,617 47,030,023

4.3 1/0 Intensive Applications

To extract the set of I/O intensive applications from the
set of all user applications, we produced an average virtual
/O rate ordering of all distinctly named user applications
and calculated resource statistics with respect to the total
workload resource usage. Focusing more on I/O rates
rather than total I/O volume is dictated by our desire to
investigate applications that might stress the I/O system to
the point of affecting their response time or interfere with
other applications. Table 3 shows an abbreviated version of
this ordering.

Table 3: Average /O Rate Ordering

Top N % of | % ofTotal | % of Total | Min. I/O Rate
Distinct | Workload | Workload of Top N
Ranked .
Abps. User C?U Bytes Grouping
PP Apps. Time Transferred | (MB/cpu sec.)
1 0.03 0.001 0.10 230.56
10 0.30 0.300 14.59 107.86
20 0.60 0.600 24.54 80.13
30 0.90 0.600 24.60 71.71
50 1.50 0.660 26.27 49.87
80 2.40 0.690 26.85 3548
160 4.80 3.160 48.89 18.45
300 8.90 8.230 70.33 6.89
360 10.70 9.930 74.64 4.78
580 17.20 19.900 85.98 1.58

Given that the percentage of CPU time was increasing
at the same rate as the number of applications considered,
we investigated the average CPU time for these applica-
tions. The average CPU times for the top 580 I/O rate
ordered applications revealed that 472 of these applications
(i.e., 82%) had an average CPU time of approximately 106
seconds or less. These short jobs do not have a significant
impact when considering their contribution to total work-
load bytes transferred. Therefore, to focus attention on
those jobs which exert a longer, sustained demand on sys-
tem resources, we produced a new 1/O rate ordering which
included only those applications whose average CPU time
exceeded 100 seconds. The statistics of this new set are
given in Table 4.

Thus, using only 1.5% (i.e., 50) of the user applications,
we were able to identify a smaller, yet important set of I/O
intensive scientific applications, in terms of both volume
and rate, whose combined resource usage accounts for
71% of total system bytes transferred and only about 9.5%
of total system CPU time (see Appendix A). In addition,
this set of applications represents 80.7% of total bytes
transferred on behalf of user applications. The combined
effects of applications like these can exert peaks of I/O
load that might considerably stress the I/O subsystem.
Therefore, these are the applications that we have selected
as candidates for further study.

Table 4: Average I/0 Rate Ordering with Average
CPU Time > 100 secs.

Top N % of |% of Total | % of Total | Min. IJO Rate
Distinct | Workload | Workload of Top N
Ranked .
Apps. User CPU Bytes Grouping
Apps. Time Transferred | (MB/cpu sec.)
1| 003 0.13 6.73 131.70 |
10 0.30 1.29 33.63 29.78
20 0.60 3.35 49.26 18.07
30 0.90 490 57.63 11.08
50 1.50 9.42 71.08 4.70
80 2.40 12.86 7597 3.31

5.0 Regularity in I/O Intensive Applications

From the set of 50 I/O intensive applications, 24 were
selected for individual analysis (see Appendix A). Our
selection criterion was based on the frequency of execution
over the month-long observation period. This is important
for two reasons. First, in this initial phase of analysis, it is
necessary to uncover the 1/O intensive applications which
are continually present in the workload. Second, several
observations are required to make judgements about typi-
cal resource usage. For these reasons, we set the execution
frequency threshold to 10 executions over the one-month
period considered. Although 10 executions might at first
seem a low number, one must also consider that many of
these scientific applications use hours of Cray CPU time,
and therefore, their execution frequency is often limited by
the turnaround time of the NQS batch system. Note that

392

with respect to the entire workload, these 24 applications
consumed 6% of the total CPU time and were responsible
for 55% of the total number of bytes transferred.

