Kernel Plugins: When A VM Is Too Much

Ivan Ganev, Greg Eisenhauer, Karsten Schwan
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

{ganev,eisen,schwan}@cc.gatech.edu

Abstract dictable availability of platform resources and dynam-

)] ically varying user needs. Two methods of addressing
This paper presenternel pluginsa framework for dy- these issues have traditionally been resource reservation
namic kernel specialization inspired by ideas borrowedyng system adaptation. Because of its ability to provide
from thuahzgﬂon resgarch. Plugins can be createdyjym guarantees, the former has enjoyed strong popular-
and updated inexpensively on-the-fly and they can exepy i real-time and mission-critical applications. Such
cute arbitrary user-supplied functions such that neithegj;m guarantees, however, come at the cost of markedly
safety nor performance are compromised. Three keyower resource utilization and that fact has made adapta-

techniques are used to implement kernel plugins: (1}jon the method of choice for non-critical and consumer
hardware fault isolation, (2) dynamic code generationapplications [2, 20].

and (3) dynamic linking. Hardware fault isolation pro- .)
tects kernel-level services from plugin misbehavior, dy- 1€ need for adaptation has spurred an extensive body

namic code generation enables rapid online creation off résearch into dynamically extensible systems at all
arbitrary plugins, and dynamic linking governs the ker- levels of the computing and networking infrastructure,
nel/plugin interface. from library-based middleware techniques [6, 10], to ex-

We discuss the design and implementation of the kerIenslble operating systems [4, 12, 15, 22, 27], to pro-

nel plugin facility, as well as its advantages and short-gr""mm"’lble network processors [13], and even active
comings. Its use is demonstrated by a range of micro-nEtWOrks [24].
and macro-benchmarks and a real-life application feaTechniques for implementing runtime extensions must
turing plugins that dynamically transcode images servedalanceperformancewith safetyconcerns. Efforts to

by a high-performance kernel web server. Benefits reachieve higher performance can degrade the safety and
alized from plugins can be both qualitative (adaptingsecurity of services, while efforts to bolster security
services to clients’ needs), and quantitative (improvingmay negatively impact performance by requiring time-
performance through co-location of application plugin and resource-consuming runtime checks. Consequently,
code with kernel services). Plugins are implemented ira wide variety of solutions for extending kernel-level
GNU/Linux on the Intel x86 platform. Reported per- services have been proposed, ranging from approaches
formance results include plugin upcalls in 0.45-0.62, based on ‘little languages’ [16], to entirely new operat-
dynamic code generation in4.S, and linking/unlinking ing system kernels [4, 12]. One solution is to place ex-
in 3.1/1.6 .S for an image grayscaling plugin — a dy- tensions inside a virtual machine (VM) [25], completely
namically code generated 66-line function written in aisolating them from the rest of the system and thereby
subset of C. All results are measured on an 866 MHzavoiding the need to trust them. The simplicity and

Pentium III. safety of this approach is accompanied by some draw-
. backs, however, including: (1) the performance of vir-
1 Introduction tual machines is inferior to that of native hardware [22],

Recent years have seen explosive growth in ubiquitousl)"iInOI (?) multiple OSes running in muIt_lpI_e VM.S can
available computing power and network bandwidth, andcomphcate resource sharing and result in inefficient re-
we have witnessed the advent of novel products like>OUrce usage.

smart mobile phones, wireless PDAs, and tablet PCsOur research seeks a middle ground between the com-
These advances have spurred a wide range of applplete isolation offered by virtual machines and the un-
cations, including Internet radio stations, peer-to-peeisafe practice of system extension by adding new ker-
networks, and cellphone-based photography. Commonel modules. Our approach combines the use of virtu-
to all such ubiquitous devices and applications is thealization techniques with dynamic binary code genera-
need to guarantee high quality of service despite unpretion and dynamic linking, resulting in theernel plugin

framework for runtime kernel extension. been proposed:

A kernel plugin is made up of one or more application- Programming Language Technigues

supplied program functions that extend some kernelin the SPIN operating system, the safety of kernel exten-
level service. It is installed upon a client application’s sions is based on the properties of the Modula-3 type-
request and runs on its behalf. Plugins are designedafe programming language and a trusted compiler [4].
to cooperate with, rather than replace, kernel-level serFurthermore, because SPIN's kernel extensions use rela-
vices. Their interactions are controlled, so that a plugintively heavyweight external compile/link/execute facili-
only has privileges explicitly granted to it by the kernel. ties, creation costs must be amortized over extended and
A well-defined plugin/kernel interface governs all such frequent use. As a result, SPIN extensions are best suited
interactions. The efficient plugin mechanism permitsto long-lived functionality.

rapid creation, update, and removal of plugins, therebyrhe Open Kernel Environment (OKE) [5] employs a

encouraging applications to frequently avail themselvesyariation of the same idea, substituting the type-safe
of the mechanism’s advantages. Modula-3 with Cyclone, an ‘elastic’ customizable ver-

Plugins are realized for the standard Linux kernel andsion of C, and trust management integrated with the
the popular x86 hardware platform, offering a safe, effi-compiler.

cient service extension mechanism to a broad set of dap, contrast to these schemes, kernel plugins are designed
velopers. Our implementation achieves both high pertg pe lightweight, agile, and easy to adapt on-the-fly.
formance and safety by integrating three key techniquespmgin creation, invocation, and removal overheads are
(1) hardware fault isolation, (2) dynamic code genera-,ery Jow and do not involve execution of external com-
tion, and (3) dynamic linking. Hardware fault isolation piers or linkers. Furthermore, our facility implements

protects kernel services from misbehaving plugins. Dy-hoth preemption and isolation and thus does not need to
namic code generation enables rapid runtime creatiogyst any binaries outside the kernel.

of custom plugins. Dynamic linking governs the ker-

nel/plugin interface. Proof-Carrying Code

. . Proof-carrying code [18] is a mechanism for safety ver-
A key result of our research is the high performanceiication of code that requires that a ‘safety proof’ is at-
of plugins, made possible by using isolation techniquegached to each piece of code, certifying its adherence to a
borrowc_ad from virtualization researc_h [8, 9, 25], a”_d_bypre-defined ‘safety policy’. The proof is such that quick
promoting frequent system adaptation through efficient yjigation is possible without cryptography or external

plugin creation and deletion. For instance, plugin in-yeferences. Despite those desirable properties there are
vocation costs are 0.45-0.625 on an 866 MHz Pen- {ree drawbacks to proof-carrying code.

tium 11l dep_e_ndlng upon the _number of plugin Parame- 1o first and foremost one is that generating a compre-
ters. In addition, plugin creation and setup costs are low,

therebv encouraging their use in wavs that are not ea hensive safety policy for non-trivial code is very hard.
thereby ging way . Sthe difficulty results from the fact that the policy needs
ily implemented with coarser-grain mechanisms. Cod

:)) 0 cover all obvious and implied rules and invariants of
generating a sample 66-line C code plugin on the sam e execution environment. Furthermore, there is no wa
platform takes 4n.S, while linking and unlinking take | ' y

. to guarantee the completeness of the policy itself. Sec-
3.1uS and 1j6“S' respe'cnvely.] ond, the method has scaling issues because the safety
In the remainder of this paper, we describe the dey o4f size grows large rather quickly. As an example,
sign and implementation of kernel plugins on Intel x86 ; tjyial function summing two numbers under a basic
platforms running the GNU/Linux operating System. safety policy is quoted to have 60 bytes of code and 430

Kernel plugins are evaluated with micro- and macro-pyieg of safety proof [18]. Finally, no automatic proof
benchmarks, as well as with a realistic application — alyenerators exist.

