NETWORK AND COMMUNICATIONS

Introduction to

Ottload Engines

By implementing a TCP Offload Engine (TOE) in high-speed computing environments, admin-

istrators can help relieve network bottlenecks and improve application performance. This

article introduces the concept of TOEs, explains how TOEs interact with the TCP/IP stack,

and discusses potential performance advantages of implementing TOEs on specialized

network adapters versus processing the standard TCP/IP protocol suite on the host CPU.

BY SANDHYA SENAPATHI AND RICH HERNANDEZ

s network interconnect speeds advance to Gigabit
AEthernet1 and 10 Gigabit Ethernet2 host processors can
become a bottleneck in high-speed computing—often
requiring more CPU cycles to process the TCP/IP protocol
stack than the business-critical applications they are run-
ning. As network speed increases, so does the performance
degradation incurred by the corresponding increase in
TCP/IP overhead. The performance degradation problem
can be particularly severe in Internet SCSI (iSCSI)-based
applications, which use IP to transfer storage block I/0 data
over the network.

By carrying SCSI commands over IP networks, iSCSI
facilitates both intranet data transfers and long-distance
storage management. To improve data-transfer performance
over IP networks, the TCP Offload Engine (TOE) model can
relieve the host CPU from the overhead of processing
TCP/IP. TOEs allow the operating system (OS) to move
all TCP/IP traffic to specialized hardware on the network
adapter while leaving TCP/IP control decisions to the host
server. By relieving the host processor bottleneck, TOEs

can help deliver the performance benefits administrators
expect from iSCSI-based applications running across high-
speed network links. By facilitating file I/O traffic, TOEs also
can improve the performance of network attached storage
(NAS). Moreover, TOEs are cost-effective because they can
process the TCP/IP protocol stack on a high-speed net-
work device that requires less processing power than a
high-performance host CPU.

This article provides a high-level overview of the
advantages and inherent drawbacks to TCP/IP, explain-
ing existing mechanisms to overcome the limitations of
this protocol suite. In addition, TOE-based implementa-
tions and potential performance benefits of using TOEs
instead of standard TCP/IP are described.

TCP/IP helps ensure reliable, in-order data delivery

Currently the de facto standard for internetwork data
transmission, the TCP/IP protocol suite is used to
transmit information over local area networks (LANs),
wide area networks (WANSs), and the Internet. TCP/IP

1 This term does not connote an actual operating speed of 1 Gbps. For high-speed transmission, connection 1o a Gigabit Ethemet server and network infrastructure is required.
2This term does not connote an actual operating speed of 10 Gbps. For high-speed transmission, connection to a 10 Gigabit Ethernet (10GbE) server and network infrastructure is required.

www.dell.com/powersolutions

POWER soLuTions 103

NETWORK AND COMMUNICATIONS

processes can be conceptualized As network speed
as layers in a hierarchical stack;
each layer builds upon the layer increases, so does the
below it, providing additional
functionality. The layers most rel- performance degradation
evant to TOEs are the IP layer and
the TCP layer (see Figure 1).

The IP layer serves two pur-

incurred by the
poses: the first is to transmit pack- Corresponding Increase
ets between LANs and WANs
through the routing process; the in TCP/|P overhead.
second is to maintain a homoge-

neous interface to different physical networks. IP is a connec-
tionless protocol, meaning that each transmitted packet is
treated as a separate entity. In reality, each network packet
belongs to a certain data stream, and each data stream belongs
to a particular host application. The TCP layer associates each
network packet with the appropriate data stream and, in turn,
the upper layers associate each data stream with its designated
host application.

Most Internet protocols, including FTP and HTTP, use TCP to
transfer data. TCP is a connection-oriented protocol, meaning that
two host systems must establish a session with each other before
any data can be transferred between them. Whereas IP does not
provide for error recovery—that is, IP has the potential to lose pack-
ets, duplicate packets, delay packets, or deliver packets out of
sequence—TCP ensures that the host system receives all packets in
order, without duplication. Because most Internet applications
require reliable data that is delivered in order and in manageable
quantities, TCP is a crucial element of the network protocol stack
for WANs and LANs.

