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Abstract

Past research on high performance computers for scien-

tific applications has concentrated on CPU speed and

exploitation of parallelism, but has, until very recently,

neglected 1/0 considerations. This paper presents a study

of the production workload at the San Diego Supercom-

puter Centerfrom an 110 requirements and characteristics

perspective. Results of our analyses support our hypothesis

that a significant proportion of 110 intensive, long running,

frequently executed scientific applications have predictable

110 requirements.

1.0 Introduction

Past efforts in the development of high performance

computer systems have been primarily focused on the com-

putational speeds of processors, often ignoring other
important system components, such as the 1/0 subsystem
and the operating system [3, 8, 18, 20]. Resulting progress
in the areas of raw processor speed and parallelism, both in
hardware and software, has produced GFLOPS machines,
but has done little to close the ever widening gap between
CPU performance and that of the attached 1/0 subsystem

[1, 8, 9].

Until uxently, little concern has been expressed over the

growing system imbalance between CPU and I/O perfor-

mance. Now however, scientific research based on compu-
tational approaches has intensified and the number of 1/0
intensive scientific applications is increasing. For example,
applications involving simulation based modeling require

and produce massive amounts of data ranging from hun-
dreds of megabytes up to tens of gigabytes per execution.
Relying on these large-scale computations and data analy-
sis techniques, progress in many scientific disciplines is
limited only by the available capacity of high performance
computing [4]. The sheer volume of this data and the need
to access, store, distribute and visualize this data intensifies
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I/O demands within the local system and communication
requirements across networks [17].

Continuing to increase CPU speeds and to further

exploit parallelism without improving the 1/0 system will

create more 1/0 bound jobs which can become a bottleneck

to system performance [1, 8, 9, 11, 12, 19]. In a recent

study of the San Diego Supereomputer Center (SDSC), an

increase in CPU idle time was directly attributed to 1/0

blocking [131. In order to maintain well-balanced systems,

we must establish a thorough understanding of the 1/0

behavior of scientific applications, and from this knowl-

edge, design the mechanisms and implement the policies

that are needed to improve the 1/0 subsystem and provide

these I/O intensive applications with their needed resources

without degrading overall system performance.

The research presented in this paper describes an I/O

workload characterization study of the Cray Y-MP8/864 at

SDSC intended to identify 1/0 intensive applications and

to quantify their resource demands. Our goal here is to
present some of the observations of that study and to inves-
tigate the hypothesis that a high proportion of 1/0 intensive
applications exhibit regular behavior. The I/O metrics con-
sidered in this study include the number of total bytes
transferred by an application, the virtual 1/0 rate, i.e., the
number of bytes transferred per CPU second, and the num-
Iw and average virtual rate of logical 1/0 requests. We are
interested in identifying a set of I/O intensive applications
and in summarizing their 1/0 resoume usage in a way that
describes the relationship between the applications, their
resource usage, and their contribution to the entire system
workload.

The remainder of this paper is organized as follows. In

section 2 we discuss the motivation for investigating 1/0

behavior, and particularly, the roles of static and dynamic

characterizations. We also discuss two recent scientific

application f/O studies, and present our hypothesis. In sec-

tion 3 we provide a description of the observed environ-

ment at the SDSC. In sections 4 and 5 we progressively

present our selection of interesting subsets of the workload

and we describe the analyses performed and results
obtained. Our conclusions are presented in section 6.
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2.0 Motivation

Little attention has been given to the study and analysis
of I/O behavior on high performance systems. As a result,
our understanding of the effects of current application 1/0
and projected increases in application 1/0 is not well estab-
lished. Scientific applications form an interesting set of
programs worthy of study because they absolutely need
high performance supemomputers and, therefore, systems
should be designed to meet their requirements. Before we
can do the latter, we must understand these requirements.
We believe that it is necessary to undertake a thorough

study of production workloads in order to extract the char-
acteristic behavior of I/O intensive applications.

2.1 Related Research

The analysis of application I/O has been seriously
addressed in two recent studies by Miller and Katz [12] and
Lim and Condry [10]. By recording detailed information

about each 1/0 request (e.g., type of 1/0, request size, num-
ber of bytes transferred, tile accessed, and file position),
they were able to construct run-time profiles depicting an
application’s 1/0 behavior over time.

Miller and Katz characterized and modeled the behavior
of seven computational ff uid dynamics and climate appli-
cations to study the effects of proposed software buffer
sizes and policies to mitigate the effects of peak I/O band-
width. Applications analyzed had high I/O rates and used
massive data files. The resulting run-time profiles revealed
very interesting characteristics about scientific application

I/O. T&e types of 1/0 requests were observed compul-
sory (1/0 accesses to read an initial state and to write
interim and final results), checkpointing, and data staging.

After the brief initial phase of compulsory 1/0, the applica-
tions produced bursts of high-volume 1/0 activity at regu-
lar intervals which created a cyclical pattern and ended in a
burst of final phase compulsory 1/0. They also observed
that file accesses were sequential and that request sizes
remained constant during the cyclical phase of 1/0. They
attributed this regularity to the iterative nature of the under-
lying algorithms.