accelerated web server augmented by a plugin specializ; . : . :

) . : : . ernel plugins provide an alternative — an engineer-

ing the data it delivers to clients. This example, evalu-. . : .
. S : : ing solution that achieves native code performance and

ated in detail, is on-the-fly transcoding of image data,

streamed from the server’s disk to its communicationsafety W'th(.)ut the burden of a proof or type-safe lan-
link. guage restriction.
Software Fault Isolation
2 Related Work SFI approaches [26] rely on rewriting the machine code
of extensions so that memory accesses and jump targets
While safe runtime kernel extension has previously beerare checked and instrumented, thereby restricting them
addressed in the literature, unfortunately such functionio the scope of the extension’s protection domain. Only
ality is not generally available in commonly used operat-after suchsandboxingis an extension allowed to exe-
ing systems. Several classes of solution techniques hawaite. Program interpretation is a related approach in

which extensions are executed by a trusted interpretgoroach employed by all x86 virtual machine projects of
that enforces safety. which we are aware, as well as the implementation of
Typical examples of such extensible kernels areintra-address space protection in Palladium.

VINO [21], which relies on SFI, and packet filters like Unlike VMware and VirtualPC style VMs, however, we
the Berkeley Packet Filter [16], which implements an in-do not strive to provide the illusion of a dedicated ma-
terpreted ‘little language’ for custom, in-kernel, packet chine. Instead, we define a streamlined, lightweight ex-
filtering rules. The primary problem with these ap- ecution environment in a manner which is more mean-
proaches is that the price of safety is non-trivial per-ingful and fitting to a plugin’s purpose of customizing
formance degradation, which makes them less appeakxisting services rather than deploying new ones. Unlike
ing for high-performance applications. The performanceExokernel, Denali, and Xen, we do not modify host ar-
of type-safe language extensions is quoted to be 10%dhitectural assumptions and require no porting or reim-
to 150% worse than regular C code, and SFI can be aslementation of host-kernel subsystems that do not need
much as 220% slower [8]. In comparison, kernel plu-to be extensible. Finally, unlike Palladium we strive
gins do not incur per-instruction execution overheadsto achieve finer granularity and enable runtime online
Plugin code generation is a one-time cost, significantlyadaptation while keeping setup overheads low. Experi-
smaller than compilation alternatives and amortized ovemental results presented in this paper demonstrate that
the lifetime of the plugin. kernel plugins experience no additional runtime costs
Hardware Fault Isolation per instruction. We also show that the overhead of pro-
HFI relies on hardware-provided memory managementected control transfers to and from plugins are both
features to enforce the isolation between the kernel andmall and predictable.

extensions. This is the same method that traditional op-

erating systems use to isolate their kernels from user3 Motivation

space applications. It also forms the basis for most

‘'virtualization’ and ‘isolation’ systems, which can be Previous work [4, 8, 12, 20, 21, 22] has already demon-
viewed as very coarse-grain extension mechanisms. Nditrated that application-specific extension of operating
table examples include the VMware [25] and Virtual System kernels can be a key contributor to attaining high
PC [9] virtual machines, as well as the library operating€nd-to-end performance. A wide range of specializa-
systems supported by Exokernel [12], the Denali isolations exist that can easily be realized using plugins —
tion kernel [28], and Xen [B- a new VM monitor that the spectrum of opportunities spans virtually all subsys-
defines an abstract VM to which kernels are then portedtems of a modern OS kernel. Plugins could augment
reportedly achieving close to native performance. a file system with custom caching or prefetching algo-
Palladium [8] also uses hardware features to achiev&thms, or modify a TCP stack’s back-off strategy to re-
extension isolation, but on a somewhat finer grain andl€ct loss properties of a particular client's link. They
without striving to provide a complete virtualization en- €ould énhance core system services like scheduling, by
vironment. It limits its scope only to untrusted kernel Providing scheduling hints in the guise of payoff func-
modules, and uses segmentation and privilege-checking®ns, or extend memory management by specializing
hardware to ensure that they cannot interfere with théh€ behavior of page replacement algorithms. Finally,
kernel proper. While Palladium’s strategy results in bet-X€rnel plugins can even be useful in high-performance
ter performance compared to virtual machines, it still re-kernel servers like the Linux accelerated web servers
stricts system adaptation to relatively coarse-grain kert UX and kHTTPd. Some examples of the rich set of
nel modules, and limits the dynamic use of such exten@Pplication-specific plugins that can be deployed are (1)

sions because it requires off-line module compilation. dynamic compression and decompression of data to ef-
Kernel Plugins fect trade-offs in server vs. client CPU needs and/or re-

Like some of the above approaches, we choose to enggired tran;mission bapdwidth', (2)’runtime downsam-

ploy a hardware-based scheme, exploiting the x86 arplm_g techm_queg reflecting a _cllents_ preferences for fi-

chitecture’s segmentation hardware and unused privileg elity vs. timeliness, (3) region-of-inierest type trans-

rings to provide isolation. Specifically, the x86 hardware o_rmguons, removing unnecessary data from a commu-
provides 4 ‘privilege ring levels’. Typical operating sys- hication stream, etc.

tems use ring-0 (most privileged) and ring-3 (least priv- The following example kernel plugin usage scenarios
ileged) for kernel and user modes, respectively. Kernehave guided our research:

plugins utilize one of the unused privilege rings. Thus, Smart Filtering

memory protection and control-flow restrictions are en-One usage of plugins is to permit end users to directly af-
forced entirely in hardware, causing no discernible perfect data production, transmission, and reception at the
formance degradation. This is a popular isolation apkernel level. For instance, if certain data is not of current

interest to the recipient, it can be eliminated early in thelinking.

receiving OS kernel, rather than being transferred to useHardware fault isolation protects the core kernel from
level only to be discarded. Similarly, if only subsets of the untrusted plugins and helps to avoid costly per-
data are of interest to specific recipients, then sourcemnstruction runtime overheads. It provides an engi-
based and client-specific data filtering may be imple-neering solution to the isolation problem without the
mented with plugins [10]. Alternatively, plugins can be complexity and overheads inherent in programming-

used for ‘valuation’ of information being captured, pro- |anguage techniques, proof-carrying code, or software-
cessed, transmitted, or received, by applying payoff ofault isolation.

utility functions to it. Research has shown that such util-\y/hile a library of pre-compiled adaptation strategies

ity functions can be a very useful adaptation tool. that clients can choose from can go a long way, some-
Intelligent Introspection o times applications need tailor-made solutions. Adapt-
Another possible domain of use for kernel plugins is sys-ing file system prefetching to irregular access patterns,
tem monitoring and instrumentation [23]. The idea is toor filtering out or digesting parts of complex objects to

deploy code that is tailor-made for its specific purposetransfer are but a few such examples.

and to allow it to evolve dynamically with the needs Dynamic code generation, thus, serves a two-fold pur-
of the client, instead of having to measure and exporg

-) : ose. First, it provides a common language for arbi-
a large and generic set of metrics. For instance, an NF ary and cross-platform runtime adaptation in a het-

client experiencing degradation of service can dy”am'erogeneous environment, and second, it promotes per-

ically instrument its server's disk and network subsys-tqrmance by translating extensions into native machine
tems to discover where the bottleneck is and adapt ogqqe able to run at full speed on bare hardware.