5.1 Cluster Analysis

To find natural partitions or patterns within the resource
usage records for a given application, the multidimensional
analysis technique of K-means clustering was used [6, 7].
A notable feature of the clustering algorithm is that it uses
weighted Euclidean distance as a dissimilarity measure,
which allows the size of each cluster to vary in inverse pro-
portion to its variance. The resource usage parameters
used in the clustering were: CPU time, memory high water
mark, and number of logical I/O requests. An average logi-
cal I/O request rate was also calculated for each resulting
cluster. Although clustering algorithms are non-trivial
because they must recognize “ncarness” among the charac-
teristic parameters selected, Calzarossa and Ferrari [2]
found that the non-hierarchical K-means algorithm pro-
duces reliable results for workload characterization and
modeling.

Based on the clusters found for each application, three
general patterns of resource usage were observed and are
described below.

(1) Logical /O Rate and CPU Time: The logical /0
rate remained fairly stable across marked divisions in CPU
time for approximately 1/3 of the applications. For other
applications like trans.im, timteb.x, and xm901,
the logical 1/O rate decreased across increasing divisions in
CPU time. In some sense, this behavior can be expected. If
an application has intense phases of initial and/or final I/O
activity, the average logical 1/O rate will naturally decrease
for longer-running executions.

(2) CPU Time: Several applications showed a small
range or fairly constant CPU time across all cluster group-
ings. However, for more than half of the applications, clus-
ter groupings were separated by marked divisions in CPU
time. These applications had both short executions on the
order of seconds and long executions on the order of min-
utes.

(3) Memory High Water Mark: The memory high
water mark (or memory size), represents the maximum
number of main memory words allocated to a program dur-
ing execution. For virtually all of the applications, this
average memory size was consistent across all cluster
groups. Looking at the recorded values for all executions
of a given application, revealed the reasons for this consis-
tency. Maximum memory sizes for the applications fell
into one of three categories: (a) exactly one size, (b) one
small range of sizes, or (c) one distinct size (or possibly
two) and a small range of sizes. It is also interesting to note
that the applications were roughly equally divided among
these memory size categories.

Based on the average value for each parameter (e.g.,
CPU time, number of logical I/O requests, memory space),
the individual clusters showed the different resource usage
patterns relating to each application. We observed that

there were 1 or 2 clusters which described the majority of
the individual executions for a given application. Thus, to
better understand the relationship between the individual
clusters and application resource usage, we calculated the
percentage of total application resource usage attributed to
each of the individual application clusters. From the per-
centages obtained, we could determine which individual
clusters represent the application as a whole in terms of
total resource usage and define its “characteristic” resource
usage.

Considering the percentage of individual cluster
resource usage, as well as cluster size, it was possible to
characterize 15 of the applications by only 1 of its clusters
and 6 of the applications by only 2. For the 15 applications
with 1 “characteristic” cluster, approximately 95% of CPU
time and 97% of logical I/O requests were attributed to the
1 cluster containing 67% of total executions on the aver-
age. For the 6 applications with 2 “characteristic” clusters,
approximately 95% of CPU time and 95% of logical /O
requests were attributed to the 2 clusters which jointly con-
tained 84% of total executions on the average. The remain-
ing 3 applications (cpmd.x, timteb.x , dir.cpx),
however, were each characterized by 3 of their clusters.
For these applications, large sized clusters made a small
contribution to total resource usage while small sized clus-
ters made a significant contribution. The “characteristic”
clusters for each application are described further in
Appendix B,

5.2 Regression Analysis

Given that several applications showed consistent logi-
cal I/O rates across individual cluster groupings, we
decided to investigate statistical correlations between the
measured values of CPU time, characters transferred, and
logical I/O request count. Clustering algorithms, such as
the one we used in the previous section, can detect natural
groupings in data based on a specific parameter set, but do
not describe statistical relationships between the variables
in the selected parameter set. Therefore, we used regres-
sion analysis to explore such potential relationships.

As an example of the analysis performed to detect
underlying resource usage relationships, we present the
data and statistics for application griz.exe. This appli-
cation has all the characteristics of an application with
highly regular resource usage: a consistent logical 1/O rate,
exactly one memory high water mark, and a range of CPU
times. Considering the measured values from the process
account records and the calculated logical I/O request rate
given in Table 5, it is not difficult to see this regularity.
Although data on the number of bytes transferred per logi-
cal I/O request was not available, one can expect a high
degree of correlation between the logical 1/O count and the
number of characters transferred in any application. For
griz.exe these two measures are near perfectly corre-
lated.

