
PowerSolutions98

I
n August 2000, Dell and Red Hat set new Web serving world

records in four SPECWeb99 categories: on servers with one,

two, four, and eight CPUs.1 These records not only surpassed

previous records by margins of 100 percent to 200 percent, but

also showed nearly linear scalability as the numbers of processors

increased—a remarkable achievement for any symmetric multi-

processing (SMP) operating system.

This article describes TUX, a new architecture from Red Hat

that accelerates not only Web server performance, but also a wide

range of network-delivered services, including FTP, file services, and

network-based storage systems.

The TUX Web Server is an HTTP daemon for Linux®. The

TUX Web Server is different from other Web servers in that it runs

partially from within the Linux kernel as a module, or kernel sub-

system. Given sufficient networking cards, it enables direct scatter-

gather direct memory access (DMA) and hardware-based TCP/IP

checksums from the page cache (the Linux file data cache) directly

to the network, avoiding extra data copies.

Serving content

The TUX Web Server handles static pages and Common Gateway

Interface (CGI) scripts directly, and works in concert with kernel

modules, user-space modules, and regular user-space Web server

daemons to provide dynamic content. Regular user-space daemons

do not need to be altered for TUX to use them to provide content,

but in order for TUX to handle and optionally cache dynamic con-

tent directly, user-space code has to use a new interface based on the

TUX system call.

Static content

Static Web pages are not difficult to serve, but are nevertheless

important, since virtually all images and a large portion of HTML

pages are static. A regular Web server has little added value for static

pages; it is simply a “copy-file-to-network” operation. This can be

done very efficiently from within the Linux kernel; for example, the

Network File System (NFS) daemon performs a similar task run-

ning in the kernel.

Dynamic content

The TUX Web Server handles and optionally caches dynamic

content as well. TUX modules, built in kernel or user space (user

space is recommended), use (and optionally create) objects that

are stored using the page cache. In response to a request for

dynamic data, a TUX module may serve a mix of dynamically

generated data and cached pregenerated objects, taking advantage

of the TUX zero-copy architecture.

This new architecture for providing dynamic content requires a

new application programming interface (API). Existing standard

Running

TUX Web Server
for Linux

on Dell Servers

TUX 2.0, a Web server developed by Red Hat, has demonstrated outstanding performance

and scalability running on Dell servers. This article describes the development process that

culminated in the release of TUX 2.0.

By Michael Tiemann

1 For the complete results, visit http://www.dell.com/us/en/biz/topics/linux_specWeb99.htm

I N T E R N E T E N V I R O N M E N T

APIs for CGI cannot be mapped to TUX’s API

easily. Existing applications such as CGI applica-

tions for Web servers must be recoded to take

advantage of TUX’s architecture. TUX can, how-

ever, call CGI programs via its CGI module,

allowing users to convert selected programs that

need TUX’s speed to the TUX API and run other

programs with the standard CGI interface. TUX

can also redirect requests to another Web server

such as an Apache server, so that a single site may

combine static content, TUX modules, old-style

CGIs, and programs written for other Web

server APIs.

TUX performance enhancement

Regular Web servers run entirely in user space, which provides secu-

rity advantages. However, this is detrimental to performance—every

time the server moves data, it performs a context switch into the

kernel. Prior to the release of TUX, some proprietary kernel-space

Web servers that reduced both redundant inbound and outbound

data copies had been developed. (The Linux sendfile system call

reduces only redundant outbound data copies.) Results from some

experimental in-kernel Linux Web servers showed promise, but to

achieve higher performance goals, Linux needed a new architecture

to overcome several limitations.

Removing the global lock

The first problem to solve was the “big kernel lock” problem. The

Linux 2.0 kernel, while it supported symmetric multiprocessing

(SMP), used a global lock, controlling all kernel functionality. The

Linux 2.2 kernel was an improvement, but a considerable portion

of the kernel functionality still operated under the big kernel

lock. Processes were designed to hold this lock

only a short period of time, but holding the lock

during a file cache operation, for example, pre-

vented any network traffic from flowing through

the kernel, even when there was no direct con-

flict between the two. Removing the “big kernel

lock” was the first and most important step to

developing good kernel-level SMP performance.

Implementing fine-grain locking

The second step was to thread individual subsys-

tems, such as the Virtual File System (VFS), the

page cache, the timers, and the network stack.

This would allow these kernel subsystems to run

in parallel with each other and for multiple CPUs

to be used within each subsystem. To maximize the efficiency of

allocating multiple CPUs inside these subsystems, several forms of

“affinity” were implemented: timer affinity, interrupt request (IRQ)

affinity, and process-processor affinity.