possibly work around it. It is important to realize that we do not mean to dis-

Runtime Adaptation _ . count the usefulness of libraries of pre-compiled plug-
A final example of a kernel plugin usage scenario is Ojs gych libraries are certainly instrumental for com-

enable low-overhead dynamic self-adaptation of a sySpjay, static codes like fast Fourier transforms, JPEG en-

tem’s behavior, perhaps as a response to changes in MOf5ding/decoding, etc. Rather, we propose to augment

itored conditions. For instance, the NFS client from ourg,qp, jipraries with a complementary mechanism that is
previous example determines that there is a disk heagyq to adapt to variable runtime conditions.

scheduling bottleneck and adapts by pushing into th
NFS server an aggressive prefetch algorithm customize
to its current access patterns.

ynamic linking controls the kernel/plugin interface. It
enhances the plugins’ expressive power by permitting
collaborative compositions of plugin functions to per-
. form complex tasks.
4 Design P

4.1 Approach 4.2 Plugin Runtime

The success of any OS facility is strongly linked to its The‘ base plugin r_nechanis,m is a simple abstraction of
performance characteristics and ease of use. Thus, & ‘€xecution environment'. This environment, termed
principal goal of our framework is to provide an effec- the plugin runtime registers, handles, and manipulates

tive, efficient, and easy to use extension mechanism. Thif® kernel plugins of a single extensible entity. It can
following properties guided our design: be thought of as defining a streamlined abstraction of

.) ~a tiny virtual machine. As our aim is not to emulate
e Generality: The API should be generic and avoid g particular systems platform but to create a clean and

targeting a specific kernel service. efficient extension environment, we are able to design
¢ Functionality: Unnecessary restrictions should be g, simplicity and reap the benefits of efficiency.
avoided on what constitutes valid plugin code. Plu-

gin creation, use, and deletion should be possibl
in runtime, using both statically pre-compiled and
dynamically generated code.
e Safety: The core kernel should be protected from
direct or unintended manipulation by plugin code.
e Efficiency: Implementation overheads should be
less than or comparable to alternatives.

Each runtime has a restricted, but well-defined API pro-
Q/iding the means to add new plugin functions, as well as
to execute and delete existing ones. Multiple runtimes
may exist simultaneously at any given time, each manag-
ing the extension functionality of a single client or client
instance. Each instance of an extensible entity creates its
own runtime and dynamically populates it with client-
supplied plugins. The resulting multiplicity of runtimes
Kernel plugins attain these properties by combiningserves a threefold purpose. It allows extensibility on
three key technologies: (1) hardware fault isolation, (2)a per-instance basis, prevents plugin namespace pollu-
dynamic code generation, and (3) lightweight dynamiction, and isolates related or cooperating plugin functions

within a single runtime. Actual coordination and coop-
eration of plugin functions of a single client is left to
the client itself, with the runtime only providing the glue
primitives to enable it.

As an illustration, consider two separate kernel services:

a kernel http daemon (as in our sample application), and Figure 1: Built-in plugins’ prototypes
a kernel NFS server. Each server instance creates a run-

time for its plugins and populates it upon its clients’ re-
quest. The http daemon’s threads might install any numf
ber of image manipulation plugins, whereas the NFS
daemon’s threads might install various data compres-

sion algorithms. The separate runtimes ensure that the Figure 2: Gate function for invoking plugins
namespaces of unrelated plugins belonging to different

clients are disjoint and that unrelated data and symbols

cannot be named or invoked.

Built-in Plugins

Sometimes application-specific plugin code will need to
call on certain kernel functions to achieve its goals, e.g
enqueuing a packet or reading/writing a block from/to
disk. To accommodate suchllbacksseamlessly within
our framework they are represented as a kind of plugin

These ‘built-in” plugins are explicitly added to the run- avoided. Another option is to place plugins within the
time by the kemel service It gxtends. Eyen though theykernel privilege ring but to restrict them to dynamically
act as kernel callba_lck_s, .W'th'_n the restricted plugin en'generated code, thereby guaranteeing that they cannot
vironment they are indistinguishable from a regular ‘dy-; .o tare with paging and segmentation hardware. The

namic: or user-suppllgd plugin. That is to say that theyformer approach allows the use of arbitrary code in plu-
are invoked and used in exactly the same fashion. Imme-

.) . J . gins at the expense of requiring somewhat complicated
diately after its creation, a runtime’s namespace contaln?r

v a default set of available built-ins listed in Fi 1 ansfer of control between privilege rings. The latter
only a detault set ot avaliable buli-ins ISted In Figure 1. proach invokes plugins just like ordinary kernel func-
They perform basic nhamespace maintenance expect

tricts th icall .
from the dynamic linkercreate() . lookup() , and & ns, but restricts them to dynamically generated code

delete() . On x86 hardware, the OS kernel runs in ring-0 (highest-
The availability of callbacks poses the question of howprivilege). We allocate memory to hold all plugins’
to handle kernel resources acquired through them in theode, data, and stacks in ring-1, thereby guaranteeing
event that a plugin needs to be terminated. Because dhe kernel memory’s safety. In contrast, callback built-
the rich variety of kernel resources, we considered buildins are invoked through a hardware trap, not unlike sys-
ing a system that tracks all of them to be impractical. Wetem calls, and run in ring-0, that is, they run in the OS
believe that the runtime’s owner service is able to handléernel. Control and data flows between privilege rings
the cleanup of the limited number of kernel resources itare governed by the host kernel through hardware traps.

makes available to its plugins in a much more efficient) .
way, if at all needed, e.g. through callback WrappersPIuglns have full access to their parameters and local

long create(runtime_t * rt, char * code, char * name);
long delete(runtime_t * rt, char * name);
long lookup(runtime_t * rt, char * name);

long call_plugin(int id, runtime_t * rt, ...);

whereas others like the SPARC and the PowerPC pro-
vide only 2 privilege rings for supervisor and user mode,
respectively. Kernel plugins can still be implemented on
the latter in at least two different ways. One is to place
plugins in pinned, unpaged memory in the user-level
privilege ring. Isolation is enforced by the hardware
and many overheads associated with using a process are

tracing resource usage, etc. variables allocated on the plugin stack. They also have
full access to a pool of ring-1 memory, effectively acting
4.3 Memory Model as a heap. The contents of the heap persist between plu-

gin invocations, so it is also used for static variables. The
The memory model of the plugins’ execution environ- heap is allocated on a per-runtime basis, which means
ment is influenced by the choice of hardware isolationthat all plugins within a runtime share it and can use it
mechanism. The scheme exploits features of the Infor global variables, communication, and cooperation.
tel x86 architecture’s segmentation and protection hardAdditionally, it is possible to provide select plugins with
ware by placing all plugins into an unused privilege ring. read-only access to parts of the kernel proper's memory.
While such hardware dependence may seem restrictiv&Vhile such a feature could simplify the implementation
the ‘privilege rings’ concept on which it relies is avail- of system monitoring plugins or the sharing of data be-
able on all modern CPU architectures. The most populatween the kernel and plugins, it can also have security
ones, Intel's IA32 and 1A64, provide 4 privilege rings, implications so it should be employed judiciously.

additional ‘built-in’ plugins. We continue with a more

4.4 E-code Language Specification
In our design, plugins can be specified either as pregetaned description of the namespace manipulation in-

compiled machine code, or in E-a®é- a language akin terfacg.

to ‘C [19] and developed as part of the ECho high- Creation o B

performance event-delivery middleware [10]. E-code isEach plugin function is specified by a tuple that de-
a fairly complete subset of the C language that compi|e§‘3”b93 it completely. The tuple consists of the following
to native machine code at runtime using a dynamic codé€'ements:

generator that processes one function at a time. A more ¢ Runtime pointerit refers to the runtime this func-
detailed list of E-code capabilities follows: tion is to be created in. All functions’ prototypes
have a tuntime _t «’ first argument serving as
a link to their runtime environment and allowing
them to interface with other functions. It provides

e Datatypes: E-code supports the following ba-
sic types: char , int , float , double , and
boolean . It also supports structures, pointers (in-
cluding pointers to structures), and pointer arith- closure (in the mathematical sense) of the name-
metic. space with respect to the operations of its functions.