Reliability. TCP uses the checksum error-detection scheme,
which computes the number of set bits on packet headers as well
as packet data to ensure that packets have not been corrupted
during transmission. A TCP pseudoheader is included in the
checksum computation to verify the IP source and destination
addresses.

In-order data delivery. Because packets that belong to a single
TCP connection can arrive at the destination system via different
routes, TCP incorporates a per-byte numbering mechanism. This
scheme enables the TCP protocol to put packets that arrive at their
destination out of sequence back into the order in which they were
sent, before it delivers the packets to the host application.

Flow control. TCP monitors the number of bytes that the source
system can transmit without overwhelming the destination system
with data. As the source system sends packets, the receiving system
returns acknowledgments. TCP incorporates a sliding window mech-
anism to control congestion on the receiving end. That is, as the
sender transmits packets to the receiver, the size of the window

104 POWER SOLUTIONS

reduces; as the sender receives acknowledgments from the receiver,
the size of the window increases.

Multiplexing. TCP accommodates the flow from multiple
senders by allowing different data streams to intermingle during
transmission and receiving. It identifies individual data streams
with a number called the TCP port, which associates each stream
with its designated host application on the receiving end.

Traditional methods to reduce TCP/IP overhead

offer limited gains

After an application sends data across a network, several data-
movement and protocol-processing steps occur. These and other
TCP activities consume critical host resources:

+ The application writes the transmit data to the TCP/IP sockets
interface for transmission in payload sizes ranging from 4 KB
to 64 KB.

» The OS segments the data into maximum transmission unit
(MTU)-size packets, and then adds TCP/IP header informa-
tion to each packet.

* The OS copies the data onto the network interface card (NIC)
send queue.

» The NIC performs the direct memory access (DMA) transfer of
each data packet from the TCP buffer space to the NIC, and
interrupts CPU activities to indicate completion of the transfer.

The two most popular methods to reduce the substantial CPU

overhead that TCP/IP processing incurs are TCP/IP checksum offload
and large send offload.

| Upper-level protocols |

| Upper-level protocols |

| TCP |
| P |
Hardware TOE adapter
| TCP |
Traditional NIC | 1P |
| MAC | | MAC |
| PHY | | PHY |
Standard TCP/IP stack TOE TCP/IP stack

Figure 1. Comparing standard TCP/IP and TOE-enabled TCP/IP stacks

March 2004

TCP/IP checksum offload

The TCP/IP checksum offload technique moves the calculation of
the TCP and IP checksum packets from the host CPU to the network
adapter. For the TCP checksum, the transport layer on the host cal-
culates the TCP pseudoheader checksum and places this value in
the checksum field, thus enabling the network adapter to calculate
the correct TCP checksum without touching the IP header. However,
this approach yields only a modest reduction in CPU utilization.

Large send offload
Large send offload (LSO), also known as TCP segmentation offload
(TSO), frees the OS from the task of segmenting the application’s
transmit data into MTU-size chunks. Using LSO, TCP can transmit
a chunk of data larger than the MTU size to the network adapter.
The adapter driver then divides the data into MTU-size chunks and
uses the prototype TCP and IP headers of the send buffer to create
TCP/IP headers for each packet in preparation for transmission.
LSO is an extremely useful technology to scale performance
across multiple Gigabit Ethernet links, although it does so under cer-
tain conditions. The LSO technique is most efficient when transfer-
ring large messages. Also, because LSO is a stateless offload, it yields
performance benefits only for traffic being sent; it offers no improve-
ments for traffic being received. Although LSO can reduce CPU uti-
lization by approximately half, this benefit can be realized only if
the receiver’s TCP window size is set to 64 KB. LSO has little effect
on interrupt processing because it is a transmit-only offload.
Methods such as TCP/IP checksum offload and LSO provide
limited performance gains or are advantageous only under certain
conditions. For example, LSO is less effective when transmitting
several smaller-sized packages. Also, in environments where pack-
ets are frequently dropped and connections lost, connection setup
and maintenance consume a significant proportion of the host’s
processing power. Methods like LSO would produce minimal
performance improvements in such environments.