Carefully tuning these affinities minimized the overhead of SMP

and maximized the performance of the overall system. Whereas the

Linux 2.2 kernel could only use a single CPU when in kernel mode,

the Linux 2.4 kernel has shown no difficulty using eight CPUs effi-

ciently across a wide range of network, storage, and server loads.

Implementing a zero-copy infrastructure

The third step was the development of a zero-copy infrastructure.

TUX 2.0 now supports true zero-copy disk reads. Whereas TUX 1.0

copied files into a temporary buffer, TUX 2.0 is integrated with the

page cache, and thus uses zero-copy block I/O. TUX 2.0 also per-

forms generic zero-copy network writes by using the generic zero-

copy TCP framework.

I N T E R N E T E N V I R O N M E N T

PowerSolutions100

TUX accelerates not only

Web server performance,

but also a wide range

of network-delivered

services, including FTP,

file services, and network-

based storage systems.

The history of TUX began in 1999, when a report from an

independent lab reported that Apache running on Red Hat®

Linux was 100 times slower than a vendor’s proprietary Web

server and operating system. This came as a surprise

because Linux already supported SMP and had a special sys-

tem call, sendfile, to reduce redundant data copies.

Rather than dismissing them immediately, Red Hat

investigated these results and drew three conclusions. First,

the lab had chosen hardware that was known to support

Linux poorly. Second, the lab had configured the proprietary

operating system to get the most from the hardware, while

they had configured Linux so that its performance was

seriously compromised. Nevertheless, even with more

appropriate hardware and the correct operating system and

hardware configuration, the Apache and Linux combination

was slower than the proprietary combination.

This result was a wake-up call to the Linux community.

Linus Torvalds acknowledged that “we had become compla-

cent.” Red Hat took this as a challenge and resolved to put

Red Hat Linux at the top of the performance charts. Dell

offered to assist, providing hardware expertise, benchmark

expertise, and the high-end hardware configurations needed

to design and test new ideas.

THE HISTORY OF TUX

Where possible, TUX parses input packets directly, enabling

zero-copy HTTP-request parsing. Even in RAM-limited situations,

TUX now performs full, back-to-back zero-copy I/O. Finally, addi-

tional tuning of the RAID infrastructure in Linux keeps perform-

ance high, even when TUX is forced to go to disk.

Improved design and functionality

The kernel overhaul was critical to TUX’s enhanced performance.

The following comparison of TUX to Apache Web server illustrates

how the TUX-inspired 2.4 kernel improved baseline performance.

Apache Web server was not designed primarily for speed,

but for flexibility and extensibility; therefore, a direct compari-

son of Apache and TUX performance may be misleading. One

powerful and flexible Web serving model uses TUX only for

content that requires very high speeds and Apache to handle

the remaining HTTP workload.

When Apache runs on Linux, the master Apache listens

on port 80 and calls the accept() function. Once a browser con-

nects to this server and the TCP handshake has completed, the

accept system call returns with a new socket. Writing to this

socket sends data to the client, whereas reading from this socket

grabs the HTTP request headers. Once a request has been

accepted by an Apache process and the HTTP request is com-

plete, the Apache process handles this request synchronously—

that is, it will execute only this request, and nothing else. While,

for example, the server reads a file from disk and sends it to the

client, the request blocks all processing of further requests.

Figure 1 summarizes the Apache workflow.

Every operation on Apache can result in an I/O block for differ-

ent reasons, which are summarized in Figure 2. Apache solves this

problem by starting more child processes when there is too much

work, but this creates excessive context switching, in addition to the

large overhead of coordinating child processes and connection

requests. Heavily loaded servers can spend as much as 25 percent of

their CPU arbitrating connection requests. Other proprietary Web

servers use threads instead of processes, but both models have simi-

lar performance limitations.

The TUX architecture represents a new approach to operating

system support for network-delivered services. Traditionally, the

kernel space and user space are separated for security purposes,

leading to a high cost of switching between the two. Traditional

approaches often result in either running too much in the kernel

and making it vulnerable to security violations, or running too

much in user space and duplicating functionality that would be

better managed in the kernel.

TUX overcomes this traditional thinking by providing a high-

level application-protocol interface in user space, while handling

simple tasks purely within the kernel. Only complex requests are

passed to user space; other operations such as serving static pages or

CGIs are accelerated in the kernel. However, user-space code has to

use a new interface based on the TUX system call.

