
www.dell.com/powersolutions POWER SOLUTIONS 103

NETWORK AND COMMUNICATIONS

Introduction to 

TCP Offload Engines 
By implementing a TCP Offload Engine (TOE) in high-speed computing environments, admin-
istrators can help relieve network bottlenecks and improve application performance. This
article introduces the concept of TOEs, explains how TOEs interact with the TCP/IP stack,
and discusses potential performance advantages of implementing TOEs on specialized
network adapters versus processing the standard TCP/IP protocol suite on the host CPU.

As network interconnect speeds advance to Gigabit

Ethernet1 and 10 Gigabit Ethernet,2 host processors can

become a bottleneck in high-speed computing—often

requiring more CPU cycles to process the TCP/IP protocol

stack than the business-critical applications they are run-

ning. As network speed increases, so does the performance

degradation incurred by the corresponding increase in

TCP/IP overhead. The performance degradation problem

can be particularly severe in Internet SCSI (iSCSI)–based

applications, which use IP to transfer storage block I/O data

over the network. 

By carrying SCSI commands over IP networks, iSCSI

facilitates both intranet data transfers and long-distance

storage management. To improve data-transfer performance

over IP networks, the TCP Offload Engine (TOE) model can

relieve the host CPU from the overhead of processing

TCP/IP. TOEs allow the operating system (OS) to move

all TCP/IP traffic to specialized hardware on the network

adapter while leaving TCP/IP control decisions to the host

server. By relieving the host processor bottleneck, TOEs

can help deliver the performance benefits administrators

expect from iSCSI-based applications running across high-

speed network links. By facilitating file I/O traffic, TOEs also

can improve the performance of network attached storage

(NAS). Moreover, TOEs are cost-effective because they can

process the TCP/IP protocol stack on a high-speed net-

work device that requires less processing power than a

high-performance host CPU. 

This article provides a high-level overview of the

advantages and inherent drawbacks to TCP/IP, explain-

ing existing mechanisms to overcome the limitations of

this protocol suite. In addition, TOE-based implementa-

tions and potential performance benefits of using TOEs

instead of standard TCP/IP are described. 

TCP/IP helps ensure reliable, in-order data delivery 
Currently the de facto standard for internetwork data

transmission, the TCP/IP protocol suite is used to

transmit information over local area networks (LANs),

wide area networks (WANs), and the Internet. TCP/IP

BY SANDHYA SENAPATHI AND RICH HERNANDEZ

1 This term does not connote an actual operating speed of 1 Gbps. For high-speed transmission, connection to a Gigabit Ethernet server and network infrastructure is required.
2 This term does not connote an actual operating speed of 10 Gbps. For high-speed transmission, connection to a 10 Gigabit Ethernet (10GbE) server and network infrastructure is required.



processes can be conceptualized

as layers in a hierarchical stack;

each layer builds upon the layer

below it, providing additional

functionality. The layers most rel-

evant to TOEs are the IP layer and

the TCP layer (see Figure 1). 

The IP layer serves two pur-

poses: the first is to transmit pack-

ets between LANs and WANs

through the routing process; the

second is to maintain a homoge-

neous interface to different physical networks. IP is a connec-

tionless protocol, meaning that each transmitted packet is

treated as a separate entity. In reality, each network packet

belongs to a certain data stream, and each data stream belongs

to a particular host application. The TCP layer associates each

network packet with the appropriate data stream and, in turn,

the upper layers associate each data stream with its designated

host application. 

Most Internet protocols, including FTP and HTTP, use TCP to

transfer data. TCP is a connection-oriented protocol, meaning that

two host systems must establish a session with each other before

any data can be transferred between them. Whereas IP does not

provide for error recovery—that is, IP has the potential to lose pack-

ets, duplicate packets, delay packets, or deliver packets out of

sequence—TCP ensures that the host system receives all packets in

order, without duplication. Because most Internet applications

require reliable data that is delivered in order and in manageable

quantities, TCP is a crucial element of the network protocol stack

for WANs and LANs.