TOEs reduce TCP overhead on the host processor
In traditional TCP/IP implementations, every network transaction
results in a series of host interrupts for various processes related to
transmitting and receiving, such as send-packet segmentation and
receive-packet processing. Alternatively, TOEs can delegate all pro-
cessing related to sending and receiving packets to the network
adapter—leaving the host server’s CPU more available for business
applications. Because TOEs involve the host processor only once for
every application network I/0O, they significantly reduce the number
of requests and acknowledgments that the host stack must process.
Using traditional TCP/IP, the host server must process
received packets and associate received packets with TCP con-
nections, which means every received packet goes through mul-
tiple data copies from system buffers to user memory locations.

www.dell.com/powersolutions

NETWORK AND COMMUNICATIONS

Because a TOE-enabled network adapter can perform all protocol
processing, the adapter can use zero-copy algorithms to copy data
directly from the NIC buffers into application memory locations, with-
out intermediate copies to system buffers. In this way, TOEs greatly
reduce the three main causes of TCP/IP overhead—CPU interrupt
processing, memory copies, and protocol processing.

CPU interrupt processing

An application that generates a write to a remote host over a net-
work produces a series of interrupts to segment the data into pack-
ets and process the incoming acknowledgments. Handling each
interrupt creates a significant amount of context switching—a type
of multitasking that directs the focus of the host CPU from one
process to another—in this case, from the current application process
to the OS kernel and back again. Although interrupt-processing
aggregation techniques can help reduce the overhead, they do not
reduce the event processing required to send packets. Additionally,
every data transfer generates a series of data copies from the appli-
cation data buffers to the system buffers, and from the system buffers
to the network adapters.

High-speed networks such as Gigabit Ethernet compel host
CPUs to keep up with a larger number of packets. For 1500-byte
packets, the host OS stack would need to process more than 83,000
packets per second, or a packet every 12 microseconds. Smaller
packets put an even greater burden on the host CPU. TOE pro-
cessing can enable a dramatic reduction in network transaction
load. Using TOEs, the host CPU can process an entire application
I/0 transaction with one interrupt. Therefore, applications work-
ing with data sizes that are multiples of network packet sizes will
benefit the most from TOEs. CPU interrupt processing can be reduced
from thousands of interrupts to one or two per I/0O transaction.

Memory copies
Standard NICs require that data be copied from the application
user space to the OS kernel. The NIC driver then can copy the data
from the kernel to the on-board
To improve data-transfer packet buffer. This requires mul-
tiple trips across the memory bus
performance over IP (see Figure 2): When packets are
received from the network, the
NIC copies the packets to the NIC

buffers, which reside in host

networks, the TCP

memory. Packets then are copied
to the TCP buffer and, finally, to
the application itself—a total of

Offload Engine model

can relieve the host CPU
three memory copies.

A TOE-enabled NIC can
reduce the number of buffer

from the overhead
of processing TCP/IP.

copies to two: The NIC copies

POWER soLuTions 105

NETWORK AND COMMUNICATIONS

Legend
I System memory
Packet buffer [] Application
— Application I TCP buffer
— TCP buffer I NIC buffer
NIC NIC
Send path Receive path

Figure 2. Transmitting data across the memory bus using a standard NIC

the packets to the TCP buffer and then to the application buffers.
A TOE-enabled NIC using Remote Direct Memory Access (RDMA)
can use zero-copy algorithms to place data directly into appli-
cation buffers.