Lim and Condry analyzed the 1/0 behavior of four
chemistry applications and the Perfect Club benchmark
suite to determine how these applications could better
exploit gigabit networks. The individual executions of each
chemistry application analyzed exhibited a high degree of
consistency with respect to the number of read/write
accesses, total bytes read or written, disk space usage, data
request sizes, and sequential access patterns. Looking at
these 1/0 activities over time, revealed one general pattern
of dynamic 1/0 behavior.

These studies me extremely valuable sources for instru-

mentation and analysis methodology. They also demon-

strate that characterizing application 1/0 is possible. Their
initial results indicate that for the classes of scientific appli-

cations considered, I/O activity has, in general, a cyclical
pattern, possibly augmented with distinct initial and final
phases. However, these studies have dealt with relatively

few applications chosen from very specific disciplines, and

extrapolating from these results to the I/O behavior prob-
lem in general might be questionable. In particular, these
studies do not address the question of how prevalent are the
selected applications in the system workload, and how
intense is their 1/0 activity in comparison with the remain-
der of the workload.

2.2 Our Working Hypothesis

The hypothesis we investigate here is that scientific
application I/O is predictable. This hypothesis is based on
characteristic 1/0 behaviors discovered in ptevious studies
(described above, but also in our own preliminary investi-
gations of the dynamic behavior of scientific applications),
and the following two key observations: (1) scientific
applications are highly structured, regular codes, and (2)
system configuration and policies influence how resources
are used.

Although sophisticated and complex, most scientific
applications are based on components that are implementa-
tions of well-known algorithms. For example, sparse linear
system solvers, FFfk, rapid elliptic problem solvers, multi-
grid schemes, integral transforms, etc. Given the underly-
ing algorithms of the applications and some specifics of

their implementations (e.g., number and type of operations
performed, size of data set), an estimate of the required
CPU time and memory requirements can usually be
obtained.

However, even supercomputer resources are finite, and
therefore, the coded application must conform to the physi-
cal limitations of the system. The best example of this con-
formity deals with the use of in-core memory. On a real
memory machine like the Cray Y-h@, the entire application
and its data set must be resident in memory during execu-
tion. Since data sets often eclipse the maximum available
memory partition, the technique of data overlaying or data
staging is used [12]. At regular intervals in the computa-
tion or at each iteration of a looping construct, processing
is temporarily suspended while the entire in-core data set is
replaced with a new data set. As a result of this data swap-
ping, acyclic pattern of same size 1/0 requests is generated
by the application. The same is also true when check-

pointing is performed [12]. Checkpointing involves writing
a portion of the in-core data set to disk to save the state of
the computation should the system fail. If failure does
occur, the application can then be restarted from the last
checkpoint, with minimal recomputation.

Based on the inherent structure of scientific applications

and the physical constraints of the system, it is likely that
the resource usage of scientific applications, especially I/0,
follows a regulm and p~dictable pattern.

2.3 Our Approach

We focus on the characterization of a prominent set of

VO intensive applications rather than overall system
behavior because our intent is to investigate current I/O
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demands as well as future ones, which are not limited to
what is observable in current systems. Specifically, we are
interested in understanding the issues involved around a

potential I/O bottleneck in future supercomputers and to
provide tools to prevent it. This scenario is associated with
supercomputers that are computationrilly much more Pw-
erful than those of today and also with workloads that are
much more I/O intensive. The latter is driven by user
expectations about performance of the future machines.
Based on current application 1/0 characterizations one can
extrapolate future 1/0 application requirements, and then
through synthesis determine overall I/O workload intensi-
ties and patterns.

The first issue that needs to be resolved is how to deter-
mine which applications are most worthy of study. The
applications selected should span a variety of disciplines

and cover the major scientific codes used in these disci-
plines, as well as represent a frequently executed, I/O
intensive component of the workload. In geneml, this
would require a survey of a large number of supercomputer
centers, where it would be necessary to analyze the compo-
sition of their workloads. Once the major scientific applica-
tions of each center are recognized, the results would have
to be combined. This is a major undertaking, and outside
the scope of our study. However, we conducted such a sur-
vey at SDSC, which already supports a diverse workload
of many scientific applications. We isolated a set of fre-
quently executed, I/O intensive applications based on mea-
stued volumes and rates of l/O activity. The methodology
developed for this study can be used to conduct similar
studies at other centers,

The second question revolves around how to character-
ize an application’s 1/0, in particular, what are the appro-
priate descriptors. In general, an answer to this question
depends on the purpose of the characterization, and charac-
terizations are expected to be objects of study themselves.
However, there is one basic dichotomy: static or dynamic
characterization. Dynamic characterizations (particularly if
they can be made independent of the system and the
remainder of the executing workload) are the most power-
ful, and thus, the most desirable ones. However, they are
also expensive to obtain and cumbersome to work with.
Therefore, only a limited number of applications can be
followed closely in order to provide dynamic profiles of
them. On the other hand, static analysis can be applied to a
much wider set of scientific applications and should there-
fore be the first and guiding step for the dynamic analysis.

