Automatic Targeting of Embedded Systems Software with Application Specific Operating Systems
Generation

Abstract

We propose a method of automatic generation of application spe-
cific operating systems (OS's) and automatic targeting of applica-
tion software. OS generation starts from a very small but yet flex-
ible OS kernel. OS services, which are specific to the application
and deduced from dependency between services, are added to the
kernel to construct the whole OS. Communication and synchro-
nization functions in the application code are adapted to the gen-
erated OS. As a preliminary experiment, we applied the proposed
method to a system example called token ring system.

1 Introduction

SW parts of embedded systems are taking more and more system
resources in terms of numbers and sizes of processors, memory
usage [1] or power consumption [2]. To implement complex SW on
the target processor, operating systems (OS's) are usually adopted
to serialize SW execution and to interface SW application to the
target architecture’.

Figure 1 exemplifies OS-based SW implementation of concur-
rent multiple tasks on a processor. Figure 1 (a) shows two concur-
rent tasks that communicate with other tasks via high abstraction
level channels like FIFO and shared memory. In the OS-based SW
implementation, the OS schedules the execution of tasks and exe-
cutes communication between tasks via system calls. Figure 1 (b)
shows a case of OS-based SW implementation of the tasks. In the
figure, two tasks A and B communicates with other tasks via sys-
tem calls (in this case, IN_.FIFO_16, IN_.SHM_16, OUT _FIFO_16,
and OUT_SHM_16).

One of crucia problemsin such OS-based SW implementation
is that automatic implementation of OS-based SW is hard. Porting
or configuring OS on the target architecture (the target processor
and memory architecture) and targeting SW application code on the
OS are mostly done by manual work. That is, the designer portsthe
OS (sets OS configurations) on higher specific target architecture
and modifiesthe application SW code to meet the ported/configured
OS. Such a design practice is time consuming and error prone.
Moreover, change of target architecture can require significant re-
porting/re-configuration of OS and, possibly, re-targeting of SW
application code. Thus, in such a design practice, finding the opti-
mal target architecture and OS configuration, i.e. design space ex-
ploration (DSE) of OS and OS-related target architecture, seems
to be hard within the even tighter time-to-market.

To enable DSE of OS implementation, methods for automatic
generation of application specific OS's are required. In this paper,
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Figure 1: An example of OS-based SW implementation of multiple
tasks.

we present a method that gives automatic generation of application
specific OS's and automatic targeting of the application code to the
generated OS.

This paper is organized as follows. We give areview of related
work in Section 2. We propose a method of automatic generation
of application specific OS and automatic targeting of application
SW codes in Section 3. In Section 4, we present a case study of
applying the proposed method. In Section 5, we give conclusion.

2 Related Work

In this section, we review previous studies on (1) implementing
concurrent multiple tasks on a single processor and (2) application
specific OS generation.

There are three approaches in SW implementation from multi-
task descriptions. The first two approaches use OS as a scheduler
and an interface of multiple tasks to the target architecture.

1. The designer ports existing OS's on the target architecture,
targets multiple tasks to the OS's, and runs them on the OS's.
Figure 2 shows the OS porting and SW targeting flow in this
approach.

2. To improve the performance of OS (e.g. system call execu-
tion times) and/or to reduce the overhead of OS (eg. OS
code size), the designer can configure existing OS's [3][4].
For instance, the designer can determine the usage of mes-
sage queue in the OS depending on whether the application
SW uses it or not. The granularity of such a configuration
depends on the OS venders.

3. To prevent the usage of OS, a sequential code can be gen-
erated from the concurrent multi-task representation [5]. In
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Figure 2: SW implementation with the ported OS.

Table 1: Comparisons of different approaches of multi-task SW
implementation.

| Approaches | speed | size | flexibility | efforts |
OS Porting * ok * * *
OS Configuration %k x| kx *% %
Sequential code gen. * * * x (x) * % %

this approach, there is a trade off between the reduction of
OS overhead and the increase of sequential code overhead in
terms of code size, system runtime, etc.

Recently, there are afew approaches that mixe sequential code
generation (i.e. maximizing sequentia code parts in the applica-
tion) and (then) OS usage [6][7]. To enable OS-based system de-
sign at a higher abstraction level, a high level model of OS called
SoCOS is presented in [8]. In [9], given is an analysis of con-
text switching overhead of three context switching methods (pico-
kernel, code merging and table-based sequencing) in non-preemptive
task scheduling.