393

Table 5: CSA Resource Statistics for griz.exe

QPU Bytes Logical v%; %:r Logical

Time Transferred vo Memory VOs per

(sec.) Count CPU sec.
(words)

[~ 207.60 | 4071823104 | 25413 | 393068 122.38
177.53 | 4971823104 25415 | 595968 143.16
183.73 | 4885053440 25003 | 595968 136.09
177.50 | 4885053440 25003 | 595968 140.86
174.79 | 4885053440 25003 | 595968 143.05
191.64 | 4884267008 24965 | 595968 130.27
178.99 | 4884267008 24965 | 595968 13948
177.36 | 4884267008 24965 | 595968 140.76
100.70 | 2694578176 13790 | 595968 136.91

94.74 | 2694578176 13790 | 595968 145.56
93.80 | 2694578176 13790 | 595968 147.02
93.69 | 2694578176 13790 | 595968 147.19

Next we investigated the relationships between CPU
time and both logical 1/O count and the total number of
bytes transferred. Linear regression analysis showed the
major influence CPU time has on the total number of bytes
transferred as well as on the number of logical 1/O
requests. Table 6 provides the actual values from the analy-
sis.

The important result of this analysis is the high value of
the coefficient of determination (which describes the good-
ness of fit of the model), for both models. This strong cor-
relation between CPU time and these I/O measures is
compatible with the hypothesis that griz . exe contains a
regular, repetitive I/O processing phase, like those
observed in [10, 12].

Table 6: Regression Analysis for griz.exe

Dependent Independent | Coefficient of 1-stat
Variable Variable Determination)
Bytes Transferred | CPU Time 964 16.255
Logical 1/Os CPU Time 963 16.189

Regression results for all selected applications are pro-
vided in Appendix C. Table C.1 shows results for the stan-
dard linear model:

NumBytesTransferred = a X CPUTime + C

We have grouped the 24 applications into three catego-
ries based on the regression results. The first group with 8
applications has all regression coefficients positive and rel-
atively high coefficients of determination. This group fits
well the hypothesis of regular behavior during the main
phase, with I/O volume highly correlated with CPU time,

and additional initial and final I/O phases (with positive I/O
amounts, independent of the CPU time).

The second group contains only two applications. The
coefficients of determination, are very low, suggesting that
this model does not fit these applications.

The last group contains 14 applications. Even though
R? is high (0.866 and above), suggesting a good fit for a
linear model, with positive correlation between CPU time
and number of bytes transferred, the values of the constant
of the regression obtained are negative, which does not fit
our hypothesis of I/O during an initial or final phase. The ¢
statistic for the constant is low for 10 of the 14 applications
in this group, however, it is typically not advisable to drop
the constant of the regression under any circumstances. For
some of these applications we can reconcile the negative
values of the constant by assuming that the execution
incorporates a significant initial or final computational
component. The ¢ statistic for the coefficient of the CPU
time is always very high, except for the 2 applications of
the second group.

In response to the results for this last group and in order
to investigate non-linearities in the variables, we attempted
to fit the following model,

NumBytesTransferred = e X CPUTime"

which is linear after a logarithmic transformation of the
data. Table C.2 in Appendix C shows the results for this
model. All applications fit well the above model, except
three. The lowest coefficient of determination is obtained
for stone . exe which also had an unacceptable low value
in the case of the first model. (Inspecting the data for this ap-
plication reveals that there is essentially one run profile for
this application, with small, seemingly random, variations
in CPU time and number of characters transferred.) The
power of CPU time estimated from the regression is roughly
between one and two (or close to these values), which is in-
teresting in itself. The estimated constant, ¢, has values be-
tween 8 and 20.

6.0 Conclusions

We studied the production workload of SDSC’s Cray Y-
MP to identify I/O intensive scientific applications and to
examine the regularity in their resource usage. Our work-
load characterization analysis isolated a set of 50 distinctly
named, 1/O intensive scientific applications whose aggre-
gate resource usage represented 71% of total system bytes
transferred and 9.5% of total system CPU time during a
one-month period. Cluster and regression analysis was per-
formed on the most frequently executed applications in this
I/O intensive set to determine characterisitc patterns and
statistical relationships of individual application resource
usage.