3.0 The San Diego Supercomputer Center

The system and workload observed for this study was
that of the San Diego Supercomputer Center (SDSC) Cray
Y-MP8/864. SDSC is one of the five U.S. Nationat Science
Foundation sponsored Supercomputer Centers. The SDSC
workload spans all major scienti6c disciplines, including
materials science, physics, biochemistry, atmospheric sci-

ence, chemistry, chemical engineering, astronomy,
mechanics, oceanography, and electrical engineering. The

user community consists of 2500 researchers from over

150 academic institutions. The amount of data manipulated
daily exceeds 1 TB. The broad base of this system’s work-
load and the scientific significance of its applications,
makes it an important and appealing environment to study.

Of all the supercomputing resources at SDSC, the Cray
Y-MP supports the most diverse I/O workload and contains
a wide variety of hardware resources. The Y-MP has a 6 ns
clock, 8 CPUS, and 512 MB (or 64M 64-bit words) of
memory. For this installation, the Cray Y-MP has been

tuned to maximize utilization, with supercomputer idle
time only 1YO of the available wall clock time. A job mix
scheduler attempts to dynamically select an optimal job
mix to execute within the real-memory architecture of the
Y-MP. Keeping approximately 12 to 15 jobs in memory
typically allows a context switch to be made whenever a
job is waiting for 1/0 completion. This tends to maximize

the amount of generated 1/0 in addition to maximizing

CPU utilization. The average file system 1/0 rate of the
workload is on the order of 20 MB/s.

To support the 1/0 requirements of a combined interac-
tive and production workload, the storage system for
SDSC’S Cray Y-MP is a 5-level buffer and cache hierarchy.
Tablel details the levels in this hierarchy and their charac-
teristics [13].

Table 1: SDSC Storage Hierarchy

Caching Size

Level (GB) 44=
Max. Daily

Transfer I/O Residency

Rate Volume Period

(MBIs) (GB)

1250 1500 minutes

10 /disk 1700 davs

21 51 weeks

.- 1 81 months

The critical levels in this hierarchy are the SSD and the
local disks. Together these devices must meet the demands
of the two major sources of 1/0 in the system, namely job
swapping and application disk 1/0. To service the interac-
tive component of the workload, 388 MB of the SSD is
allocated as a data cache. This SSD data cache provides
for high-speed access to the root tile system as well as for
interactive swap space for jobs less than 8 MB. The

remainder of the SSD is allocated as a data buffer for the

temporary file system. Data from this 42 GB file system
effectively streams through the SSD with minimal reuse.
The local disks serve as a data cache for the temporaty and
scratch file systems and for swap space for large jobs (i.e.,
greater than 8 MB).

Large, long running jobs, namely those that require
more than 20 minutes of CPU time, 6 MWords of memory,
and/or 60 MWords of local disk space, may not be run
interactive y, Instead, these jobs must be submitted for exe-
cution through the NQS (Network Queueing System) Uni-
cos batch facility. Based on the required resources and run-
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time priority level, users submit their jobs to one of the 27
batch queues.

4.0 I/O Workload Characterization

We first conducted a workload characterization study to
isolate the I/O intensive component of the workload, This
component represents the set of scientific applications
which have extensive demartds in terms of I/O volume, i.e.,
total number of bytes transferred, and average virtual 1/0

rate, i.e., number of bytes transferred per CPU second. By

analyzing this component, we can then identify these appli-

cations by name and determine their combined resource

usage with respect to the entire system workload.

Using the virtual 1/0 rate, rather than real 1/0 rates, pro-
vides us with some basic isolation from the details of the
system architecture and the workload executing simulta-
neously with our target application (and the nxource con-
tention it generates). Of course, many other factors cannot
be completely controlled, such as idiosyncrasies of the
accounting software and the way it charges CPU time to
processes. However, the degree of approximation achieved
is adequate for the purpose of this stage of the research,
where we are more interested in general trends and behav-
ior rather than the details of application dynamics.

4.1 Data Collection

Measurements of application resource usage were
obtained from the Cray System Accounting (CSA) utility
and collected over a one-month period during February
1992. On a per job-basis, the CSA utility automatically

captures an application’s resource usage through the use of
kernel probes and creates a process account record that
summarizes the total resource usage. The recorded
resource usage includex application name, process, user,
and job identification numbers, start and end times, total
CPU time (including both system and user mode times),
total number of bytes transferred, number of logical I/O
requests, number of physical 1/0 requests, the memory
high water mark, CPU connect times for multitasked jobs,

and 1/0 wait times,

Although the CSA data only provides aggregate
resource usage, it enabled us to analyze the workload at

two important levels, the functional level and the physical
resource level [3, 5, 7]. Serazzi [16] showed that reliable
workload characterizations can capture the functionality of
the real system workload while still preserving the underly-
ing physical resource usage. By spanning these two levels,

we can deseribe both the higher level applications and the
lower level resource usage simultaneously, so that the rela-

tionship between 1/0 intensive applications and the
mources they consume can be understcmd.

4.2 The Workload

The collected data was separated into two categories:
system utilities and user applications. System utilities rep-
resent programs that are available to ail users whereas user

applications are limited to a single user or a small group of
users. Table 2 shows how each component contributes to
the overall workload resource usage. As can be noted from
the figures of Table 2, the user component of the workload
has a tremendous impact on total resource usage. Even
though it represents an extremely small portion of all exe-
cuted jobs (590), it accounts for 92% of total CPU time and

88% of total bytes transferred. The results of this workload
characterization study are consistent with an earlier study
of the SDSC workload [15] where it was found that user
applications represented 7~0 of the workload and con-

sumed 90V0 of total CPU time and 75% of 1/0 channel time

Table 2: February 1992 Resource Usage

System

Utilities

User

ADDS.