Reliability. TCP uses the checksum error-detection scheme,

which computes the number of set bits on packet headers as well

as packet data to ensure that packets have not been corrupted

during transmission. A TCP pseudoheader is included in the

checksum computation to verify the IP source and destination

addresses.

In-order data delivery. Because packets that belong to a single

TCP connection can arrive at the destination system via different

routes, TCP incorporates a per-byte numbering mechanism. This

scheme enables the TCP protocol to put packets that arrive at their

destination out of sequence back into the order in which they were

sent, before it delivers the packets to the host application.

Flow control. TCP monitors the number of bytes that the source

system can transmit without overwhelming the destination system

with data. As the source system sends packets, the receiving system

returns acknowledgments. TCP incorporates a sliding window mech-

anism to control congestion on the receiving end. That is, as the

sender transmits packets to the receiver, the size of the window

reduces; as the sender receives acknowledgments from the receiver,

the size of the window increases. 

Multiplexing. TCP accommodates the flow from multiple

senders by allowing different data streams to intermingle during

transmission and receiving. It identifies individual data streams

with a number called the TCP port, which associates each stream

with its designated host application on the receiving end. 

Traditional methods to reduce TCP/IP overhead 
offer limited gains
After an application sends data across a network, several data-

movement and protocol-processing steps occur. These and other

TCP activities consume critical host resources: 

• The application writes the transmit data to the TCP/IP sockets

interface for transmission in payload sizes ranging from 4 KB

to 64 KB.

• The OS segments the data into maximum transmission unit

(MTU)–size packets, and then adds TCP/IP header informa-

tion to each packet.

• The OS copies the data onto the network interface card (NIC)

send queue.

• The NIC performs the direct memory access (DMA) transfer of

each data packet from the TCP buffer space to the NIC, and

interrupts CPU activities to indicate completion of the transfer.

The two most popular methods to reduce the substantial CPU

overhead that TCP/IP processing incurs are TCP/IP checksum offload

and large send offload.

NETWORK AND COMMUNICATIONS

POWER SOLUTIONS March 2004104

Figure 1. Comparing standard TCP/IP and TOE-enabled TCP/IP stacks

Upper-level protocols Upper-level protocols

TCP

IP

Traditional NIC

MAC

PHY

TOE adapter

TCP

IP

MAC

PHY

Hardware

Standard TCP/IP stack TOE TCP/IP stack

Operating system

Applications

As network speed

increases, so does the

performance degradation

incurred by the

corresponding increase

in TCP/IP overhead.



TCP/IP checksum offload
The TCP/IP checksum offload technique moves the calculation of

the TCP and IP checksum packets from the host CPU to the network

adapter. For the TCP checksum, the transport layer on the host cal-

culates the TCP pseudoheader checksum and places this value in

the checksum field, thus enabling the network adapter to calculate

the correct TCP checksum without touching the IP header. However,

this approach yields only a modest reduction in CPU utilization.

Large send offload
Large send offload (LSO), also known as TCP segmentation offload

(TSO), frees the OS from the task of segmenting the application’s

transmit data into MTU-size chunks. Using LSO, TCP can transmit

a chunk of data larger than the MTU size to the network adapter.

The adapter driver then divides the data into MTU-size chunks and

uses the prototype TCP and IP headers of the send buffer to create

TCP/IP headers for each packet in preparation for transmission. 

LSO is an extremely useful technology to scale performance

across multiple Gigabit Ethernet links, although it does so under cer-

tain conditions. The LSO technique is most efficient when transfer-

ring large messages. Also, because LSO is a stateless offload, it yields

performance benefits only for traffic being sent; it offers no improve-

ments for traffic being received. Although LSO can reduce CPU uti-

lization by approximately half, this benefit can be realized only if

the receiver’s TCP window size is set to 64 KB. LSO has little effect

on interrupt processing because it is a transmit-only offload. 