e Variables: Global variables are allocated on the ® Code: This is either an ASCIIZ string specifying
heap, which is a per-runtime pool of ring-1 mem- a single E-code function or a pre-compiled relo-

ory persistent across plugin invocations. Local vari- ~ Catable machine code dump. In the former case
ables are allocated on the plugin stack. the runtime translates the E-code function into ef-

e Function calls: Plugins are allowed to perform ficient, native machine code at creation time. The

function calls only to other functions or callbacks
registered within their runtime. Appropriate trap or
trampoline code for the invocation is generated au-

translation is a one-time cost and is amortized over
all subsequent executions of that function. Trans-
lation costs are relatively small, thanks to the ef-

ficiency of E-code’s dynamic code generator [10].
For example, the image grayscaling plugin used in
our experimental evaluation consists of a 66-line E-
code function which translates in only"S, com-
pared to the 70@n.S it takes to spawn an external

tomatically and transparently.

e Function prototypes:Plugin functions must con-
form to a prototype convention — their first argu-
ment must be arintime _t ' to provide link-
age back to their runtime. Furthermore, their result
type is restricted téong , however, that is not a se- compiler (with compiler binary already present in
vere restriction since most basic datatypes are eas- the OS buffer cache).
ily castto dong value, with the notable exception ~ ® Name: A string constant providing the name this
of the class of floating point numbers, which must function is to assume in the runtime’s symbol table.
be passed back by reference. After its creation, a function can be looked up and

e Language:E-code supports the C operatofst called upon using that name.

loops,if , andreturn statements. Deletion

Currently, E-code doesot support while loops, Deleting a function is a straightforward operation that

switch statements, unions, and function pointers,deallocates the code and static data resources associ-

though they do not pose conceptual difficulties and carfited with it and then unlinks it from the symbol ta-

be implemented if needed in the future. ble. Thedelete() built-in plugin’s prototype is self-
explanatory and also appears in Figure 1.

4.5 Interface Invocation

The kernel/plugin interface consists of the runtimeA function is available for execution immediately after
namespace manipulation routines, any additional kerndfs creation. The actual invocation, however, is not as
callbacks that an extensible subsystem instance exportgvial as a simple function call because of the privilege
to its plugins, the plugin invocation mechanism, and thefing-based isolation scheme.

pool of plugin static memory. From Kernel Space: Normally, hardware does not
The runtime namespace manipulation routines displayeéllow higher-privileged code to call untrusted, lower-
in Figure 1 are implemented as kernel proper functionsprivileged code. To circumvent the problem our frame-
Thus, they are directly available to the kernel properwork provides a ‘gate’ functiogall _plugin() that
and are isolated from plugins, yet available to them inencapsulates the implementation complexity and hides
the form of ‘built-in’ plugins. Besides that mandatory hardware details. This makes invoking any plugin as
minimum, each extensible service can augment the insimple as calling the gate function whose prototype is
terface by exporting more kernel callbacks of its choos-shown in Figure 2.

ing, e.g.sendmsg() andrecvmsg() ,inthe formof The gate function looks up the target plugin’s entry in its

runtime’s symbol table and copies the declared number, Logical Address o

of parameters from the kernel’s to the plugin’s stack. It \ Seg. Selector \ Offset
then invokes the plugin by branching to its address and

sidestepping the hardware restriction. The mechanics of

the latter are described in more detail in the implemen- Descriptor Table
tation section.

From Plugin Space: To encourage function composi-
tion we provide a similar gate function in the isolated ad- Segment | BaseAddress 17
dress space, permitting plugin functions to invoke each Descriptor
other. It is syntactically and semantically identical to its
counterpart employed from the host kernel despite sig- 31 0
nificant implementation differences. | Linear Address |
Invoking a plugin function from another one has over-
head akin to that of a simple function call. The reason for
this being that control flows within the isolated address

Figure 3: Intel x86: logical to linear address translation

space and no protection boundary needs to be crossed. 15 8 2 10
The benefit is that this enables plugin functions to coop- Index TI | RPL
erate easily and cheaply, thereby increasing the utility of 9 i
the model for complex extensions. Table Indicator

Invoking a kernel callback (built-in plugin) from a dy- i)z (L;DD;

namic, user-defined one, however, does require crossing Request Privilege L evel

the protection boundary from ring-1 back into ring-0.
This is achieved by means of a hardware trap, the details Figure 4: Intel x86: segment selector layout
of which are hidden in the gate function’s implementa-

tpn and.explameld further in the next sectloQ.] ~address space isolation within the Linux kernel. We
Finally, irrespective of whether the call originates in pyiefly describe the method next; for a full discussion,

ring-0 or ring-1, invoking & plugin requires naming it un- he reader is referred to the original papers and Intel
ambiguously, i.e., by its name and runtime context. Un-yocumentation.

fortunately, matching name strings in the symbol table . : _ o
. . 4 The fundamental idea is to allow application-specific
repeatedly is needlessly expensive. To avoid that over- . T
X : . ._~'code to run in the core kernel by placing it in a separate

head, we map the string name to an integer id unique . ; .
" : . .protection domain and relying on hardware to enforce
within each runtime, thereby speeding-up lookup and si-

multaneously making id caching much easier. All built- = & NW domain is an address space — a proper sub-
: y maxing ic 9 : o set of the Linux kernel’s virtual address space. While the
ins are also assigned fixed well-known integer ids. Th

)) o) Skernel itself can access the plugins’ address space freely,
mapping between dynamic plugins’ names and integer., . .
N . plugins cannot, in general, access the larger kernel mem-
ids is performed by theokup() plugin. ory
5 Implementation Segmentation .

. 3 ~Inpractice, domains are implemented as protected mem-
A prototype of the kernel plugin facility has been im- ory segments directly supported by the hardware MMU.
plemented in recent stable-tree Linux kernels (versionsegments are ranges of consecutive addresses described
2.4.18 and 2.4.19). The prototype implements hardwargy base address and length. The operating system main-
isolation, dynamic code generation, and dynamic linkingtains linear tables of ‘segment descriptors’ for all seg-
fully, though details of the design are still evolving. This ments. In addition to base and length, each segment de-
section describes some relevant implementation detailscriptor stores privilege, access, and type information for

and their implications. its segment. Two tables of descriptors are active at any
. given point in time: the Global Descriptor Table (GDT)
5.1 Hardware Fault Isolation and a Local Descriptor Table (LDT). While the former is

Our plugin isolation scheme is a clean re- staticandimmutable, the latter is a per-process structure.

implementation of a popular concept employed inFigure 3 depicts how segmentation addressing works on
a number of systems, both virtual machines and otherghe x86. Logical addresses are composed of a 16-bit
e.g. VMware [25], Palladium [8], etc. It exploits segment selector and a 32-bit offset. Segment selector
features of the segmentation and privilege checkingralues are used to index into segment descriptor tables.
hardware of the Intel x86 architecture to achieveThe layout of a segment selector is shown in Figure 4.