Totrd

Workload

Number of Number of ~mulative
Cumulative

Apps. Distinct
Bytes

Executed Apps.
CPU Time Transferred

(s) (MB)

5,962,868 3,811 18,388,617 47,030,02

4.3 I/O Intensive Applications

To extract the set of 1/0 intensive applications from the

set of all user applications, we produced an average virtual

I/O rate ordering of all distinctly named user applications
and calculated resource statistics with respect to the total
workload resource usage. Focusing more on 1/0 rates
rather than total 1/0 volume is dictated by our desire to
investigate applications that might stress the 1/0 system to
the uoint of affectirw their resuonse time or interfere with
oth& applications. T;ble 3 shows an abbreviated version of
this ordering,

Table 3: Average l/O Rate Ordering

Top N

tanked

Apps.

10

20

30

50

80

160

300

360

580

-
Distinct

User

Apps.

-

0.30

0.60

0.90

1.50

2.40

4.80

8.90

10.70

17.20

%of Total

Workload

CPU

Time

0.001

0.300

0.600

0.600

0.660

0.690

3.160

8.230

9.930

19.900

% of Totat

Workload

Bytes

transferred

-

14.59

24.54

24.60

26.27

26.85

48.89

70.33

74.64

85.98

Min. I/O Rate

of Top N

Grouping

(MB/epu WC.)

-

107.86

80.13

71.71

49.87

35.48

18.45

6.89

4.78

1.58
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Given that the percentage of CPU time was increasing
at the same rate as the number of applications considered,.
we investigated the average CPU time for these applica-
tions. The average CPU times for the top 580 1/0 rate
orde~d applications mealed that 472 of these applications
(i.e., 82%) had an average CPU time of approximately 106
seconds or less. These short jobs do not have a significant
impact when considering their contribution to total work-
load bytes transferred. Therefore, to focus attention on

those jobs which exert a longer, sustained demand on sys-
tem resoumes, we produced anew I/O rate ordering which
included only those applications whose average CPU time
exceeded 100 seconds. The statistics of this new set are
given in Table 4.

Thus, using only 1.5% (i.e., 50) of the user applications,
we were able to identify a smaller, yet important set of 1/0
intensive scientific applications, in terms of both volume
and rate, whose combined resource usage accounts for
71% of totat system bytes transferred and only about 9.5%
of total system CPU time (see Appendix A). In addition,
this set of applications represents 80.7% of total bytes
transferred on behalf of user applications. The combined
effects of applications like these can exert peaks of 1/0
load that might considerably stress the 1/0 subsystem.
Therefore, these are the applications that we have selected
as candidates for further study.

Table 4: Average 1/0 Rate Ordering with Average
CPU Time >100 sees.

Top N

Ranked

Apps.

10

20

30

50

80 i

% of % of Total

Distinct Workload

User CPU

Apps. Time

0.03 0.13

0.30 1.29

0.60 3.35

0.90 4.90

1.50 9.42

2.40 12.86

% of Total Min. I/O Rate

Workload of Top N

Bytes Grouping

Transferred (MB/cpu WC.)

6.73 131.70

33.63 29.78

49.26 18.07

57.63 11.08

71.08 4.70

75.97 3.31

5.0 Regularity in I/O Intensive Applications .

From the set of 50 1/0 intensive applications, 24 were

selected for individual analysis (see Appendix A). Our
selection criterion was based on the frequency of execution
over the month-long observation period. This is important
for two reasons. First, in this initial phase of analysis, it is
necessary to uncover the 1/0 intensive applications which
are continually present in the workload. Second, several
observations are required to make judgments about typi-
cat resource usage. For these reasons, we set the execution
frequency threshold to 10 executions over the one-month
period considered. Although 10 executions might at first
seem a low number, one must also consider that many of
these scientific applications use hours of Cray CPU time,
and therefore, their execution frequency is often limited by
the turnaround time of the NQS batch system. Note that

with respect to the entire workload, these 24 applications
consumed 690 of the total CPU time and were responsible

for 55% of the total number of bytes transferred.

5.1 Cluster Analysis

To find natural partitions or patterns within the resource

usage records for a given application, the multidimensional
analysis technique of K-means clustering was used [6, 7].
A notable feature of the clustering algorithm is that it uses
weighted Euclidean distance as a dissimilarity measure,
which allows the size of each cluster to vary in inverse pro-
portion to its variance. The resource usage parameters

used in the clustering were: CPU time, memory high water
mark, and number of logical I/O requests. An average logi-

cal 1/0 request rate was also calculated for each resulting
cluster. Although clustering algorithms are non-trivial
because they must recognize “nearness” among the charac-
teristic parameters selected, Calzarossa and Ferrari [2]
found that the non-hierarchical K-means algorithm pro-
duces reliable results for workload characterization and
modeling.

Based on the clusters found for each application, three
general patterns of resource usage were observed and are
described below.