Methods such as TCP/IP checksum offload and LSO provide

limited performance gains or are advantageous only under certain

conditions. For example, LSO is less effective when transmitting

several smaller-sized packages. Also, in environments where pack-

ets are frequently dropped and connections lost, connection setup

and maintenance consume a significant proportion of the host’s

processing power. Methods like LSO would produce minimal

performance improvements in such environments. 

TOEs reduce TCP overhead on the host processor 
In traditional TCP/IP implementations, every network transaction

results in a series of host interrupts for various processes related to

transmitting and receiving, such as send-packet segmentation and

receive-packet processing. Alternatively, TOEs can delegate all pro-

cessing related to sending and receiving packets to the network

adapter—leaving the host server’s CPU more available for business

applications. Because TOEs involve the host processor only once for

every application network I/O, they significantly reduce the number

of requests and acknowledgments that the host stack must process. 

Using traditional TCP/IP, the host server must process

received packets and associate received packets with TCP con-

nections, which means every received packet goes through mul-

tiple data copies from system buffers to user memory locations.

Because a TOE-enabled network adapter can perform all protocol

processing, the adapter can use zero-copy algorithms to copy data

directly from the NIC buffers into application memory locations, with-

out intermediate copies to system buffers. In this way, TOEs greatly

reduce the three main causes of TCP/IP overhead—CPU interrupt

processing, memory copies, and protocol processing. 

CPU interrupt processing
An application that generates a write to a remote host over a net-

work produces a series of interrupts to segment the data into pack-

ets and process the incoming acknowledgments. Handling each

interrupt creates a significant amount of context switching—a type

of multitasking that directs the focus of the host CPU from one

process to another—in this case, from the current application process

to the OS kernel and back again. Although interrupt-processing

aggregation techniques can help reduce the overhead, they do not

reduce the event processing required to send packets. Additionally,

every data transfer generates a series of data copies from the appli-

cation data buffers to the system buffers, and from the system buffers

to the network adapters.

High-speed networks such as Gigabit Ethernet compel host

CPUs to keep up with a larger number of packets. For 1500-byte

packets, the host OS stack would need to process more than 83,000

packets per second, or a packet every 12 microseconds. Smaller

packets put an even greater burden on the host CPU. TOE pro-

cessing can enable a dramatic reduction in network transaction

load. Using TOEs, the host CPU can process an entire application

I/O transaction with one interrupt. Therefore, applications work-

ing with data sizes that are multiples of network packet sizes will

benefit the most from TOEs. CPU interrupt processing can be reduced

from thousands of interrupts to one or two per I/O transaction.

Memory copies
Standard NICs require that data be copied from the application

user space to the OS kernel. The NIC driver then can copy the data

from the kernel to the on-board

packet buffer. This requires mul-

tiple trips across the memory bus

(see Figure 2): When packets are

received from the network, the

NIC copies the packets to the NIC

buffers, which reside in host

memory. Packets then are copied

to the TCP buffer and, finally, to

the application itself—a total of

three memory copies. 

A TOE-enabled NIC can

reduce the number of buffer

copies to two: The NIC copies

NETWORK AND COMMUNICATIONS

www.dell.com/powersolutions POWER SOLUTIONS 105

To improve data-transfer

performance over IP

networks, the TCP 

Offload Engine model 

can relieve the host CPU

from the overhead 

of processing TCP/IP. 



the packets to the TCP buffer and then to the application buffers.

A TOE-enabled NIC using Remote Direct Memory Access (RDMA)

can use zero-copy algorithms to place data directly into appli-

cation buffers. 

The capability of RDMA to place data directly eliminates inter-

mediate memory buffering and copying, as well as the associated

demands on the memory and processor resources of the host

server—without requiring the addition of expensive buffer memory

on the Ethernet adapter. RDMA also preserves memory-protection

semantics. The RDMA over TCP/IP specification defines the inter-

operable protocols to support RDMA operations over standard

TCP/IP networks. 