Table 1 compares three approaches in terms of OS execution
time (speed), memory requirement (size), scalability and portabil-
ity (flexibility), and designer’s efforts (efforts). In the table, three
(two and one) stars represents an excellent (average and poor) note.
In the case of OS configuration, we put two starsin size, flexibility
and efforts since there are several configurable OS'’s, but their qual-
ity (degree of configuration) differsfrom oneto another. In the case
of sequential code generation, the reasons of poor note in speed are
(1) synchronization can be done only by polling® and (2) a lot of
conditional jumps in the sequential code do not fit well with the
pipelines and caches of the state-of-the-art processors. Note that
in the above-mentioned approaches of OS-based SW implementa-
tion, targeting the application SW on the ported/configured OS till
requires alot of hand coding.

In our method proposed in this paper, the OSis generated, from
avery small and flexible OS kernel, including only the application
specific functions. Compared with the OS configuration approach,

2|n physical implementation, interrupt can be used to propagate the synchroniza-
tion event. However, detection of such an event is done by polling the event.
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Figure 3: A flow of automatic generation of application specific OS
and automatic SW targeting.

the proposed method can give more efficient adaptation of OStothe
application SW since determining application specific functions is
done automatically and we start avery small and flexible OSkernel.

In terms of adapting the OS to the specific application, the pro-
posed method is related with (1) the work in [10][7] and (2) a
method called OS specialization [11]. In [10], the authors present
astrategy of automatic targeting of communication in OS's (based
on a parameterized communication library and a simple scalable
target architecture) with aready targeted OS's. In [11], an auto-
matic synthesis method of task scheduler is presented. Compared
with the work in [10][7], the proposed method automates both (1)
the generation of the whole OS (i.e. scheduler and inter-task com-
munication implementation) specific to the application and target
architecture (in a systematic construction of OS with application-
specific and derived OS services) and (2) the targeting of high-level
inter-task communication of the application to the generated OS.
The difference between the proposed method and the OS special-
ization method isthat we focus on generating the OS with the min-
imum and sufficient services required in the application while the
OS specialization methods exploits quasi-static behavior of OSin
the specific application.

3 Automatic Synthesis and Targeting of Application Spe-
cific OS’s and Application SW Codes

3.1 Design Flow for SW Implementation

Figure 3 shows our design flow of automatic OS generation and
SW targeting. The input to the OS generation and SW targeting
flow is the system description (hierarchically structural represen-
tation of communication between modules, module behavior, and
memory alocation information). As shown in the figure, Archi-
tecture Analyzer takes the structural information and the memory
allocation information. Code Selector receives a list of services
specific to the application and finds the full list of (original and de-
duced) services. Code Expander generates the source code of OS.
Task Code Adapter performs SW targeting and M akefile Generator
gives makefiles. Thus, the outputs of the design flow are the source
code of generated OS, targeted application code, and a makefile
for each processor). To obtain the binary code to be downloaded
onto the target processor memory, the designer runs compilation
of both generated OS and targeted application using the generated
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Figure 5: An example of task behavior.

makefile.

3.2 System Description Input

Asthe system description input, the flow takes (1) a structural rep-
resentation of communication in a hierarchical network of mod-
ules, (2) behavior codes. and (3) amemory allocation table. Figure
4 shows an example of hierarchical network of modules.

In the structural representation, modulesare connected viacom-
munication channels. Inthe hierarchical representation, each mod-
ule can be aleaf module or amodule that has a network of modules
insideof it. We call aleaf module atask. A modules consists of be-
havior and port(s) i.e., in the representation, behavior and commu-
nication are separated. The behavior part uses the ports (viacalling
port functions) to communicate with other modules. In the view-
point of behavior, ports give high-level communication functions
encapsulating communication details (i.e. communication proto-
col). Figure 5 (&) shows an example of communication via portsin
atask. In the figure, the behavior part just calls a high-level com-
munication function (i.e. a port function), read_port(portA) for
communication via port portA.

Ports access the channels to perform communication. Each
channel and port hasits own attributes (e.g. fifo channel or interrupt-
driven port). The OS provides implementations of communication
(channel and port). In the case of inter-processor communication,
the channel can be implemented by a specific HW implementation
(e.g. hardware fifo, shared memory, etc).