(1) Logical I/O Rate and CPU Time: The logical I/O
rate remained fairly stable across marked divisions in CPU
time for approximately 1/3 of the applications. For other
applications like trans. i.m, t imt eb. x, and xm9 01,

the logicat 1/0 rate demwsed across increasing divisions in

CPU time. In some sense, this behavior can be expected. If

an application has intense phases of initial and/or final I/O

activity, the average logical 1/0 rate will naturally decrease
for longer-running executions.

(2) CPU Time: Several applications showed a small

range or fairly constant CPU time across all cluster group-
ings. However, for more than half of the applications, clus-
ter groupings were separated by marked divisions in CPU
time. These applications had both short executions on the
order of seconds and long executions on the order of min-
utes.

(3) Memory High Water Mark: The memory high
water mark (or memory size), represents the maximum
number of main memory words allocated to a program dur-
ing execution, For virtually all of the applications, this
average memory size was consistent across all cluster
groups. Looking at the recorded values for all executions

of a given application, revealed the reasons for this consis-
tency. Maximum memory sizes for the applications fell
into one of three categories: (a) exactly one size, (b) one
small range of sizes, or (c) one distinct size (or possibly
two) and a small range of sizes. It is also interesting to note
that the applications were roughly equally divided among
these memory size categories.

Based on the average value for each parameter (e.g.,

CPU time, number of logical 1/0 requests, memory space),
the individual clusters showed the different resource usage
patterns relating to each application. We observed that
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there were 1 or 2 clusters which described the majority of
the individual executions for a given application. Thus, to
better understand the relationship between the individual
clusters and application resource usage, we calculated the
percentage of total application resource usage attributed to
each of the individual application clusters. From the per-
centages obtained, we could determine which individual
clusters represent the application as a whole in terms of
total resource usage and define its “characteristic” resource
usage.

Considering the percentage of individual cluster

resource usage, as well as cluster size, it was possible to
characterize 15 of the applications by only 1 of its clusters
and 6 of the applications by only 2. For the 15 applications
with 1 “characteristic” cluster, approximately 95% of CPU
time and 97% of logical I/O requests were attributed to the
1 cluster containing 67% of total executions on the aver-
age. For the 6 applications with 2 “characteristic” clusters,
approximately 95% of CPU time and 95% of logical I/O
requests were attributed to the 2 clusters which jointly con-
tained 84!Z0of totat executions on the average. The remain-
ing 3 applications (cpmd. x, t imt eb. x , dir. cpx ),

however, were each characterized by 3 of their clusters.

For these applications, large sized clusters made a small

contribution to total resource usage while small sized clus-

ters made a significant contribution. The “characteristic”
clusters for each application are described further in
Appendix B.

5.2 Regression Analysis

Given that several applications showed consistent logi-
cat I/O rates across individual cluster groupings, we
decided to investigate statistical correlations between the
measured values of CPU time, characters transferred, and
logicrd 1/0 request count. Clustering algorithms, such as

the one we used in the previous section, can detect natural
groupings in data based on a specific parameter set, but do
not describe statistical relationships between the variables
in the selected parameter set. Therefore, we used regres-
sion analysis to explore such potential relationships.

As an example of the analysis performed to detect
underlying resource usage relationships, we present the
data and statistics for application gr i z. exe. This appli-
cation has all the characteristics of an application with
highly regular resource usage: a consistent logical 1/0 rate,
exactty one memory high water mark, and a range of CPU
times. Considering the measured values from the process
account records and the calculated logical I/O request rate
given in Table 5, it is not difficult to see this regularity.

Although data on the. number of bytes transfemd per logi-
cal 1/0 request was not available. one can expect a high
degree of correlation between the logical 1/0 count and the
number of characters transferred in any application. For

gr i z. exe these two measures are near perfectly corre-
lated.

Table 5: CSA Resource Statistics for griz. exe

CPU Logical
High

Bytes Water
Logical

Time
Transferred

I/o
Memory

IJOS per

.@.)
count (words)

CPU sec.

Zlmar
177.53

183.73

177.50

174.79

191.64

178.99

177.36

100.70

94.74

93.80

93.69

4971823104

497182310$

4885053440

4885053440

4885053440

4884267008

4884267008

4884267008

2694578176

2694578176

2694578176

2694578176

25415 595968 122.38

25415 595968 143.16

25003 595968 136.09

25003 595968 140.86

25003 595968 143.05

24965 595968 130.27

24965 595968 139.48

24965 595968 140.76

13790 595968 136.91

13790 595968 145.56

13790 595968 147.02

13790 595968 147.19

Next we investigated the relationships between CPU
time and both logical 1/0 count and the total number of
bytes transferred. Linear regression analysis showed the
major influence CPU time has on the total number of bytes
transferred as well as on the number of logical I/O
requests. Table 6 provides the actual values tkom the analy-
sis.

The important result of this analysis is the high value of
the coefficient of determination (which describes the good-
ness of fit of the model), for both models. This strong cor-
relation between CPU time and these I/O measures is
compatible with the hypothesis that gr i z. exe contains a
regular, repetitive I/O processing phase, like those

observed in [10, 12].