Cluster analysis revealed three general patterns in
application resource usage: (1) fairly stable logical 1/O
rates across marked divisions in CPU time, (2) both “short”
(i.e., on the order of seconds) and “long” (i.e., on the order
of minutes) CPU execution times, and (3) consistent in-

394

core memory usage. Considering the percentage of
resource usage attributed to the individual clusters of an
application, as well as cluster size, it was possible to use
only one or two individual clusters to describe the charac-
teristic resource usage of the entire application. Regression
analysis revealed that I/O demands, both in terms of the
number of characters transferred and the number of logical
requests, show considerable correlation with CPU time
consumed. These results support our hypothesis that scien-
tific applications have a high degree of regularity in their
functional operation and resource usage.

Speculating on the underlying causes for the observed
general patterns of resource usage and the individual appli-
cation characteristics, we offer the following explanations.
The consistency in memory size may be attributed to fixed
sized data sets obtained from external data collection
devices or to carefully partitioned data sets designed to
take advantage of the Y-MP's fixed partition memory
scheme. The "short" and "long" divisions in CPU time may
be attributed to the size of the data set used or to the degree
of resolution required in the computation (i.e., number of
repetitions over a single-sized data set). The stability in
logical 1/O rates across different execution times may rep-
resent the dominating effects of a highly regular main pro-
cessing phase within the application. Through dynamic
profiling, Miller and Katz [12] observed a class of scien-
tific applications whose main processing phase consisted of
a period of CPU processing followed by a burst of intense
I/O activity, which repeated at regular intervals. If one
were to assume negligible I/O during the initial and final
phases and that the number of 1/O requests are constant
within each iteration, an application in this class would
have a consistent, logical I/O rate across different execu-
tion times.

In the end, a regular behavior can only be confirmed
through dynamic analysis on a per application basis. To
obtain such evidence, it will be necessary to monitor and
measure the run-time resource behavior of these applica-
tions. We intend to proceed in that direction and the present
analysis will guide us in selecting the applications to con-
sider and also to generalize the results obtained by dynamic
analysis fo classes of applications determined by this study.
A first step in this direction is our work described in [14].

7.0 References

[1] Bell, G., “The Future of High Performance Computers in
Science and Engineering,” Communications of the ACM,
Vol. 32, No. 9, pp. 1091-1101, September 1988.

Calzarossa, M., and Ferrari, D., “A Sensitivity Study of the
Clustering Approach to Workload Modeling,” Performance
Evaluation, Vol. 6, pp. 25-33, North-Holland, 1986.
Calzarossa, M., and Serazzi, G., “Workload Characterization
for Supercomputers,” Performance Evaluation of Supercom-
puters, Ed. J. L. Martin, pp. 283-315, North-Holland, 1988.
Denning, P. J., and Adams III, G. B., “Research Questions
for Performance Analysis of Supercomputers,” Performance
Evaluation of Supercomputers, Ed. J. L. Martin, pp. 403-
419, North-Holland, 1988.

(2]

131

[4]

{5] Ferrari, D., “Workload Characterization and Selection in
Computer Performance Measurement,” Computer, pp. 18-
24, July/August 1972,

[6] Hartigan, J. A., Clustering Algorithms, J. Wiley, New York,
1975.

[7} Heidelberger, P., and Lavenberg, S. S., “Computer Perfor-
mance Evaluation Methodology,” IEEE Transactions on
Computers, Vol. 33, No. 12, pp. 1195-1220, December
1984,

[8] Hennessy, J. L., and Patterson, D. A., “Computer Architec-
ture: A Quantitative Approach,” Morgan Kaufmann Publish-
ers, Inc., 1990.

[9] Katz, R. H,, Gibson, G. A., and Patterson, D. A, “Disk Sys-
tem Architectures for High Performance Computing,” Pro-
ceedings of the IEEE, Vol. 77, No. 12, pp. 1842-1858,
December 1989.

[10] Lim, S. B., and Condry, M. W., “Supercomputing Applica-
tion Access Characteristics,” Technical Report No.
UIUCDCS-R-91-1708, University of Illinois at Urbana-
Champaign, October 1991.