SW targeting should refine calls to port functions. Figure 5 (b)
exemplifies a case of SW targeting of the task description in Figure
5 (@). In the figure, port function read_port(portA) is replaced by a
system call, read_FIFO_16(fifo_port_A) of the generated OS.

In the structural description, theinfor mation of behavior map-
ping on the multi-processor target architectureisalso given. Figure
4 shows each module (in this case, task) is mapped to processor A
or B. The OS is generated on a processor basis. For OS schedul-
ing, each task has atask priority. Mapping information and task
priority are represented with attributes of the module.

In the memory allocation table, the information of memory al-
location for inter-processor communication (e.g. memory aloca
tion for fifo or shared memory for inter-processor communication)

Table 2: Basic functions of OS kernel.

[ Function | Behavior | Codetype |
ContextSwitch | Context switching | C + assembly
Sleep Task sleeping C
Wake-up Waking up the task C
Schedulers Task scheduling C

is given. Note that memory allocation on each processor is done
in the compilation and linking of the generated OS and application
code for the processor.

3.3 Operating System Library

The OSlibrary provides (1) avery small and flexible OS kernel and
(2) OS services.

3.3.1 OS Kernel

The main functionality of OS kernel is scheduling multiple tasks.
There are several preemptive schedulers availablein the OS library
such as round-robin scheduler, priority-based scheduler, etc. In the
case of round-robin scheduler, time-dicing (i.e. assigning differ-
ent CPU load to tasks) is supported. To make the OS kernel very
small and flexible, (1) the task scheduler can be selected from the
requirement of the application code and (2) aminimal amount (less
than 10% of kernel code size) of processor specific assembly code
isused (for context switching and interrupt service routines).

Table 2 shows the basic functions of OS kernel. Function Con-
textSwitch performs context switching between the currently run-
ning task and the next task to be executed. Since context switching
operation differs from processor to processor, the function consists
of two kinds of code: C code and assembly code. The C code part
is called by other schedulers in C code (e.g. by a priority based
scheduler or a round-robin scheduler). The assembly code part
performs processor specific context switching operation. Function
Sleep and Wake-up are used for preemptive task scheduling. For
task scheduling, schedulers required by the application SW are se-
lected from the OS library (as scheduler services).

3.3.2 OS Services

The OS library provides services specific to embedded systems:
communication services (e.g. fifo communication), i/o services
(e.g. PCI busdrivers), memory services (e.g. cache or virtual mem-
ory usage), etc. Services can have dependency between them. For
instance, communication services are dependent on i/o services.
The OS library also has the dependency information.

For the code types of service, there are two types of service
code: re-usable (or existing) code and expandable code. As an
example of existing code, a fifo service code can exist in the OS
library in the form of C language. As an example of expandable
code, OS kernel functions can exist in the OS library in the form
of macro code. In Figure 3, examples of existing and expandable
codes are shown in the OS library. In Section 3.4.3, we explain the
code expansion in detail.

3.4 O0OS Code Generation
3.4.1 Architecture Analyzer

Architecture Analyzer findsthe following information from the sys-
tem description input.

e Application specific services and their detailed parameters



¢ Module specific parameters

Application specific OS services are found from the attributes
of modules, channels and portsin the system description input. For
instance, if a channel has an attribute for fifo implementation, fifo
service is selected to be included into the OS to be generated. The
detailed parameters of required services are also found from the al-
location table. For instance, the address range of fifo communica-
tion and the interrupt priority of interrupt-driven port can be found
from the alocation table. The information of required servicesis
sent to Code Selector.

Module specific parameters (e.g. task priority, CPU load, the
type of mapped processor, etc) are also found from module at-
tributes. The type of processor is sent to Makefile Generator to
choose the right compiler and to Code Expander to target the OS
code to the processor.

3.4.2 Code Selector

Code Selector takes asinput alist of required services from Archi-
tecture Analyzer. It looks up the OSlibrary to check service depen-
dency and finds al the services that have dependency relation with
the required services. For instance, arequired service, fifo commu-
nication should need interrupt handling service. In this case, the
interrupt handling service should be also chosen to be included to
the OS to be generated.