It contains a linear table index, a one-bit Table Indica-A third segment descriptor can be defined overlaying
tor (T1), and a two-bit Requested Privilege Level (RPL). part or all of the kernel’s ring-0 memory but accessible
The Tl determines which of the two currently active ta- in read-only mode from ring-1. Although such a seg-
bles the selector is referring to, whereas the RPL is usechent has the potential of simplifying or optimizing ker-
in privilege checks. The chosen descriptor entry pro-nel/plugin data interactions it has to be used with great
vides a base address, a limit to check the offset againstare because of possible security implications. It can be
read/write/execute permissions, and a descriptor privithought of as an optional feature for cases when perfor-
lege level (DPL). mance benefits outweigh potential security concerns.

The CPU maintains a Current Privilege Level (CPL) for Runtimes are created at the request of kernel services.
the currently executing instruction. The DPL is com- Each runtime’s control structure contains pointers to its
pared to the CPL and RPL for each memory access. Iistack and heap as well as a symbol table of registered
general, CPL and RPL need to be numerically less thamplugins. The control structure is allocated in ring-0 ker-
or equal to the target segment’s DPL (i.e. at the same onel memory to protect it from being tampered with by
higher privilege) in order for access to be granted. Fomplugins. The built-in plugins are implemented as trusted
a complete explanation of access permission checks arkernel subroutines enabling them to modify the control
motivation for the existence of the RPL the reader is re-structures during operations like creation or deletion of
ferred to Intel documentation [1, pp. 105-140]. All ac- dynamic plugins. In contrast, the heap, stack, and code
cess violations, such as pointer dereferences to memoigf plugins are all allocated within ring-1 memory.

outside of the ring-1 segment (including NULL pointer control Transfers

dereference), attempts to execute an illegal or protectefassing control from a plugin in ring-1 to the kernel in
instruction, etc., result in an exception being thrown anding-0 is straightforward, by use of a trap gate similar
a trap to the kernel proper to handle it. Additionally, t the one implementing system calls from user-space
the owner service allows each plugin a quantum of time(ring-3). The hardware handles the trap and passes con-
in which to complete. Overrunning that quantum is de-trg| to the kernel in a protected fashion. Any state needed
tected by a periodic timer interrupt and also results infor returning to ring-1 is saved on the kernel stack. If the
forceful preemption and a trap to the kernel. control transfer is to be one way (e.g. return from a plu-
Our current method for dealing with offending plugins is 9in) rather than two way (e.g. kernel callback), then that
immediate termination. An interesting future direction state is simply cleaned up by the kernel trap handler.

we are considering is to implement a recovery mechapassing control from the kernel to a plugin, unfortu-
nism, allowing extensible services the choice to termi-nately, is more difficult. There is an inherent asymmetry
nate or to continue a plugin based on custom per-servicg control transfers between privilege levels because the
policies and the type of the failure or misbehavior. hardware is designed to prohibit high-privileged code
Initialization from invoking lower-privileged code. To sidestep the
At boot time, the plugin facility allocates a region of Problem, a stack frame is carefully forged (on the ring-0
memory to be used exclusively for plugin code and datastack) that emulates the state the stack would have had if
A simple first-fit private memory allocator is initialized it had been called from ring-1 and then executesta

with the parameters of the pool and is used to allocatdnstruction to the forged return address. This causes the

memory for structures to be placed in the isolated area.CPU to switch into ring-1 and start execution of the tar-

: ._geted plugin function.
Two new segment descriptors are computed and |n-g piug

stalled in the GDT, each covering the whole isolated!Nterrupts o _
memory pool. Both descriptors are assigned the sam¥86 interrupt handlers run in ring-0. In case an inter-
ring-1 privileges but different types. The type of the first rupt occurs_wh|le the _CPU is already executing in kernel
one is set to ‘code’ and it is used to address executabl10de, the interrupt simply grows the current stack. If,
plugin code. The type of the second one is set to ‘data’however, t_he CPUis executingin a p_r|V|Ieg_e Ievelldn‘fer-
and it is used for data manipulations involving plugin €Nt from ring-0, then it switches to ring-0 immediately,
stacks and heaps. This simple overlay scheme was ch§€rforming the necessary stack swap todbgtomof the
sen to ease the initial implementation effort by avoidingkernel stack. This behavior is predicated on the premise
the need to parameterize the memory allocator for disthat an interrupt occurring while in user-space has no
joint code and data memory pools. It could be replaced‘emd state to preserve, so the new frame can start from
with a split code and data design in the future, to pre-the base of the kernel stack.

vent the possibility for self-modifying plugin code and It is not hard to see how this otherwise normal behav-
to limit the amount of damage a misbehaving plugin canior can cause trouble when interacting with ring-1 plu-
wreak upon other plugins. gins, however. The aforementioned premise is negated

because pluginare, in effect, a part of the kernel, yet difficult it would be for a plugin to interfere with plugins
they execute outside of ring-0. If an interrupt fires while in other runtimes.

a plugin is running, the CPU switches immediately to aTo address this issue, we are considering developing our
ring-0 handler and uses the kernel stack. Unfortunatelyscheme further to include two GDT descriptpes run-
starting from thebaseof the stack it overwrites the state time, to describe each runtime’s code and data sepa-
already there, accumulated prior to invoking the plugin.rately from other runtimes. In this way, we can exploit
This effect is due to the unconventional use of privilegethe segmentation hardware further and achieve isolation
rings to implement what amounts to protected upcalls ohot only between the kernel proper and plugins but also
which the hardware is unaware. among runtimes. Such an enhancement would not add

There are a few possible solutions to this problem: (1)any runtime overhead and is under active development.
disable interrupts while plugins are running, (2) save an C
restore the kernel stack before and after plugin invoca* .2 Dynamic Linking

tions, and (3) trick the hardware grow the stack upon As part of the provided trusted runtime environment,
an interrupt in ring-1. a dynamic linker operates on a runtime’s symbol table

While the first solution does not add any overhead toand implements symbol creation, lookup, execution, and
plugin execution, it has the undesirable effect of block-deletion. The symbol table is an array of symbol struc-
ing interrupts for potentially non-trivial lengths of time. tures, and looking a symbol up in it has linear complex-

In the kernel, blocking ofll interrupts is allowed only ity. This choice was made to simplify the initial imple-

for the shortest times, since it could lead to loss of im-mentation and will not result in problems unless a very
portant device interrupts and disrupt the operation of pelarge number of plugins are registered within a single
ripherals. Moreover, such a solution would also preventuntime. Re-coding the symbol table as a hash table may
the implementation of plugin preemption, which relies be used to address this issue should it become necessary.
on a periodic hardware timer interrupt. Clearly, this ap-
proach is unsuitable.

The second solution, saving the kernel stack’s state belhe E-code dynamic code generator operates by pars-
fore plugin invocation and restoring it immediately after ing the source language and emitting the appropriate in-
that, is workable. It was our first implementation, but structions into a memory buffer from which they can be
it increased plugin invocation overheads and introducedXecuted directly. Currently, E-code supports dynamic
significant irregularities in their cost, due to the unpre-code generation for Intel x86, MIPS, StrongARM, and
dictable amount of state (up to a page frame in the worsBun SPARC (32- and 64-bit) processors. Support for In-
case) that needs to be saved and restored each time. tel's 64-bit EPIC architecture is under development.