The capability of RDMA to place data directly eliminates inter-
mediate memory buffering and copying, as well as the associated
demands on the memory and processor resources of the host
server—without requiring the addition of expensive buffer memory
on the Ethernet adapter. RDMA also preserves memory-protection
semantics. The RDMA over TCP/IP specification defines the inter-
operable protocols to support RDMA operations over standard
TCP/IP networks.

Protocol processing

The traditional host OS-resident stack must handle a large number
of requests to process an application’s 64 KB data block send request.
Acknowledgments for the transmitted data also must be received and
processed by the host stack. In addition, TCP is required to main-
tain state information for every data connection created. This state
information includes data such as the current size and position of
the windows for both sender and receiver. Every time a packet is
received or sent, the position and size of the window change and
TCP must record these changes.

Protocol processing consumes more CPU power to receive
packets than to send packets. A standard NIC must buffer received
packets, and then notify the host system using interrupts. After a
context switch to handle the interrupt, the host system processes
the packet information so that the packets can be associated with
an open TCP connection. Next, the TCP data must be correlated
with the associated application and then the TCP data must be
copied from system buffers into the application memory locations.

TCP uses the checksum information in every packet that the IP
layer sends to determine whether the packet is error-free. TCP also
records an acknowledgment for every received packet. Each of these
operations results in an interrupt call to the underlying OS. As a

106 POWER SOLUTIONS

result, the host CPU can be saturated by frequent interrupts and
protocol processing overhead. The faster the network, the more
protocol processing the CPU has to perform.

In general, 1 MHz of CPU power is required to transmit 1 Mbps
of data. To process 100 Mbps of data—the speed at which Fast
Ethernet operates—100 MHz of CPU computing power is required,
which today’s CPUs can handle without difficulty. However,
bottlenecks can begin to occur when administrators introduce
Gigabit Ethernet and 10 Gigabit Ethernet. At these network speeds,
with so much CPU power devoted to TCP processing, relatively few
cycles are available for application processing. Multi-homed hosts
with multiple Gigabit Ethernet NICs compound the problem.
Throughput does not scale linearly when utilizing multiple NICs in
the same server because only one host TCP/IP stack processes all
the traffic. In comparison, TOEs distribute network transaction pro-
cessing across multiple TOE-enabled network adapters.

TOEs provide options for optimal performance or flexibility
Administrators can implement TOEs in several ways, as best suits
performance and flexibility requirements. Both processor-based and
chip-based methods exist. The processor-based approach provides
the flexibility to add new features and use widely available com-
ponents, while chip-based techniques offer excellent performance
at a low cost. In addition, some TOE implementations offload pro-
cessing completely while others do so partially.

Processor-based versus chip-based implementations

The implementation of TOEs in a standardized manner requires two
components: network adapters that can handle TCP/IP processing
operations, and extensions to the TCP/IP software stack that offload
specified operations to the network adapter. Together, these com-
ponents let the OS move all TCP/IP traffic to specialized, TOE-
enabled firmware—designed into a TCP/IP-capable NIC—while
leaving TCP/IP control decisions with the host system. Processor-
based methods also can use off-the-shelf network adapters that
have a built-in processor and memory. However, processor-based
methods are more expensive and still can create bottlenecks at
10 Gbps and beyond.

The second component of a standardized TOE implementation
comprises TOE extensions to the TCP/IP stack, which are completely
transparent to the higher-layer protocols and applications that run on
top of them. Applications interact the same way with a TOE-enabled
stack as they would with a standard TCP/IP stack. This transparency
makes the TOE approach attractive because it requires no changes
to the numerous applications and higher-level protocols that already
use TCP/IP as a base for network transmission.