Since there are two types of code (existing and expandable
codes), after the whole list of required services is determined in
this way, Code Selector first looks up the OS library to find the
existing codes for required services and sends the list of existing
codes to Makefile Generator. Then, it sendsthelist of serviceswith
expandable codes to Code Expander.

3.4.3 Code Expander

Code Expander takes asinput alist of required services from Code
Selector and processor type information from Architecture Ana-
lyzer. 1t generates the final OS code (in C and assembly code) as
follows. For each service, it finds a corresponding macro code(s) in
the OSlibrary. Then, it expands the macro code to a source code(s)
(in C or assembly code).

Figure 6 shows an example of code expansion. In Figure 6
(a), a macro code section is shown for two OS kernel functions:
a context switch function (in the figure, ContextSwitch()) and a
round-robin scheduler function (Circle()). First, Code Expander
determines the necessity of services based on the information of
regquested services. For instance, in Figure 6 (a), depending on the
number of priority values (in the figure, Pr_max) and the number of
tasks (G_size) that have the same priority value, the context switch
function (ContextSwitch()) or the round-robin scheduler function
(Circleg()) can be selected or not. In the example, if there is only
one priority value (i.e. Pr_.max=1) and G_size=1, then there is no
need of context switching. Thus, in the case, the context switching
code (ContextSwitch()) is not selected. If there are more than one
tasks that have the same priority value, i.e. G_size>1, then the
context switching code (ContextSwitch()) as well as the round-
robin scheduler code (Circle()) are selected to be expanded. Figure
6 (b) shows an example of expanded code in C for this case. Note
that, in this case, another scheduler can be selected to schedule
tasks that have different priority values.

Figure 6 shows an example of expanding amacro, “t askswap”
(in Figure 6(a)) to aprocessor specific code, “t askswap_68k( . . .)
(in Figure 6(b)). Processor-specific code expansion is limited to
functions such as context switching, synchronization primitives (e.g.
semaphore functions), and interrupt service routines.

(@EFI NE schedul e=I F ((Pr_nmax>0) || (G_si ze>1)) DO'
@oid ContextSwitch()

Q
@ int oldtid=curtid;
@ if (switching) void ContextSwitch()
@ "getactivet ask” {
@ "taskswap” int oldtid=curtid;
@ } if (swtching)
curti d=ci rcl epos;

taskswap_68k(tasks[ ol dtid].cxt,

tasks[curtid].cxt);
@chedul e@ ) }
(@EFI NE round_robbin=IF (G_size>1) DO " .
@oid Grele() void Grele()
@ {

arci cl epos=ci rcl epos;

@ arci cl epos=ci r ¢l epos;
circlepos=circletabl [circlepos];

@ circl epos=ci rcl etabl [ circl epos] ;

@ }

ELSE "" ENDIF
(@NDDEFI NE
@ ound_r obbi n@

(a) Macro code example (b) Expanded code example

Figure 6: An example of macro code expansion.

3.5 Targeting of Application SW Code

To target the application SW code to the OS, Task Code Adapter re-
places function calls of communication and synchronization in the
original application SW by OS service calls (i.e. system calls). For
instance, function call of communication called read_port(portA)

isreplaced by aOSservicefunction call read_FIFO_16(& fifo_port_A).

Note that original function arguments are also replaced by argu-
ments specific to the OS service function. In the example, the orig-
inal function argument portA isreplaced by afifo service function
argument & fifo_port_A that is a pointer to the fifo address in this
case.

3.6 Makefile Generator

Makefile Generator takes as input (1) processor type information
from Architecture Analyzer, (2) alist of source codes of OS (in C
and assembly) from Code Expander and (3) alist of the application
SW codes. It determines the right compiler and linker and gener-
ates a makefile (for each processor) that includes the two code lists
of OS and application SW.

3.7 Application to Existing OS’s

The existing OS's can be integrated into the proposed flow of au-
tomatic generation (to be specific, in this case, automatic config-
uration) of application specific OS. To explain the integration, we
assume that the existing OS supports OS configuration by #i f def

statements (i.e. configuration by defining required macros) without
modifying the OS source code since most commercial OS's allow
such a configuration. The integration can be done as follows.

1. Information of available OS services (e.g. service functions,
macros to be defined for services, etc.) and dependency rela-
tions between services of the existing OS are taken into the
OSlibrary.