These disadvantages led us to come up with our final sol € 0de generator is subroutine-based and does not re-

lution. It is based on an architectural programming trick uire invocation of external binaries. Code is emitted
that fools the interrupt handling hardware igmwing ~ during parsing in the form of virtual instructions for an
the kernel stack rather than overwriting its bottom, de-id€alized RISC architecture. Simple, low-hanging fruit
spite the fact that the interrupt occurs outside of ring-0.0Ptimizations are applied (constant propagation, regis-

The trick involves careful manipulation of the stack basel€" rénaming, and limited common subexpression elim-

pointer in the task state segment structure (TSS) of thdhation), and then the virtual instructions are mapped to
CPU [1]. This allows us to continue servicing interrupts their physical counterparts for the target architecture.
while plugins are running, yet, at the same time avoidE-code’s early versions were based upon Icode, an in-
the unpredictability of kernel stack saving and restoring.ternal interface developed at MIT as part of the 'C
As an added bonus, the overhead of this method is exProject [19]. Icode is itself based on Vcode [11], also de-

tremely small, its implementation consisting of only a Veloped at MIT by Dawson Engler. E-code’s recent ver-
few assembly instructions. sions, however, are based on DRISC, a low-level DCG
package developed at Georgia Tech. The performance
A discussion of kernel plugins would not be complete of the two. V(_arsions are similar. More information about
without mention of any remaining issues with their cur- characteristics of the E-code Ianguf’:\ge, S.UCh as examples
rent implementation. One such issue is the lack of Ioro_of the genergted.code, further details on its performance,
tection across multiple plugins. Thanks to the compart-anOI generation times can be found elsewhere [10].
mentalization of each client’s plugins into a separate6
runtime, plugins have no means of naming symbols in
other runtimes. This, however, does not provide firmiso-This section demonstrates the base performance of

lation guarantees, even though it raises the bar for howplugins using two micro-benchmarks, two macro-

5.3 Machine Code Generation

A Remaining Issue

Experimental Evaluation

~
=]
<]

versus the number of long word arguments passed to it.
Execution time is comprised of two parts: entry into the
plugin and exit from the plugin. The first part charac-
terizes the latency overhead experienced due to plugin
use, whereas the second part represents the remaining
cleanup overhead at exit time. It is easily observed from
the graph that the entry latency is weakly linearly de-
pendent on the number of plugin parameters, whereas
the exit overhead is constant. It is important to realize
that the measurements in Figure 5 are for plugin invo-
T . . s 6w cation from the kernel. Function invocation from within
Number of longword arguments ring-1 is almost identical to a user-space function call,
meaning that it is essentially ‘free’.
Figure 5: Control transfer cost vs. number of argumentszasuits are obtained by timing 2001 runs, dropping the
first one to avoid cold CPU cache effects and averag-
benchmarks, and finally, an evaluation of the utility anding the rest. Furthermore, interrupts are disabled during
practicality of plugins with a realistic image-transcoding each individual benchmark run to shield measurements
plugin. The latter color-downsamples images using arfrom the high timing variability that interrupts induce
application-specific integer-only method as per someunder Linux v2.4 [14]. The observed standard deviation
client’s needs. for this plot is less than 1% from the mean, implying

Experimental results reported in this section are obtained€'y high confidence in the data and predictability of the
on an 866 MHz Pentium IIl processor, with 16 KB Mechanism's performance.

L1 1&D caches, 256 KB unified L2 cache, 512 MB of The main result is that for a reasonable number of pa-
PC133 RAM, and a 20 GB Western Digital WD205AA rameters, the baseline cost of kernel plugins is between
hard drive used in UDMA66 mode. The operating 0.45..S and 0.62..S for this hardware. Thus, our imple-
system is Fedora Core 1 running Linux kernel versionmentation’s performance is on par or better than similar
2.4.19 augmented by our kernel plugin facility. schemes [8] (after adjusting for our faster hardware) de-
Timing is performed using the Pentium processor’sSpite major qlifferences ir_1 kernel architecture (2.0.34 vs.
internal time-stamp counter (TSC), except for theZ2-4.19) and implementation methodology.

httperf[17] macro-benchmark which uses much coarsePlugin Creation/Deletion

granularity system timers. The TSC is a 64-bit registerSince kernel plugins are intended to be easily and fre-
zeroed at power-up and incremented by exactly 1 withquently updated, it is important to characterize their cre-
each clock tick of the CPU core. Its72S error is in- ation and deletion costs.

significant in comparison to statistical variations in ex- Our dynamic code generator uses subroutine-based tech-

W Entry: Kernel -> Plugin
@ Exit: Plugin -> Kernel

)
=3
<]

a
Q
<]

IN
Q
<]

Time [nS]
w
8

N
Q
<]

-
o
<}

o

perimental data. niques that do not require invocation of an external com-
) piler. It is fast and of time complexity roughly linearly
6.1 Micro-benchmarks proportional to the source code size. For the sample

Plugin Execution image-transcoding plugin used in our experiments the

N C costs for code generation, linking, and unlinking of the
Two metrics important to any server application are la- lugin are 4mS. 3.1uS. and 1.6uS respectivel
tency and throughput. We measure the impact that placP 9 P2t H, -6u P Y-
ipg code in a kernel plugin has on thesg metrics_. We de6_2 Macro-benchmarks
fine latency overheads the amount of time passing be-
tween the first instruction of a kernel plugin invocation To better understand application-level effects of the
and the execution of the plugin’s first instruction. La- baseline costs associated with different isolation tech-
tency overhead thus defines the latency cost of utilizinghiques and with kernel plugins in particular, we next turn
the kernel plugin facility. Similarly, we defindarough- our attention to macro-benchmarks. We compare and
put overheado be the execution time of a null plugin. contrast the overheads and service effects of two pro-
This represents the pure cost of the plugin abstractionposed isolation techniques for user-specific kernel exten-
Since plugins are executed directly on the underlyingsions: placing extensible services in virtual machines,
hardware, these metrics are the only runtime costs inand implementing extensions as kernel plugins.
curred by kernel plugins. Modern services need to provide customizability while
Micro-benchmark data displayed in Figure 5 depicts themaintaining high levels of performance. Generally these
execution time of a null kernel plugin (in nanoseconds),two imperatives are in conflict. For our particular exper-

2000

1800 +— —*Plain kKHTTPd / HW

~=- Null Plugin kKHTTPd / HW
1600 1 | —plain KHTTPd / VM
1400
=]

2.5 /
S1200 X
- L]
w 2 D1000
£ ! P
~ 154 ‘S 800 A A
o i)
5 2 oo R WY NEVARA
5 ~ \ A NSTN]
400 % N/
0.57 200 //
o o
KHTTPd Apache HW S S S N\‘PQ RS R @°° w@g ,,390 ,,g>°° ,1;\QQ

Regquests/Second

Figure 6: Latency effects of commercial VM technology Figure 8: Isolation technology impact on throughput
(VMware 3.2.0)