Protocol processing
The traditional host OS–resident stack must handle a large number

of requests to process an application’s 64 KB data block send request.

Acknowledgments for the transmitted data also must be received and

processed by the host stack. In addition, TCP is required to main-

tain state information for every data connection created. This state

information includes data such as the current size and position of

the windows for both sender and receiver. Every time a packet is

received or sent, the position and size of the window change and

TCP must record these changes.

Protocol processing consumes more CPU power to receive

packets than to send packets. A standard NIC must buffer received

packets, and then notify the host system using interrupts. After a

context switch to handle the interrupt, the host system processes

the packet information so that the packets can be associated with

an open TCP connection. Next, the TCP data must be correlated

with the associated application and then the TCP data must be

copied from system buffers into the application memory locations.

TCP uses the checksum information in every packet that the IP

layer sends to determine whether the packet is error-free. TCP also

records an acknowledgment for every received packet. Each of these

operations results in an interrupt call to the underlying OS. As a

result, the host CPU can be saturated by frequent interrupts and

protocol processing overhead. The faster the network, the more

protocol processing the CPU has to perform. 

In general, 1 MHz of CPU power is required to transmit 1 Mbps

of data. To process 100 Mbps of data—the speed at which Fast

Ethernet operates—100 MHz of CPU computing power is required,

which today’s CPUs can handle without difficulty. However,

bottlenecks can begin to occur when administrators introduce

Gigabit Ethernet and 10 Gigabit Ethernet. At these network speeds,

with so much CPU power devoted to TCP processing, relatively few

cycles are available for application processing. Multi-homed hosts

with multiple Gigabit Ethernet NICs compound the problem.

Throughput does not scale linearly when utilizing multiple NICs in

the same server because only one host TCP/IP stack processes all

the traffic. In comparison, TOEs distribute network transaction pro-

cessing across multiple TOE-enabled network adapters.

TOEs provide options for optimal performance or flexibility
Administrators can implement TOEs in several ways, as best suits

performance and flexibility requirements. Both processor-based and

chip-based methods exist. The processor-based approach provides

the flexibility to add new features and use widely available com-

ponents, while chip-based techniques offer excellent performance

at a low cost. In addition, some TOE implementations offload pro-

cessing completely while others do so partially. 

Processor-based versus chip-based implementations 
The implementation of TOEs in a standardized manner requires two

components: network adapters that can handle TCP/IP processing

operations, and extensions to the TCP/IP software stack that offload

specified operations to the network adapter. Together, these com-

ponents let the OS move all TCP/IP traffic to specialized, TOE-

enabled firmware—designed into a TCP/IP-capable NIC—while

leaving TCP/IP control decisions with the host system. Processor-

based methods also can use off-the-shelf network adapters that

have a built-in processor and memory. However, processor-based

methods are more expensive and still can create bottlenecks at

10 Gbps and beyond.

The second component of a standardized TOE implementation

comprises TOE extensions to the TCP/IP stack, which are completely

transparent to the higher-layer protocols and applications that run on

top of them. Applications interact the same way with a TOE-enabled

stack as they would with a standard TCP/IP stack. This transparency

makes the TOE approach attractive because it requires no changes

to the numerous applications and higher-level protocols that already

use TCP/IP as a base for network transmission.

The chip-based implementation uses an application-specific

integrated circuit (ASIC) that is designed into the network adapter.

ASIC-based implementations can offer better performance than

NETWORK AND COMMUNICATIONS

POWER SOLUTIONS March 2004106

NIC

TCP buffer

Application

Send path

NIC

NIC buffer

TCP buffer

Receive path

Application

System memory
Packet buffer

Legend

Figure 2. Transmitting data across the memory bus using a standard NIC



off-the-shelf processor-based imple-

mentations because they are cus-

tomized to perform the TCP

offload. However, because ASICs

are manufactured for a certain set

of operations, adding new features

may not always be possible. To

offload specified operations to the

network adapter, ASIC-based

implementations require the same

extensions to the TCP/IP software

stack as processor-based imple-

mentations.

