‘INTERNET ENVIRONMENT

98

Running

X Web Server
or Linux

on Dell Servers

By Michael Tiemann

TUX 2.0, a Web server developed by Red Hat, has demonstrated outstanding performance

and scalability running on Dell servers. This article describes the development process that

culminated in the release of TUX 2.0.

n August 2000, Dell and Red Hat set new Web serving world

records in four SPECWeb99 categories: on servers with one,

two, four, and eight CPUs! These records not only surpassed
previous records by margins of 100 percent to 200 percent, but
also showed nearly linear scalability as the numbers of processors
increased—a remarkable achievement for any symmetric multi-
processing (SMP) operating system.

This article describes TUX, a new architecture from Red Hat
that accelerates not only Web server performance, but also a wide
range of network-delivered services, including FTP, file services, and
network-based storage systems.

The TUX Web Server is an HTTP daemon for Linux", The
TUX Web Server is different from other Web servers in that it runs
partially from within the Linux kernel as a module, or kernel sub-
system. Given sufficient networking cards, it enables direct scatter-
gather direct memory access (DMA) and hardware-based TCP/IP
checksums from the page cache (the Linux file data cache) directly

to the network, avoiding extra data copies.

Serving content

The TUX Web Server handles static pages and Common Gateway
Interface (CGI) scripts directly, and works in concert with kernel
modules, user-space modules, and regular user-space Web server

daemons to provide dynamic content. Regular user-space daemons

do not need to be altered for TUX to use them to provide content,
but in order for TUX to handle and optionally cache dynamic con-
tent directly, user-space code has to use a new interface based on the
TUX system call.

Static content

Static Web pages are not difficult to serve, but are nevertheless
important, since virtually all images and a large portion of HTML
pages are static. A regular Web server has little added value for static
pages; it is simply a “copy-file-to-network” operation. This can be
done very efficiently from within the Linux kernel; for example, the
Network File System (NFS) daemon performs a similar task run-

ning in the kernel.

Dynamic content
The TUX Web Server handles and optionally caches dynamic
content as well. TUX modules, built in kernel or user space (user
space is recommended), use (and optionally create) objects that
are stored using the page cache. In response to a request for
dynamic data, a TUX module may serve a mix of dynamically
generated data and cached pregenerated objects, taking advantage
of the TUX zero-copy architecture.

This new architecture for providing dynamic content requires a

new application programming interface (API). Existing standard

1 For the complete results, visit http://www.dell.com/us/en/biz/topics/linux_specWeb99.htm

PowerSolutions

‘ INTERNET ENVIRONMENT

APIs for CGI cannot be mapped to TUX’s API
easily. Existing applications such as CGI applica-
tions for Web servers must be recoded to take
advantage of TUXs architecture. TUX can, how-
ever, call CGI programs via its CGI module,
allowing users to convert selected programs that
need TUX’s speed to the TUX API and run other
programs with the standard CGI interface. TUX

of network-delivered

can also redirect requests to another Web server
such as an Apache server, so that a single site may
combine static content, TUX modules, old-style
CGls, and programs written for other Web

server APIs.

TUX performance enhancement

Regular Web servers run entirely in user space, which provides secu-

rity advantages. However, this is detrimental to performance—every

time the server moves data, it performs a context switch into the

kernel. Prior to the release of TUX, some proprietary kernel-space
Web servers that reduced both redundant inbound and outbound

data copies had been developed. (The Linux sendfil e system call

reduces only redundant outbound data copies.) Results from some
experimental in-kernel Linux Web servers showed promise, but to

achieve higher performance goals, Linux needed a new architecture

to overcome several limitations.

Removing the global lock

The first problem to solve was the “big kernel lock” problem. The

Linux 2.0 kernel, while it supported symmetric multiprocessing

(SMP), used a global lock, controlling all kernel functionality. The

Linux 2.2 kernel was an improvement, but a considerable portion

of the kernel functionality still operated under the big kernel

TUX accelerates not only
Web server performance,

but also a wide range

based storage systems.

lock. Processes were designed to hold this lock
only a short period of time, but holding the lock
during a file cache operation, for example, pre-
vented any network traffic from flowing through
the kernel, even when there was no direct con-
flict between the two. Removing the “big kernel
lock” was the first and most important step to

developing good kernel-level SMP performance.

services, including FTP,

Implementing fine-grain locking

file services, and network- The second step was to thread individual subsys-

tems, such as the Virtual File System (VES), the
page cache, the timers, and the network stack.
This would allow these kernel subsystems to run
in parallel with each other and for multiple CPUs
to be used within each subsystem. To maximize the efficiency of
allocating multiple CPUs inside these subsystems, several forms of
“affinity” were implemented: timer affinity, interrupt request (IRQ)
affinity, and process-processor affinity.