The chip-based implementation uses an application-specific
integrated circuit (ASIC) that is designed into the network adapter.
ASIC-based implementations can offer better performance than

March 2004

off-the-shelf processor-based imple- By relieving the host
mentations because they are cus-
tomized to perform the TCP processor bottleneck,
offload. However, because ASICs
are manufactured for a certain set TOEs can help deliver
of operations, adding new features
may not always be possible. To the performance benefits
offload specified operations to the
network adapter, ASIC-based administrators expect
implementations require the same
extensions to the TCP/IP software from 1SCSkhased
stack as processor-based imple-
mentations. applications running
Partial versus full offloading across high—speed
TOE implementations also can be
differentiated by the amount of network links.
processing that is offloaded to the
network adapter. In situations where TCP connections are stable
and packet drops infrequent, the highest amount of TCP processing
is spent in data transmission and reception. Offloading just the pro-
cessing related to transmission and reception is referred to as par-
tial offloading. A partial, or data path, TOE implementation eliminates
the host CPU overhead created by transmission and reception.
However, the partial offloading method improves performance
only in situations where TCP connections are created and held for
a long time and errors and lost packets are infrequent. Partial offload-
ing relies on the host stack to handle control—that is, connection
setup—as well as exceptions. A partial TOE implementation does

not handle the following:

* TCP connection setup

+ Fragmented TCP segments
* Retransmission time-out

+ Out-of-order segments

The host software uses dynamic and flexible algorithms to
determine which connections to offload. This functionality requires
an OS extension to enable hooks that bypass the normal stack and
implement the offload heuristics. The system software has better
information than the TOE-enabled NIC regarding the type of traffic
it is handling, and thus makes offload decisions based on priority,
protocol type, and level of activity. In addition, the host software
is responsible for preventing denial of service (DoS) attacks. When
administrators discover new attacks, they should upgrade the host
software as required to handle the attack for both offloaded and
non-offloaded connections.

TCP/IP fragmentation is a rare event on today’s networks and
should not occur if applications and network components are

www.dell.com/powersolutions

NETWORK AND COMMUNICATIONS

working properly. A store-and-forward NIC saves all out-of-order
packets in on-chip or external RAM so that it can reorder the
packets before sending the data to the application. Therefore, a
partial TOE implementation should not cause performance degra-
dation because, given that current networks are reliable, TCP
operates most of the time without experiencing exceptions.

The process of offloading all the components of the TCP stack
is called full offloading. With a full offload, the system is relieved
not only of TCP data processing, but also of connection-management
tasks. Full offloading may prove more advantageous than partial
offloading in TCP connections characterized by frequent errors and

lost connections.

TOEs reduce end-to-end latency

A TOE-enabled TCP/IP stack and NIC can help relieve network
bottlenecks and improve data-transfer performance by eliminating
much of the host processing overhead that the standard TCP/IP
stack incurs. By reducing the amount of time the host system
spends processing network transactions, administrators can increase
available bandwidth for business applications. For instance, in a
scenario in which an application server is connected to a backup
server, and TOE-enabled NICs are installed on both systems, the
TOE approach can significantly reduce backup times.

Reduction in the time spent processing packet transmissions also
reduces latency—the time taken by a TCP/IP packet to travel from
the source system to the destination system. By improving end-to-
end latency, TOEs can help speed response times for applications
including digital media serving, NAS file serving, iSCSI, Web and
e-mail serving, video streaming, medical imaging, LAN-based backup
and restore processes, and high-performance computing clusters.

Part two of this article, which will appear in an upcoming issue,
will include benchmark testing and analysis to measure the bene-
fits of TOEs. @

Sandhya Senapathi (sandhya_senapathi@dell.com) is a systems engineer with the Server
0S Engineering team. Her fields of interest include operating systems, networking, and com-

puter architecture. She has an M.S. in Computer Science from The Ohio State University.

Rich Hernandez (rich_hernandez@dell.com) is a technologist with the Dell Product Group.
He has been in the computer and data networking industry for more than 19 years. Rich has
a B.S. in Electrical Engineering from the University of Houston and has pursued postgradu-

ate studies at Colorado Technical University.

FOR MORE INFORMATION

RDMA Consortium:
http://www.rdmaconsortium.org/home

POWER soLuTions 107