2. Tothe OS generation flow in Figure 3, the designer gives the
same system description input as explained in Section 3.2.

3. Architecture Analyzer performs the same operation (extract-
ing required information such as services, target processor
information, etc) as described in Section 3.4.1.

4. Code Selector finds all the required (derived) services from
the OSlibrary as explained in Section 3.4.2. Then, it selects,
from the OS library, macro definitions corresponding to the
required servicesinstead of selecting existing/adaptable files
as explained in Section 3.4.2. Note that in the case of auto-
matic configuration of existing OS, Code Expander does not
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Figure 7: An implementation of token ring system on a multi-
processor target architecture.

generate the OS source code since the existing OS source
code is not modified.

5. Task Code Adaptor performsthe same operation (as explained
in Section 3.5) for the automatically configured OS.

6. Makefile Generator outputs a makefile with the selected macro
definitions received from Code Selector.

Notethat compared with the original flow of automatic OS gen-
eration proposed in this paper, in the case of integrating the exist-
ing OS into the flow, there is no change in automatic execution of
service extraction (by Architecture Analyzer), makefile generation,
and adaptation of application code to the automatically configured
OS. Interms of code quality (size, execution time, etc) of automat-
ically configured OS, it depends on the granularity of OS services
in the existing OS. Thus, if the existing OS supports as fine granu-
larity in OS services as our OS kernel and services, the quality of
automatically configured OS can be comparable to that of automat-
ically generated OS.

4 Experiment

4.1 System Example and Target Architecture

We applied the proposed method to a system example called to-
ken ring system (1,245 lines in SystemC). It consists of four tasks
(called Token) that exchange tokens with each other and one counter
task (called Cnt) that counts the number of tokens exchanged. Fig-
ure 7 (&) shows the connection of tasks (in this example, a task
corresponds to a module in the figure) in the example. As shown
in the figure, four tasks make a bidirectional ring connection with
each other. The counter task is connected to all Token tasks. Note
that Figure 7 (a) belongs to the system description input.

In our experiment, we implement the system example on amullti-
processor target architecture of three 68000 processors. Figure 7
(b) shows the result of implementation. In the figure, four Token
tasks are mapped to two processors (two tasks on each processor)
and the counting tasks is mapped to the other processor.

4.2 Synthesis of Application Specific OS and SW target-
ing

In the system description input, we assigned the information of pro-
cessor mapping in the attributes of each module. We also assigned
equal priority to all the tasks. To the communication channel be-
tween modules, we specified one word communication with non-
blocking write/blocking read. In the example, transferred data, i.e.
counter value and token, have the size of one word.

First, the system description input isread into Architecture An-
alyzer. Then, Code Selector selects the following four kernel func-
tions and services for the OS's of two processors where two Token
tasks are mapped.

¢ Round-robin scheduler since tasks have the same priority.

e A timer service since the round-robin scheduler is used.

e Non-blocking write (called exoutd) and blocking read ser-
vices (called exinb).

Code expander generates the OS source code that handles two
tasks of equal priority and two communication service functions
(exoutd and exinb). Task Code Adaptor replaces original com-
munication functions (i.e. outport(Port, value) and inport(Port,
value)) by OS communication services (i.e. exoutd(& PortAddr,
value) and exinb(& PortAddr, value)).

For the processor where only the counter task is mapped, the
same communication services are selected. However, no scheduler
and timer services are selected since there is only one task on the
processor.

We obtained three binary executables for three processors after
running compilation with the generated source codes and make-
files. We validated the system implementation from cosimulation
with three instruction set simulators of 68000 processor and aVHDL
simulator for HW interface.

As a preliminary result, in this experiment, the generated OS
gives very small code sizes: 797 lines in C, (in assembly) 1.86
KB for each of two processors with two Token tasks and 1.62 KB
for the processor with one Counter task. In terms of performance,
it gives 83 instruction cycle latency in the channel read operation
from interrupt trigger to the end of single-word data access.

5 Conclusion

We proposed a method of automatic generation of application spe-
cific operating systems and automatic targeting of application code.
The proposed method starts automatic generation of operating sys-
tem from avery small and flexible kernel and includes only the OS
services specific to the application. We applied the method to a
token ring system and obtained a promising result.
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