Carefully tuning these affinities minimized the overhead of SMP
and maximized the performance of the overall system. Whereas the
Linux 2.2 kernel could only use a single CPU when in kernel mode,
the Linux 2.4 kernel has shown no difficulty using eight CPUs effi-

ciently across a wide range of network, storage, and server loads.

Implementing a zero-copy infrastructure

The third step was the development of a zero-copy infrastructure.
TUX 2.0 now supports true zero-copy disk reads. Whereas TUX 1.0
copied files into a temporary buffer, TUX 2.0 is integrated with the
page cache, and thus uses zero-copy block I/O. TUX 2.0 also per-
forms generic zero-copy network writes by using the generic zero-
copy TCP framework.

THE HISTORY OF TUX

seriously compromised. Nevertheless, even with more
appropriate hardware and the correct operating system and
hardware configuration, the Apache and Linux combination
was slower than the proprietary combination.

This result was a wake-up call to the Linux community.
Linus Torvalds acknowledged that “we had become compla-
cent.” Red Hat took this as a challenge and resolved to put
Red Hat Linux at the top of the performance charts. Dell
offered to assist, providing hardware expertise, benchmark
expertise, and the high-end hardware configurations needed
to design and test new ideas.

The history of TUX began in 1999, when a report from an
independent lab reported that Apache running on Red Hat®
Linux was 100 times slower than a vendor’s proprietary Web
server and operating system. This came as a surprise
because Linux already supported SMP and had a special sys-
tem call, sendfil e, to reduce redundant data copies.

Rather than dismissing them immediately, Red Hat
investigated these results and drew three conclusions. First,
the lab had chosen hardware that was known to support
Linux poorly. Second, the lab had configured the proprietary
operating system to get the most from the hardware, while
they had configured Linux so that its performance was

100 PowerSolutions

Where possible, TUX parses input packets directly, enabling
zero-copy HTTP-request parsing. Even in RAM-limited situations,
TUX now performs full, back-to-back zero-copy I/O. Finally, addi-
tional tuning of the RAID infrastructure in Linux keeps perform-

ance high, even when TUX is forced to go to disk.

Improved design and functionality

The kernel overhaul was critical to TUX’s enhanced performance.
The following comparison of TUX to Apache Web server illustrates
how the TUX-inspired 2.4 kernel improved baseline performance.

Apache Web server was not designed primarily for speed,
but for flexibility and extensibility; therefore, a direct compari-
son of Apache and TUX performance may be misleading. One
powerful and flexible Web serving model uses TUX only for
content that requires very high speeds and Apache to handle
the remaining HT TP workload.

When Apache runs on Linux, the master Apache listens
on port 80 and calls the accept () function. Once a browser con-
nects to this server and the TCP handshake has completed, the
accept system call returns with a new socket. Writing to this
socket sends data to the client, whereas reading from this socket
grabs the HTTP request headers. Once a request has been
accepted by an Apache process and the HTTP request is com-
plete, the Apache process handles this request synchronously—
that is, it will execute only this request, and nothing else. While,
for example, the server reads a file from disk and sends it to the
client, the request blocks all processing of further requests.
Figure 1 summarizes the Apache workflow.

Every operation on Apache can result in an I/O block for differ-
ent reasons, which are summarized in Figure 2. Apache solves this
problem by starting more child processes when there is too much
work, but this creates excessive context switching, in addition to the
large overhead of coordinating child processes and connection
requests. Heavily loaded servers can spend as much as 25 percent of
their CPU arbitrating connection requests. Other proprietary Web
servers use threads instead of processes, but both models have simi-
lar performance limitations.

The TUX architecture represents a new approach to operating
system support for network-delivered services. Traditionally, the
kernel space and user space are separated for security purposes,
leading to a high cost of switching between the two. Traditional
approaches often result in either running too much in the kernel
and making it vulnerable to security violations, or running too
much in user space and duplicating functionality that would be
better managed in the kernel.

TUX overcomes this traditional thinking by providing a high-
level application-protocol interface in user space, while handling

simple tasks purely within the kernel. Only complex requests are

www.dell.com/powersolutions

’ Apache accepts a connection and returns a socket ‘

¥

’ It reads the socket to extract the URL ‘

¥

’ It opens the file found in the URL, relative to $DOCROOT ‘

i

’ It does a read into a user-space buffer ‘

¥

’ Apache does a write into the client socket ‘

Figure 1. Apache workflow

Read can block
on metadata
(indirect blocks)| ==
and on actual
data blocks

Write can block
on TCP
output space

Open can block
if the inode is —
not yet cached

Figure 2. Operation blocking

State o: New request

’ State 1: Prepare request (such as GET_OBJECT) ‘

’ State 2: Request ready to issue (such as SEND_OBJECT)‘

’ State 3: Request completed

Figure 3. TUX state machine

Queue Action

Input queue Valid, but incomplete input; wait for more packets

to arrive

User-space queue | Send a request to user space

Cache-miss queue | Handle cache miss now

Postpone queue TUX itself is done, but more work is needed

Output queue Send a reply right now

Redirect queue Send the connection to the secondary Web server

Finish queue Send a request to logger and be done

Figure 4. TUX queues

passed to user space; other operations such as serving static pages or
CGls are accelerated in the kernel. However, user-space code has to
use a new interface based on the TUX system call.