[11] Martin, J. L., “Supercomputer Performance Evaluation: The
Comparative Analysis of High-Speed Architectures Against
Their Applications,” Performance Evaluation of Supercom-
puters, Ed. J. L. Martin, pp. 3-19, North-Holland, 1988.

[12] Miller, E. L. and Katz, R. H., “Input/Output Behavior of
Supercomputing Applications,” Proceedings of Supercom-
puting ‘91, November 1991.

[13] Moore, R., “File Servers, Supercomputers, and Network-
ing,” Proceedings of the NSSDC Conference on Mass Stor-
age Systems and Technologies for Space and Earth Science
Applications, 1991.

[14] Pasquale, B. K. and Polyzos, G. C., “I/O Profiles of a Scien-
tific Application on a Workstation and a Supercomputer,”
Technical Report No. CS893-299, University of California,
San Diego, July 1993.

[15] Pasquale, J. C,, Bittel, B. K., and Kraiman, D. J., “A Static
and Dynamic Workload Characterization Study of the San
Diego Supercomputer Center CRAY X-MP,” Proceedings of
the 1991 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pp.218-219, May 1991.

[16] Serazzi, G., “A Functional and Resource-Oriented Procedure
for Workload Modeling,” Performance '81, pp. 345-361,
North-Holland, 1981.

[17] Stonebraker, M., and Dozier, J., “Overview of the Sequoia
2000 Project,” Proceedings of COMPCON ‘92, San Fran-
cisco, California, February 1992.

[18] Williams, E., “The Effects of Operating Systems on Super-
computer Performance,” Performance Evaluation of Super-
computers, Ed. J. L. Martin, pp. 69-81, North-Holland,
1988.

[19] Lazowska, E. D., and Sevcik, K. C., co-chairs, “Report of
the Workshop on Scientific Computing Performance Analy-
sis,” Division of Advanced Scientdfic Computing, NSF,
Boulder, Colorado, August 29-31, 1989.

[20] Committee on Supercomputer Performance and Develop-
ment, “An Agenda for Improved Evaluation of Supercom-

puter Performance,” National Research Council,
‘Washington, D.C., 1986.

395

Appendix A: I/0 Intensive Applications

Application Average

and Average Bytes Average

Frequency CPU Time Transferred I/O Rate

(s) (MB) (MB/s)

trans.im* 30 801.03 105499.66 13170 |

resm* 13 1527.89 192742.85 126.15
xxpd3 4 2482.97 267818.69 107.86
timteb.x* 60 209.50 20253.62 96.68
fdsol* 18 2344.26 187864.14 80.14
crayfeat* 13 298.41 21298.91 71.38
feat 7 993.00 70061.79 70.56
ocean* 11 8445.38 268202.03 31.76
Analyze* 19 412.04 12697.85 30.82
xm901* 21 832.55 24796.34 29.78
momlw.x* 29 955.85 27333.12 28.60
gnz.exe* 12 154.35 4071.45 26.38
d2usS.ms 4 241.75 5715.25 23.64
d2us4.ms 5 294.59 6873.90 23.33
eigen.ss* 20 433,76 8934 10 20.60
xmain 228 724.78 13372.94 18.45
xm824* 32 180.17 3302.58 18.33
d2us4a.m 2 381.26 6759.17 17.73
stress* 140 187.13 3086.23 16.49
tub* 20 3410.72 53334.32 15.64
cgem* 25 10393.35 158769.12 15.28
forsinc3 1 220.48 332723 15.09
invt.x 1 417.31 5882.37 14.10
cxi.x* 11 365.44 4950.74 13.55
cfsconc* 41 2922.90 38710.59 13.24
1913.exe 6 9932.95 119368.62 12.02
rot 8 124.15 1377.96 11.10
ddam 4 1056.82 11708.24 11.08
cas2.exe* 116 1246.07 12582.48 10.10
scf.exe* 34 253.16 2248.77 8.88
stone.cxe* 13 102.06 864.65 847
dnsavgd.* 13 435.71 3324.99 7.63
cpmd.x* 114 488.62 3542.09 7.25
dir.cpx* 141 662.04 4501.17 6.80
em3dl.x 7 604.58 4087.08 6.76
m927¢ 2 8647.42 57968.64 6.70
NAST67* 343 228.58 1530.38 6.70
df008.x 5 765.11 5110.48 6.68
1508.exe 8 2049.28 13522.98 6.60
cadpacdl 6 5594.70 36427.14 6.51
dfo010.x 5 1191.74 7149.72 6.00
df8000.x 5 1004.62 5796.56 5.77
1311.exe 6 2077.38 11947.11 5.75
1202.exe 21 947.97 4875.57 5.14
df0014 x 5 1430.50 7184.69 5.02
rotm2 4 163.20 766.49 4.70
1705.exe 2 2999.41 13986.94 4.66