workstation and include jitter induced by interrupt pro-
S cessing on both ends. Therefore, these are a good indi-
12 | ®mPugin/Hw cator of subjective performance for a client application
S in this environment.
Figure 6 provides a server reply latency comparison be-
tween kernel- vs. user-space based servers, as well as
a measure of the cost of full virtualization (as measured
on an industry standard product VMware 3.2.0). The
figure shows that a typical kernel-space web server’s la-
tency (kHTTPd) is roughly half of a user-space server’s
latency (Apache). It also shows that full virtualization
increases service latency 2-2.5 times. Thus, the addi-
tion of safe extensibility through virtual machine tech-
niques likely cancels the performance benefits of em-
ploying kernel-based web servers.
Our proposed alternative, kernel plugins, compare fa-
vorably latency-wise to the baseline case and the VM
iments, we chose to look at a web server, as it is a relsplution, as shown in Figure 7. We measure an unmod-
atively simple, typical, and popular service with many ified kernel web server (baseline), the same server ex-
available implementations. A well-known approach to tended with a null kernel p|ug|n (invoked once per re-
building high-performance web servers is to run the serguest from within kHTTPd), and another copy of the
vice daemon within the OS kernel. While this elimi- server isolated in a VMware virtual machine. Kernel
nates many inefficiencies inherent to user-space and irpjugins add minute latency overhead to the service be-
creases the performance of the server substantially, it hagg extended. Figure 7 shows an average plugin over-
the unfortunate effect of discouraging extensibility duehead of 8.5, though that value is inflated due to the
to safety concerns when running within the kernel. Weel|l-known significant variability that interrupt process-
propose to use kernel plugins to rectify this problem. ing induces in Linux [14]. A comparison between the
To quantify our assertions and to provide a better gaugaverages of the top 10% timing samples provides a less
for the expected performance of typical kernel- vs. uservariable and more accurate estimate of the real plugin
space web servers, as well as different isolation techeverhead (less than/iS), consistent with the jitter-free
niques, we measured the server reply latency and replyesults of Figure 5. The small cost is striking compared
throughput of popular web server implementations ando the larger latency overhead imposed by the VM ap-
report our findings in figures 6, 7, and 8. proach. The benefit obtained by using plugins over vir-
The web servers ran on the machine described previtual machines comes from achieving extensibility with-
ously, while the test load was provided by a more pow-out complete virtualization. Instead, only the isolation
erful Dell Workstation 340 (2.2 GHz Pentium 4, 512 KB properties of virtualization are really needed. Since ker-
L2 cache, 512 MB of RDRAM-400) over an otherwise nel plugins are designed to provide exactly that, they are
quiescent 100 Mbps Ethernet network. Results for thesable to avoid unnecessary overhead.
three figures were measured in user-space at the cliefthe last macro-benchmark we consider explores the

1.4

1

o
®

o
o

Latency [mS]

o
IS

o
N}

KHTTPd

Figure 7: Comparative latency effects of kernel plugins
vs. commercial VM technology

server’'s throughput degradation as a function of the isoference is a consequence of E-code’s simpler but faster
lation technique. We define throughput as the relatiorcode generation strategy.
between the clients’ request rate and a server’s sustainggkperiments consist of repeatedly requesting images
reply rate. We measure throughput utilizing the well- from the web servers and recording request service times
knownhttpertbenchmark [17]. (measured at the server side). Timing instrumentation is
Figure 8 shows a family of graphs describing theimplemented using the Pentium time-stamp counter, and
throughput performance of an unmodified kernel-basedgain 2001 samples are taken, disregarding the first to
web server (baseline), a null-plugin modified server,control against cold OS buffer-cache effects. The images
and an unmodified server running in a virtual machine.we used were in the Portable Pixmap (PPM) format with
While kernel plugins preserve the server’s ability to sizes 9 KB, 99 KB, 270 KB, and 3.3 MB. The sizes were
handle high throughput almost untouched, the virtualchosen to approximate both extremes, as well as average
machine-based server is saturated at a little more thatypical online image sizes. Most image data on the Inter-
half the throughput. Similarly, consistency and pre-nettoday is encoded in the JPEG format, which is highly
dictability inside a virtual machine are severely de-compressed and harder to transcode than the relatively
graded. In contrast, the kernel plugin approach is resimpler PPM format. To avoid the graphics complexity,
markably stable and consistent. Again, the disparity isyet account for the format differences, we emulate typ-
attributed to the many unnecessary non-isolation-relategtal JPEG file sizes with the thumb, small, and medium
aspects of full virtualization. PPM data sets. To emulate the pixel dimension of JPEG
We note that the inefficiencies inherent in virtualization files we use the large PPM data [7]. Moreover, note that
schemes like VMware’s are known and that there areduring color-depth reduction PPMs are reduced by 66%,
promising alternatives like Xen [3]. However, Xen re- because each pixel's RGB components are replaced with
quires a host OS kernel to be ported to its specially dea single monochrome value. Therefore, the processed
fined abstract VM model, whereas plugins can be usedmages have sizes of 3 KB, 33 KB, 90 KB, and 1.1 MB,
with existing operating system kernels. The Xen ap-respectively.
proach, therefore, is complementary to our research. Figures 9, 10, 11, and 12 present our experimental re-
. sults. Each figure plots service times for the servers with
6.3 A Practical Example and without transcoding. The first item to note is the
To demonstrate the utility and actual real-life perfor- oscillation in the performance of Apache from Figure 9
mance of plugins we provide a practical example of theirto Figure 10, as opposed to the performance of kKHTTPd.
use. Specifically, we compare and contrast the perforThe reason for this oscillation is that the transcoding plu-
mance of a user-space and a kernel-space web serv@in touches the contents of the entire file during con-
both with and without extensions. The user-space welyersion and the time spent transcoding exceeds the time
server is the popular Apache (version 2.0.48). We exsaved by bandwidth reduction for small files. In contrast,
tend Apache with an image-transcoding function thatkHTTPd does not exhibit such oscillation, despite iden-
reduces image color-depth from 24-bit true-color to 8-tical transcoding size reductions. We believe that this
bit monochrome. It is an example of a useful exten-is due to a combination of factors related to efficiency
sion that a PDA with modest display, CPU, and powergdained from co-location in the kernel: (1) avoiding mul-
resources, could use to adapt images to its capabilitieéple user/kernel protection boundary crossings, (2) re-
and/or to shift workload to the server. For a kernel-lated reduction in data copying, (3) benefits from kernel
space web server, we use KHTTPd which comes starcode non-preemptability in Linux, (4) related improve-
dard with stock Linux v2.4 kernels. We extend kHTTPd ment in CPU cache and TLB performance. In essence,
with the same color-depth reduction code, placing it intothe overhead of reading data from disk should dominate
the kernel both as an unprotected kernel function and athis benchmark, but once the data is in memory (after
a dynamically deployable, isolated kernel plugin. Thethe OS buffer cache has warmed up), the co-located in-
transcoding function consists of 66 lines of E-code in-kernel transcoding and the asynchronous network send
cluding whitespace and comments and compiles to 37 tost relatively little when compared to their counterparts
instructions totaling 1078 bytes of machine-code. Forin user-space, which are further subject to scheduling.
comparison, gcc 3.2.2 without optimizations compilesThe minimal difference between transcoding costs in-
the same code into 245 instructions totaling 623 bytescurred by the unprotected kernel function and the dy-
and -O2 optimizations shrink that further to 151 in- namically deployed kernel plugin suggest that plugins
structions and 338 bytes. Despite its larger size E-codare on the same order of latency. In practice today, func-
machine-code has roughly similar code path length asion invocations are considered to be essentially ‘cost-
unoptimized gcc code, determined by hand comparisorfree’. We view the fact that kernel plugins’ costs are
of the resulting machine-code. The absolute size difcomparable as a validation for our design’s achievement

@ Standard Apache O Standard Apache
B Grayscaling Apache B Grayscaling Apache
300 O Standard kHTTPd 307 D Standard KHTTPd
O Grayscaling kHTTPd [in core] O Grayscaling KHTTPd [in core]
W Grayscaling kHTTPd [in plugin] W Grayscaling kHTTPd [in plugin]
250 + 25
7y
200 Eoo

fiy
a

N
@
]

Service Time [uS]
Service Time

e
o

100

el

50

Figure 9: Service times for a thumb image (9KB) Figure 11: Service times for a medium image (270KB)

14000

600
@ Standard Apache
12000 B Grayscaling Apache @ Standard Apache
O Standard kHTTPd B Grayscaling Apache
OGrayscaling kHTTPd [in core] 500 O Standard kHTTPd
10000 B Grayscaling kHTTPd [in plugin] O Grayscaling kHTTPd [in core]
B Grayscaling kHTTPd [in plugin]