The TUX state machine (see Figure 3) is replicated across sev-
eral different queues so that, instead of blocking, each part of the
Linux kernel can operate asynchronously. By separating each system
call into atomic elements that can be queued, TUX threads only
block when there is no work to be done, anywhere. Figure 4 lists

several types of queues used by TUX. Because TUX threads never

PowerSolutions

101

‘ INTERNET ENVIRONMENT

102

SPECWebgg results —
Vendor Hardware number of connections ~ Web server Number of CPUs ~ Remarks
Dell PowerEdge 8450/700 7500 TUX 2.0 8 World record for 8 CPUs
Dell PowerEdge 8450/700 7300 IIS 5.0 and Scalable 8
Web Cache (SWC) 3.0
Dell PowerEdge 8450/700 6387 TUX 1.0 8
Dell PowerEdge 6400/700 4200 TUX 1.0 4 World record for 4 CPUs
Compaq® Alphaserver ES40 2304 Zeus 3.37 4
Dell PowerEdge 6400/700 1598 IIS 5.0 4
Dell PowerEdge 1550/1000 2765 TUX 2.0 2 World record for 2 CPUs
Dell PowerEdge 4400/800 2200 TUX 1.0 2
Dell PowerApp.web 120 1070 IS 5.0 2
Dell PowerEdge 4400/800 1060 IIS 5.0 2
Compaq Alphaserver DS20 6/667 1050 Zeus 3.3.5 2
Dell PowerEdge 2400/667 1270 TUX 1.0 1 Previous world record, surpassed by
TUX 2.0 on Intel-based hardware
Dell PowerEdge 2400/667 732 IIS 5.0 1

Figure 5. SPECWeb99 benchmark results®

block other processes, there is no need to allocate more than one
thread per CPU, thereby minimizing scheduling overhead.

But the proof of the system is in the numbers. Figure 5
compares benchmarking results of the new TUX architecture
with those of earlier TUX versions and other proprietary Web
server and hardware combinations.

TUX’s dramatic reduction in resource requirements is
perhaps even more impressive than the speed demonstrated in
benchmark testing. For the two-CPU TUX 2.0 results, TUX
handled over 2,700 connections (a capacity record for two-CPU
systems), and served a 9 GB file set using 2 GB of memory. Most
other systems represented in the SPECWeb99 results required at
least as much system RAM as the file set size.

In the TUX architecture, the kernel does not need to multi-
plex and demultiplex Web connections through polling (or
selecting). This makes it possible to handle tens of thousands to
millions of connections, depending on network bandwidth
requirements, on machines that might otherwise be limited to
hundreds of connections.

The results achieved with TUX as a Web server have been
encouraging, but they are only the beginning. Already, Red Hat
is working to accelerate FTP and other network services. Those
who have built their own servers for proprietary distributed
applications have also begun to consider running TUX on
Red Hat Linux to improve the scalability and performance
of their systems, while preserving their fundamental applica-

tion platform. &

Michael Tiemann (tiemann@redhat.com) is chief technology officer
(CTO) of Red Hat, a leading supplier of Linux and open source
solutions. Michael made his first major open source contribution over
a decade ago by writing the GNU C++ compiler, the first native-code
C++ compiler and debugger. In 1989, Michael co-founded Cygnus
Solutions, the first company to provide commercial support for open
source software. Michael also serves on several boards, including the
Open Source Initiative, the Embedded Linux Consortium, the
GNOME Foundation, the Jabber Technical Advisory Board, and the
Board of Directors of ActiveState Tool Corp.

FOR MORE INFORMATION

For questions or comments about TUX, please
join the tux-list@redhat.com mailing list. For
instructions on joining the mailing list, see
http://www.redhat.com/mailing-lists/

Also visit the Red Hat TUX Web Server product
page at http://www.redhat.com/products/
software/ecommerce/tux

See the Red Hat TUX Web Server Support page
at http://www.redhat.com/products/support/
ecommerce/tux

For the latest development source, see
http://www.redhat.com/products/ecommerce/tux/

2SPECweb99 is a trademark of the Standard Performance Evaluation Corporation (SPEC). Competitive numbers shown reflect results published on www.spec.org
as of 12/31/2000. The comparison presented is based on the top results of Dell and Compaq servers. For the latest SPECweb99 results, visit http://www.spec.org/osg/web99

PowerSolutions