* Applications selected for individual analysis.

Appendix B: Cluster Analysis Resuits

Characteristic Application Clusters
Cluster CPU Time Logical I/O Requests
% of Total A % of App. Average % of App. Logical /O Iv;::(?:y
C . . . verage Cumulative Cumulative Rate Avg.
Application Size Executions ® CPU ()] Log. 1/Os @) Avg.
(MWords)

tub 18 90.0 3788.75 99.9 30967122 99.9 81.73 1.103
cas2.exe 102 879 1416.95 99.9 413907.76 99.9 292.11 0.658
cfsconc 15 5.0 7989.04 9.9 12727206.40 99.9 1593.08 0.258
eigen.ss 15 750 578.31 99.9 18011.00 9.9 3114 6.532
ocean 8 72.7 11420.39 98.3 14182056.00 99.9 1241.82 0.451
resm 11 84.6 1802.84 99.8 2133282.91 99.7 1183.29 0413
momlw.x 19 65.5 1436.79 984 599779.37 99.3 417.44 2910
scf.exe 18 52.9 417.83 87.3 123979.44 98.7 296.72 0.329
Analyze 9 473 745.71 85.7 932004.44 98.7 1249.82 0.935
cxix 7 63.6 562.92 98.0 39547.57 97.4 70.25 0.776
trans.im 13 433 1847.13 9.9 38175.00 96.8 20.67 5.883
stress ,65 46.4 381.36 94.6 40587.63 96.3 106.43 5.520
xm824 21 65.6 225.15 820 61893.62 96.2 274.90 2424
fdsol 1 61.1 3356.04 874 1248264.73 90.8 371.95 8.074
xm901 17 80.9 947.41 92.1 358000.47 90.4 377.87 2439
griz.exe 8 66.7 183.65 79.3 25091.75 784 136.63 0.595
333 95.73 20.7 13790.00 21.6 144.05 0.595

(100) (100) (100)
crayfeat 6 46.1 504.97 78.1 1152473.33 79.5 228225 3263
5 38.4 169.85 21.8 354803.20 204 2088.92 3.243

(84.5) 99.9) 99.9)
cgem 16 64.0 11381.39 70.0 863017.50 21.6 75.83 2.844
3 120 24873.73 28.7 16575317.33 78.0 666.38 2.110

(76.0) 98.7) 99.6)
dnsavgd 2 153 2692.36 95.0 7035.00 72.3 261 19.867
9 69.2 30.95 4.9 568.00 26.2 18.35 19.872

(84.5) 99.9) 98.5)
NAST67 145 422 481.46 89.0 33771.75 87.2 70.14 3812
143 41.6 55.61 10.1 4232.97 10.7 76.12 3.809

(83.8) 99.1) 97.9)
stone.exe 2 153 95.18 14.3 35090.00 154 368.65 0.284
8 61.5 97.46 58.7 34837.75 61.4 35745 0.284

(76.8) (73.0) (76.8)
cpmd.x 1 0.8 39315.13 70.5 9866752.00 43.7 250.97 3.809
80 70.1 46.12 6.6 77188.57 27.3 1673.66 0.633
16 140 793.51 227 405925.56 28.8 511.56 5.004

(84.9) 99.8) 99.8)
timteb.x 3 50 1161.60 219 183205.67 22.3 157.72 5.804
22 36.6 355.58 622 62502.05 55.9 175.78 6.797
24 40.0 52.36 9.9 22080.29 21.5 421.70 5.797