Table 6: Regression Analysis for griz. exe

I Dependent Independent Coefficient of

Variable Variable Determination
t-stat

I

Bytes Transferred CPU Time .964 16.255

Logical 1/0s CPU Time .963 16.189

Regression results for all selected applications are pro-
vided in Appendix C. Table C. 1 shows results for the stan-
dard linear modek

NumBytesTransfe rred = a X CPUTime -t-C

We have grouped the 24 applications into three catego-
ries based on the regression results. The first group with 8
applications has all regression coefficients positive and rel-
atively high coefficients of determination. This group tits

well the hypothesis of regular behavior during the main

phase, with 1/0 volume highly correlated with CPU time,
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and additional initial and final 1/0 phases (with positive 1/0
amounts, independent of the CPU time).

The second group contains only two applications. The
coefficients of determination, are very low, suggesting that
this model does not fit these applications.

The last group contains 14 applications. Even though
R2 is high (0.866 and above), suggesting a good tit for a
linear model, with positive correlation between CPU time
and number of bytes transferred, the values of the constant
of the regression obtained are negative, which does not fit
our hypothesis of I/O during an initial or final phase. The ?
statistic for the constant is low for 10 of the 14 applications
in this group, however, it is typically not advisable to drop
the constant of the regression under any circumstances. For
some of these applications we can reconcile the negative
values of the constant by assuming that the execution
incorporates a significant initial or final computational
component. The t statistic for the coefficient of the CPU
time is always very high, except for the 2 applications of
the second group.

In response to the results for this last group and in order
to investigate non-linearities in the variables, we attempted
to fit the following model,

NumBytesTransfe rred = ec X CPUTimea

which is linear after a logarithmic transformation of the
data. Table C.2 in Appendix C shows the results for this
model. All applications fit well the above model, except
three. The lowest coefficient of determination is obtained
for stone. exe which also had an unacceptable low value
in the case of the first model. (Inspecting the data for this ap-
plication reveals that there is essentially one run profile for
this application, with small, seemingly random, variations
in CPU time and number of characters transferred.) The
power of CPU time estimated from the regression is roughly
between one and two (or close to these values), which is in-
teresting in itself. The estimated constant, c, has values be-
tween 8 and 20.

6.0 Conclusions

We studied the production workload of SDSC”S Cray Y-
MP to identify 1/0 intensive scientific applications and to
examine the regularity in their resource usage. Our work-
load characterization analysis isolated a set of 50 distinctly
named, 1/0 intensive scientific applications whose aggre-
gate resource usage represented 71% of total system bytes
transferred and 9.5% of total system CPU time during a
one-month period. Cluster and regression analysis was per-
formed on the most frequently executed applications in this

VO intensive set to determine characterisitc patterns and
statistical relationships of individual application resource
usage.

Cluster analysis revealed three general patterns in
application resource usage: (1) fairly stable logical J/O
rates across marked divisions in CPU time, (2) both “short”
(i.e., on the order of seconds) and “long” (i.e., on the order
of minutes) CPU execution times, and (3) consistent in-

core memory usage, Considering the percentage of
resource usage attributed to the individual clusters of an
application, as well as cluster size, it was possible to use
only one or two individual clusters to describe the charac-
teristic resource usage of the entire application. Regression
analysis revealed that 1/0 demands, both in terms of the
number of characters transferred and the number of logical
requests, show considerable correlation with CPU time
consumed. These results support our hypothesis that scien-
tific applications have a high degree of regularity in their
functional operation and resource usage.

Speculating on the underlying causes for the observed
general patterns of resource usage and the individual appli-
cation characteristics, we offer the following explanations.
The consistency in memory size maybe attributed to fixed
sized data sets obtained from external data collection
devices or to carefully partitioned data sets designed to
take advantage of the Y-MP’s fixed partition memory
scheme. The “short” and “long” divisions in CPU time may
be attributed to the size of the data set used or to the degree
of resolution required in the computation (i.e., number of
repetitions over a single-sized data set). The stability in
logical 1/0 rates across different execution times may rep-
resent the dominating effects of a highly regular main pro-
cessing phase within the application. Through dynamic
profiling, Miller and Katz [12] observed a class of scien-
tific applications whose main processing phase consisted of
a period of CPU processing followed by a burst of intense

VO activity, which repeated at regular intervals. If one
were to assume negligible 1/0 during the initial and final
phases and that the number of 1/0 requests are constant
within each iteration, an application in this class would
have a consistent, logical 1/0 rate across different execu-
tion times.

In the end, a regular behavior can only be confirmed
through dynamic analysis on a per application basis. To
obtain such evidence, it will be necessary to monitor and
measure the run-time resource behavior of these applica-
tions. We intend to proceed in that direction and the present
analysis will guide us in selecting the applications to con-
sider and also to generalize the results obtained by dynamic
analysis to classes of applications determined by this study.
A first step in this direction is our work described in [14].
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Appendix A: 1/0 Intensive Applications