IS
8
3

@
<]
S
s

©
1
3

Service Time [uS]

2
3
3
38

Service Time [mS]

4000

N
<]
IS

2000

100

Figure 10: Service times for a small image (99KB) Figure 12: Service times for a large image (3.3MB)

of its efficiency and performance goals.
To summarize, experimental evaluation shows that kerbase cost of plugin invocation to be between Ow.4%
nel plugins enable applications to adapt kernel serviceand 0.62..S. Plugin code generation, linking, and un-

and extract significant flexibility advantages, while be-linking costs are 4nS, 3.1 4S5 and 1.6uS, respec-
ing sufficiently lightweight to not compromise the gains tively, for the sample image-transcoding plugin used in

from co-location in the kernel. this paper. In general, code generation cost depends on
) code size, and both linking and unlinking costs can be
7 Conclusions and Future Work improved further by optimization of the symbol tables

We have presented the design, implementation, and evafurrently used in the plugin facility. More importantly,
uation of a novel framework for safe deployment of macro-benchmarks and experimental results from a re-

application-specific code into an OS kernel. The mechadlistic sample application showcase performance advan-
nism is based on three key technologies: hardware faul@9es offered to end-user applications using kernel plug-
isolation, dynamic code generation, and dynamic link-ins in lieu of specializations implemented at user level.
ing. HFI relies on commonly available hardware fea-In its current state, the plugin facility fully implements
tures, and offers low-overhead isolation. Our dynamichardware fault isolation, dynamic code generation, dy-
code generation is based on E-code, a DCG packageamic linking, and plugin preemption based on hard-
developed at Georgia Tech. Using DCG, plugins mayware system timers. Planned future work and improve-
be comprised of user-defined code, thereby enabling aments include tighter integration of code generation and
bitrary application-specific specializations of the kernelisolation, further performance characterization, explo-
services with which they are associated. Dynamic link-ration of inter-plugin memory protection, implementa-
ing enforces a narrow kernel/plugin interface, providestion of a fault recovery and continuation mechanism,
logical isolation between extensible system-level enti-porting the system to Intel’s 64-bit Itanium 2 archi-
ties, and eliminates kernel namespace pollution. tecture, and optimization of the implementation bottle-
Micro-benchmarks evaluating kernel plugins show thenecks.

References

(1]

[2] A. Banerji and D. L. Cohn.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Intel Pentium Processor Family Developer's Manual
Volume 3: Architecture and Programming Manual. Intel
Corporation, Santa Clara, CA, 1995.

An infrastructure for |
application-specific customization. IRroceedings of
the 6th Workshop on ACM SIGOPS European workshop
pages 154-159. ACM Press, 1994. [
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, |. Pratt, and A. Warfield. Xen and
the art of virtualization. IrProceedings of th&9*” Sym-
posium on Operating Systems PrinciplésCM Press, [
October 2003.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex{
tensibility safety and performance in the SPIN operat-
ing system. IrProceedings of the5"" ACM Symposium

on Operating Systems Principlgsages 267-283. ACM |
Press, 1995.

H. Bos and B. Samwel. Safe kernel programming in the
OKE. In Proceedings of th&'" International Confer-
ence on Open Architectures and Network Programming |
pages 141-152. IEEE, 2002.

F. E. Bustamante, G. Eisenhauer, P. Widener, K. Schwan,
and C. Pu. Active streams: An approach to adaptive disq
tributed systems. IRroceedings of th&*" Workshop on
Hot Topics in Operating SysterZ001.

S. Chandra, C. S. Ellis, , and A. Vahdat. Differentiated
multimedia web services using quality aware transcod-
ing. InINFOCOM 2000 - Nineteenth Annual Joint Con- |
ference of the IEEE Computer And Communications So-
cieties March 2000.

T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating[
segmentation and paging protection for safe, efficient and
transparent software extensions. Rroceedings of the
17t" ACM Symposium on Operating Systems Principles
pages 140-153. ACM Press, 1999.

Connectix, Corp. The technology of Virtual PC, 2000. [
G. Eisenhauer, F. E. Bustamante, and K. Schwan. A mid-
dleware toolkit for client-initiated service specialization.
ACM SIGOPS Operating Systems Reviék(2):7-20,
July 2001. [
D. R. Engler. VCODE: a retargetable, extensible, very
fast dynamic code generation system. Aroceedings

of the ACM SIGPLAN '96 Conference on Programming
Language Design and Implementatiqrages 160-170.
ACM Press, 1996.

D. R. Engler, M. F. Kaashoek, and J. J. O'Toole. Exok-
ernel: an operating system architecture for application-
level resource management. Rroceedings of the
15" ACM Symposium on Operating Systems Principles
pages 251-266. ACM Press, 1995.

A. Gavrilovska, K. Mackenzie, K. Schwan, and A. Mc-
Donald. Stream handlers: Application-specific message
services on attached network processor®rirceedings

of the 10" Symposium on High Performance Intercon-
nects August 2002.

15]

16]

17]

18]

19]

20]

21]

22]

23]

24]

25]

[26]

[27]

(28]

[14] A. C. Heursch, A. Horstkotte, and H. Rzehak. Preemp-

tion concepts, Rhealstone benchmark and scheduler anal-
ysis of linux 2.4. InProceedings of the Real-Time & Em-
bedded Computing Conferend¢ovember 2001.

J. Liedtke. Onu-kernel construction. IfProceedings of

the 15" ACM Symposium on Operating Systems Princi-
ples pages 237-250. ACM Press, 1995.

S. McCanne and V. Jacobson. The BSD packet filter: a
new architecture for user-level packet capture.Ph-
ceedings of the Winter 1993 USENIX Conferempzges
259-269, 1993.

D. Mosberger and T. Jin. httperf: A tool for measuring
web server performance. First Workshop on Internet
Server Performancgages 59-67. ACM, June 1998.

G. C. Necula. Proof-carrying code. Rroceedings of the
24 Annual Symposium on Principles of Programming
Languagespages 106-119. ACM Press, 1997.

M. Poletto, D. R. Engler, and M. F. Kaashoek. tcc: A
template-based compiler for 'C. IRroceedings of the
First Workshop on Compiler Support for System Software
(WCSSS)February 1996.

M. Satyanarayanan and C. S. Ellis. Adaptation: the
key to mobile I/O. ACM Computing Surveys (CSUR)
28(4es):211, 1996.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing with disaster: surviving misbehaved kernel exten-
sions. InProceedings of the™? USENIX Symposium
on Operating Systems Design and Implementapages
213-227. ACM Press, 1996.

C. Small and M. I. Seltzer. A comparison of OS extension
technologies. IUSENIX Annual Technical Conference
pages 41-54, 1996.

A. Tamches and B. P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels. In
Proceedings of thg"* Symposium on Operating Systems
Design and Implementatiorpages 117-130. USENIX
Association, 1999.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active hetwork
research. IEEE Communications Magazin&5(1):80—
86, January 1997.

VMware, Inc. VMware virtual platform, technical white
paper, 1999.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. Rroceedings

of the14" ACM Symposium on Operating Systems Prin-
ciples pages 203-216. ACM Press, 1993.

D. A. Wallach, D. R. Engler, and M. F. Kaashoek. ASHSs:
application-specific handlers for high-performance mes-
saging. IEEE/ACM Transactions on Networking (TQN)
5(4):460-474, 1997.

A. Whitaker, M. Shaw, and S. D. Gribble. Denali: A scal-
able isolation kernel. IfProceedings of the Tenth ACM
SIGOPS European Workshdpeptember 2002.