(81.6) 99.8) 99.7
dir.cpx 11 78 5246.17 61.8 17395.36 21.7 332 7.403
41 333 673.88 339 824287 36.2 12.23 6.631
60 42.0 62.89 4.0 1589.13 13.8 25.27 6.945

(83.1) 99.7) 97.7)

396

Appendix C: Regression Analysis Results

Table C.1: Regression Analysis

NumBytesTransferred = a X CPUTime + ¢

Application and ||~ 1) tstat || a(MBjs) | tstat R
Frequency
dnsavgd 13 33.7-23 0.991 7.736 240.152 1.000
resm 13 5749.900 0.591 125.414 24571 0.982
trans.im 30 1126.410 0.181 133.459 27.527 0.964
griz.exe 12 435.691 1.829 24.189 16.255 0.964
eigen.ss 20 154.740 0234 20.734 16.535 0.938
stress 140 179.472 1.543 15.929 41915 0.927
cpmd.x 113 1769.420 3.080 3.833 24.935 0.849
exix 11 1353.400 1.554 10.169 5.678 0.782
xm824 32 2337.520 4557 5.796 2.835 0.211
stone.exe 13 876.524 132.063 0.086 1.345 0.141
cgem 25 -24058.000 -1.279 17.957 12.919 0.879
timteb.x 60 -12064.500 -2.682 156.586 23.197 0.903
fdsol 18 -17945.600 -1.246 89.716 20.051 0.962
crayfeat 13 -564.258 -0.405 74.978 22711 0.979
ocean 11 -10027.800 -1.348 33.706 57.382 0.997
Analyze 19 -1824.620 -0.755 35.985 11.951 0.894
xm901 21 -1669.81 -0.887 32.504 15.238 0.924
momiw.x 29 1785.100 -1.914 31.149 41.911 0.985
tub 20 -1186.130 -0.189 16.360 10.770 0.866
cfsconc 21 -1672.110 -0.300 13.840 21.371 0.962
cas2.exe 116 -684.313 -5.049 10.889 142.464 0.994
scf.exe 34 -110.348 -0.748 9.532 22317 0.940
dir.cpx 141 -1249.090 4726 8.848 55.377 0.957
NAST67 343 -87.988 -1.739 7.240 52.579 0.890
Table C.2: Regression Analysis -- Logarithmic Transformation
NumBytesTransferred = ¢“ X CPUTime"
Application and c t stat a t stat R?
Frequency

resm 13 -19.202 133.020 0.931 44.018 0.994
eigen.ss 20 9.641 25.604 2.143 30.876 0.981
griz.exe 12 17572 83.477 0.908 21.616 0979
cas2.exe 116 12.740 88.369 1.480 66.961 0.975
momlw.x 29 9.402 22.184 2112 30.376 0972
cgem 25 12.457 26.299 1.434 25.935 0.967
trans.im 30 12.315 35575 1.860 26.530 0.962
crayfeat 13 11.285 13.615 2.205 13.478 0.943
tub 20 8.346 8.889 2022 16.538 0.938
cfsconc 20 11.402 15.640 1.577 16.229 0.936
scf.exe 4 12.930 28.831 1.542 17.591 0.906
fdsol 18 10.147 9.460 1.941 12.357 0.905
ocean 11 9.936 5.751 1.767 8.408 0.887
cxix 11 12.670 12.019 1.650 8.162 0.881
dir.cpx 141 12.257 48.485 1.538 31419 0.877
timteb.x 60 11.860 27.195 2074 19.563 0.868
xm901 21 17.556 30.746 0.950 11.071 0.866
cpmd.x 113 12.933 44.882 1.832 24.818 0.847
xm824 32 17.371 51.965 0.880 12.437 0.838
Analyze 19 14.014 18.855 1.464 9.223 0.833
stress 140 12.399 42.245 1.782 26.165 0.832
NAST67 343 14.963 59.944 1.151 21.416 0.574
dnsavgd 13 12.158 6.189 1.759 3.786 0.566
stone.exe 13 20.553 544.015 0.011 1.297 0.133

397