Application
Aversge

Aversge Bytes Aversge
and

Frequency
CPU T]me Transfemed I/Cl Rate

(s) w) (MB/s)

trans.im* 30 SO1.03 105499.66 131.70

resin* 13 1527.S9 192742.S5 126.15

xxpd3 4 24S2.97 267S1S.69 107.S6

timteb.x* 60 209.50 20253.62 96.68

fdsol* 18 2344.26 187864.14 80.14

cmyfeat* 13 298.41 21298.91 71.38

feat 7 993.W3 70061.79 70.56

ecean * 11 8445.38 268202.03 31.76

Analyze* 19 412.M 12697.S5 30.s2

xn@ol* 21 832.55 24796,34 29.78

mOmrw.x* 29 955.s5 27333.12 2S.60

gnz.exe* 12 154.35 4071.45 26.3s

d2us5,ms 4 241.75 5715.25 23.64

d2us4.ms 5 294.59 6873.90 23.33
eigen.ss * 20 433.76 S934 10 20.60

smain 228 724.7S 13372.94 1s.45

xm824* 32 180.17 3302.58 18.33

d2us4a.m 2 381.26 6759.17 17.73

6tress* 140 187.13 30S6.23 16.49

tub* 20 3410.72 53334.32 15,64

cgcm* 25 10393.35 158769.12 15.28

f0Binc3 1 220.4S 3327.23 15.09

invt.x 1 417.31 5882.37 14.10

cxi.x* 11 365.44 4950.74 13.55

cfsconc* 41 2922.90 3s710.59 13.24

1913.exe 6 9932.95 11936S.62 12.02

lot 8 124.15 1377.96 11.10

ddam 4 1056.S2 11708.24 11.08

cas2.exe* 116 1246.07 125S2.4S 10.10

scf,exe* 34 253.16 224S.77 S.88

stOne.exe* 13 102.06 864.65 8.47

dnsavg4.* 13 435.71 3324.99 7.63

cpmd.x” 114 488.62 3542.09 7.25

dir.cpx* 141 662.04 4501.17 6.80

em3dr.x 7 604.58 4087.0S 6.76

m927c 2 8647.42 57%8.64 6.70

NAST67* 343 22S.5S 1530.38 6.70

dfOO08.x 5 765.11 5110.48 6.68

150S.exe s 2049.28 13522.9S 6.60

Gwlpac’11 6 5594.70 36427.14 6.51

dfoo 1O.x 5 1191.74 7149.72 6.00

dt-gooo.x 5 1004.62 5796.56 5.77

1311exe 6 2077.3s 11947.11 5.75

1202.exe 21 947.97 4875.57 5.14

diYKl14x 5 1430.50 7184.69 5.02

mtm2 4 163.20 766.49 4.70

1705.exe 2 2999.41 13986.94 4.66

* Applications selected for individual anslysis.
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Appendix B: Cluster Analysis Results

II Chamcteristic Application Clusters

II Cluster II CPU Time

Application Size

tub 18

cas2.exe 102

cfsconc 15

eigen.ss 15

ocean 8

resin 11

mornlw.x 19

scf.exe 18

Anslyze 9

cxi.x 7

tmns.im 13

strezz ,65

zrn824 21

fdsol 11

xnr9+31 17

griz.exe 8

Crayfeat

cgcm

dIrsavg4

NAST67

stone.exe

cpmd.x 1

80

16

timteb.x 3

22

24

dlr.cpx 11

47

60

4

6

5

16

3

2

9

145

143

2

8

% of Totzl
Executions

~
87.9

75.0

75.0

72.7

84.6

65.5

52.9

47.3

63.6

43.3

46.4

65.6

61.1

80.9

66.7

33.3

(100)

46.1

38..’1

(84.5)

64.0

12.0

(76.0)

15.3

69.2

(84.5)

42.2

41.6

(83.8)

15.3

61.5

(76.8)

0.8

70.1

14.0

(84.9)

5.0

.%.6

40.0

(81.6)

7.8

33.3
42.0

(83.1)

Average

(s)

-

1416.95

7989.04

578.31

11420.39

1802.84

1436.79

417.83

745.71

562.92

1847.13

381.36

225.15

3356.04

947.41

183.65

95.73

504.97

169.85

11381.39

24873.73

2692.36

30.95

481.46

55.61

95.18

97.46

39315.13

46.12

793.51

1161.60

355.58

52.36

5246.17

673.88
62.89

%of App.
Cumulative

CPU

-
99.9

99.9
99.9
98.3

99.8

98.4
87.3

85.7

98.0
99.9
94.6
82.0
87.4

92.1
79.3
20.7

(100)
78.1
21.8

(99.9)
70.0

28.7

(98.7)

95.0
4.9

(99.9)
89.0
10.1

(99.1)
14.3
58.7

(73.0)
70.5
6.6

22.7

(99.8)
2T,7
62.2

9.9
(99.8)

61.8

33.9
4.0

(99.7)

Imgical 1/0 Requestz II II

Averzge
(#)

-

413907.76

12727206.40

18011.00

14182056.00

2133282.91

599779.37

123979.44

932004.44

39547.57

38175.00

40587.63

61893.62

1248264.73

358000.47

25091.75

13790.GQ

1152473.33

354803.20

863017.50

16575317.33

7035.00

568.00

33771.75

4232.97

35090.00

34837.75

9866752.00

77188.57

405925.56

183205.67

6250205

22080.29

17395.36

8242.87

1589.13

%of App.