The TUX state machine (see Figure 3) is replicated across sev-

eral different queues so that, instead of blocking, each part of the

Linux kernel can operate asynchronously. By separating each system

call into atomic elements that can be queued, TUX threads only

block when there is no work to be done, anywhere. Figure 4 lists

several types of queues used by TUX. Because TUX threads never

www.dell.com/powersolutions PowerSolutions 101

Apache accepts a connection and returns a socket

It reads the socket to extract the URL

It opens the file found in the URL, relative to $DOCROOT

It does a read into a user-space buffer

Apache does a write into the client socket

Figure 1. Apache workflow

State 0: New request

State 1: Prepare request (such as GET_OBJECT)

State 2: Request ready to issue (such as SEND_OBJECT)

State 3: Request completed

Figure 3. TUX state machine

Queue Action

Input queue Valid, but incomplete input; wait for more packets
to arrive

User-space queue Send a request to user space

Cache-miss queue Handle cache miss now

Postpone queue TUX itself is done, but more work is needed

Output queue Send a reply right now

Redirect queue Send the connection to the secondary Web server

Finish queue Send a request to logger and be done

Figure 4. TUX queues

Open can block
if the inode is

not yet cached

Read can block
on metadata

(indirect blocks)
and on actual
data blocks

Write can block
on TCP

output space

Figure 2. Operation blocking

block other processes, there is no need to allocate more than one

thread per CPU, thereby minimizing scheduling overhead.

But the proof of the system is in the numbers. Figure 5

compares benchmarking results of the new TUX architecture

with those of earlier TUX versions and other proprietary Web

server and hardware combinations.

TUX’s dramatic reduction in resource requirements is

perhaps even more impressive than the speed demonstrated in

benchmark testing. For the two-CPU TUX 2.0 results, TUX

handled over 2,700 connections (a capacity record for two-CPU

systems), and served a 9 GB file set using 2 GB of memory. Most

other systems represented in the SPECWeb99 results required at

least as much system RAM as the file set size.

In the TUX architecture, the kernel does not need to multi-

plex and demultiplex Web connections through polling (or

selecting). This makes it possible to handle tens of thousands to

millions of connections, depending on network bandwidth

requirements, on machines that might otherwise be limited to

hundreds of connections.

The results achieved with TUX as a Web server have been

encouraging, but they are only the beginning. Already, Red Hat

is working to accelerate FTP and other network services. Those

who have built their own servers for proprietary distributed

applications have also begun to consider running TUX on

Red Hat Linux to improve the scalability and performance

of their systems, while preserving their fundamental applica-

tion platform.

Michael Tiemann (tiemann@redhat.com) is chief technology officer

(CTO) of Red Hat, a leading supplier of Linux and open source

solutions. Michael made his first major open source contribution over

a decade ago by writing the GNU C++ compiler, the first native-code

C++ compiler and debugger. In 1989, Michael co-founded Cygnus

Solutions, the first company to provide commercial support for open

source software. Michael also serves on several boards, including the

Open Source Initiative, the Embedded Linux Consortium, the

GNOME Foundation, the Jabber Technical Advisory Board, and the

Board of Directors of ActiveState Tool Corp.

I N T E R N E T E N V I R O N M E N T

PowerSolutions102

SPECWeb99 results—

Vendor Hardware number of connections Web server Number of CPUs Remarks

Dell PowerEdge 8450/700 7500 TUX 2.0 8 World record for 8 CPUs

Dell PowerEdge 8450/700 7300 IIS 5.0 and Scalable 8
 Web Cache (SWC) 3.0

Dell PowerEdge 8450/700 6387 TUX 1.0 8

Dell PowerEdge 6400/700 4200 TUX 1.0 4 World record for 4 CPUs

Compaq® Alphaserver ES40 2304 Zeus 3.37 4

Dell PowerEdge 6400/700 1598 IIS 5.0 4

Dell PowerEdge 1550/1000 2765 TUX 2.0 2 World record for 2 CPUs

Dell PowerEdge 4400/800 2200 TUX 1.0 2

Dell PowerApp.web 120 1070 IIS 5.0 2

Dell PowerEdge 4400/800 1060 IIS 5.0 2

Compaq Alphaserver DS20 6/667 1050 Zeus 3.3.5 2

Dell PowerEdge 2400/667 1270 TUX 1.0 1 Previous world record, surpassed by
TUX 2.0 on Intel-based hardware

Dell PowerEdge 2400/667 732 IIS 5.0 1

Figure 5. SPECWeb99 benchmark results2

FOR MORE INFORMATION

For questions or comments about TUX, please

join the tux-list@redhat.com mailing list. For

instructions on joining the mailing list, see

http://www.redhat.com/mailing-lists/

Also visit the Red Hat TUX Web Server product

page at http://www.redhat.com/products/

software/ecommerce/tux

See the Red Hat TUX Web Server Support page

at http://www.redhat.com/products/support/

ecommerce/tux

For the latest development source, see

http://www.redhat.com/products/ecommerce/tux/

2SPECweb99 is a trademark of the Standard Performance Evaluation Corporation (SPEC). Competitive numbers shown reflect results published on www.spec.org
as of 12/31/2000. The comparison presented is based on the top results of Dell and Compaq servers. For the latest SPECweb99 results, visit http://www.spec.org/osg/web99