Partial versus full offloading
TOE implementations also can be

differentiated by the amount of

processing that is offloaded to the

network adapter. In situations where TCP connections are stable

and packet drops infrequent, the highest amount of TCP processing

is spent in data transmission and reception. Offloading just the pro-

cessing related to transmission and reception is referred to as par-

tial offloading. A partial, or data path, TOE implementation eliminates

the host CPU overhead created by transmission and reception. 

However, the partial offloading method improves performance

only in situations where TCP connections are created and held for

a long time and errors and lost packets are infrequent. Partial offload-

ing relies on the host stack to handle control—that is, connection

setup—as well as exceptions. A partial TOE implementation does

not handle the following:

• TCP connection setup 

• Fragmented TCP segments

• Retransmission time-out

• Out-of-order segments

The host software uses dynamic and flexible algorithms to

determine which connections to offload. This functionality requires

an OS extension to enable hooks that bypass the normal stack and

implement the offload heuristics. The system software has better

information than the TOE-enabled NIC regarding the type of traffic

it is handling, and thus makes offload decisions based on priority,

protocol type, and level of activity. In addition, the host software

is responsible for preventing denial of service (DoS) attacks. When

administrators discover new attacks, they should upgrade the host

software as required to handle the attack for both offloaded and

non-offloaded connections. 

TCP/IP fragmentation is a rare event on today’s networks and

should not occur if applications and network components are

working properly. A store-and-forward NIC saves all out-of-order

packets in on-chip or external RAM so that it can reorder the

packets before sending the data to the application. Therefore, a

partial TOE implementation should not cause performance degra-

dation because, given that current networks are reliable, TCP

operates most of the time without experiencing exceptions.

The process of offloading all the components of the TCP stack

is called full offloading. With a full offload, the system is relieved

not only of TCP data processing, but also of connection-management

tasks. Full offloading may prove more advantageous than partial

offloading in TCP connections characterized by frequent errors and

lost connections.

TOEs reduce end-to-end latency
A TOE-enabled TCP/IP stack and NIC can help relieve network

bottlenecks and improve data-transfer performance by eliminating

much of the host processing overhead that the standard TCP/IP

stack incurs. By reducing the amount of time the host system

spends processing network transactions, administrators can increase

available bandwidth for business applications. For instance, in a

scenario in which an application server is connected to a backup

server, and TOE-enabled NICs are installed on both systems, the

TOE approach can significantly reduce backup times.

Reduction in the time spent processing packet transmissions also

reduces latency—the time taken by a TCP/IP packet to travel from

the source system to the destination system. By improving end-to-

end latency, TOEs can help speed response times for applications

including digital media serving, NAS file serving, iSCSI, Web and

e-mail serving, video streaming, medical imaging, LAN-based backup

and restore processes, and high-performance computing clusters. 

Part two of this article, which will appear in an upcoming issue,

will include benchmark testing and analysis to measure the bene-

fits of TOEs.

Sandhya Senapathi (sandhya_senapathi@dell.com) is a systems engineer with the Server

OS Engineering team. Her fields of interest include operating systems, networking, and com-

puter architecture. She has an M.S. in Computer Science from The Ohio State University.

Rich Hernandez (rich_hernandez@dell.com) is a technologist with the Dell Product Group.

He has been in the computer and data networking industry for more than 19 years. Rich has

a B.S. in Electrical Engineering from the University of Houston and has pursued postgradu-

ate studies at Colorado Technical University.

NETWORK AND COMMUNICATIONS

www.dell.com/powersolutions POWER SOLUTIONS 107

FOR MORE INFORMATION

RDMA Consortium: 
http://www.rdmaconsortium.org/home

By relieving the host

processor bottleneck,

TOEs can help deliver

the performance benefits

administrators expect

from iSCSI-based

applications running

across high-speed 

network links.