Cumulative

Img. 1/0s

99.9

99.9

99.9

99.9

99.9

99.7

99.3

98.7

98.7

97.4

%.8

%.3

%.2

90.8

90.4

78.4

21.6

(100)

79.5

20.4

(99.9)

21.6

78.0

(99.6)

72.3

26.2

(98.5)

87.2

10.7

(97.9)

15.4

61.4

(76.8)

43.7

27.3

28.8

(99.8)

22.3

55.9

21.5

(99.7)

27.7 3.32

56.2 12.23
13.8 25.27

(97.7) II

Logical 1/0
Rate Avg.

(#/s)

-

292.11

1593.08

31.14

1241.82

1183.29

417.44

296.72

1249.82

70.25

2Q.67

106.43

274.9i3

371.95

377.87

136.63

144.05

2282.25

2088.92

75.83

666.38

2.61

18.35

70.14

76.12

368.65

357.45

250.97

1673.66

511.56

157.72

175.78

421.70

Memory

Space
Avg.

(MwOrdz)

-

0.658

0.258

6.532

0.451

0.413

2.910

0.329

0.935

0.776

5.883

5.520

2.424

8.074

2.439

0.595

0.595

3.263

3.243

2.844

2.110

19.867

19.872

3.812

3.809

0.284

0.284

3.809

0.633

5.004

5.804

6.797

5.797

7.403

6.631
6.945
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Appendix C: Regression Analysis Results

Table C. 1: Regression Analysis

NumBytesTra

Application and

Frequency

dnsavg4

resin

tmns.im

griz.exe

eigen.ss

stress

cpmd.x

cxi.x

xm824

stone.cxc

cgcm

timteb.x

fdsol

cmyfeat

ocean

Analyze

xm901

momlw.x

tub

cfsconc

cas2.exe

scf.exe

dir.cpx

NAST67

13

30

12

2Q

140

113

11

32

13—.
2s

6(I

18

13

11

19

21

29

20

21

116

34

141

343

c (MB)

33.723

5749.900

1126.410

435.691

154.740

179.472

1769.420

1353.4(X3

2337.520

876.S24

-24058.000

-12064.500

-17945.600

-564.258

-10027.800

-1824.620

-1669.81

1785.100

-1186.130

-1672.110

-684.313

-110.348

-1249.090

-87.988

ferred = a X CPUTime -1-C

t stat

0.991

0.591

0.181

1.829

0.234

1.543

3.080

1.554

4.557

132.063

-1.279

-2.682

-1.246

-0.405

-1.348

-0.755

-0.887

-1.914

-0.189

-0.300

-5.049

-0.74s

4.726

-1.739

a (MB/s)

125.414

133.459

24.189

20.734

15.929

3.s33

10.169

5.796

0.086

17.957

156.5S6

89.716

74.978

33.706

35.985

32.504

31.149

16.360

13.840

10.889

9.532

8.S4S

7.240

t stat

-
2A.571

27.527

16.255

16.535

41.915

24.935

5.678

2.S35

1.345

12.919

23.197

20.051

22.711

57.382

11.951

15.238

41.911

10.770

21.371

142.464

22.317

55.377

52.579

~2

-

0.9S2

0.964

0.964

0.938

0.927

0.849

0.782

0.211

0.141

0.879

0.903

0.962

0.979

0.997

0,894

0.924

0.985

0.866

0.962

0.994

0.940

0.957

0.s90

Table C.2: Regression Analysis -- Logarithmic Transformation

NumBytesTransfe rred = ec X CPU Time”

Application and

Frequency

mm

eigen.ss

griz.exe

cas2.exe

momlw.x

cgcm

tnms.im

cmyfeat

tub

cfsconc

scf.exe

fdsol

ocean

cxi.x

dir.cpx

timteb.x

Y.m901

cpmd.x

xrn824

Analyze

stress

NAST67
dnsavg4

stone.exe

-
m
12

116

29

2s

30

13

20

20

34

18

11

11

141

60

21

113

32

19

140

343
13

13

c

19.202

9.641

17.572

12.740

9.402

12.457

12.315

11.285

S.346

11.402

12,930

10.147

9.936

12.670

12.257

11.S60

17.556

12.933

17.371

14.014

12.399

14.963
12.158

20.553

t stat

133.020

2S.604

S3.477

88.369

22.184

26.299

35.575

13.615

S.SS9

15.640

28,831

9.460

5.751

12.019

4s.4s5

27.195

3Q.746

44.882

51.965

18,855

42.245

59.944
6.1S9

544.015

a

0.931

2.143

0.90s

1.480

2.112

1.434

1.860

2.205

2.022

1.577

1.542

1.941

1.767

1.650

L53a

2.074

0.950

1.832

0.8S0

1.464

1.782

1.151
1.759

0.011

t stat

44.018

30.876

21.616

66.961

3J).376

25.935

26.53(I

13.478

16.538

16.229

17.591

12.357

S.40S

8.l&L

31.419

19.563

11.071

24.818

12.437

9.223

26.165

21.416
3.786

1.297

~2

0.994

0.981

0.979

0.975

0.972

0.967

0.962

0.943

0.93s

0.936

0.906

0.905

0.ss7

0.881

0.877

0.S6S

0.866

0.847

0.838

0.833

0.832

0.574
0.566

0.133
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