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Abstract

This paper presentskernel plugins, a framework for dy-
namic kernel specialization inspired by ideas borrowed
from virtualization research. Plugins can be created
and updated inexpensively on-the-fly and they can exe-
cute arbitrary user-supplied functions such that neither
safety nor performance are compromised. Three key
techniques are used to implement kernel plugins: (1)
hardware fault isolation, (2) dynamic code generation,
and (3) dynamic linking. Hardware fault isolation pro-
tects kernel-level services from plugin misbehavior, dy-
namic code generation enables rapid online creation of
arbitrary plugins, and dynamic linking governs the ker-
nel/plugin interface.
We discuss the design and implementation of the ker-
nel plugin facility, as well as its advantages and short-
comings. Its use is demonstrated by a range of micro-
and macro-benchmarks and a real-life application fea-
turing plugins that dynamically transcode images served
by a high-performance kernel web server. Benefits re-
alized from plugins can be both qualitative (adapting
services to clients’ needs), and quantitative (improving
performance through co-location of application plugin
code with kernel services). Plugins are implemented in
GNU/Linux on the Intel x86 platform. Reported per-
formance results include plugin upcalls in 0.45-0.62µS,
dynamic code generation in 4mS, and linking/unlinking
in 3.1/1.6µS for an image grayscaling plugin – a dy-
namically code generated 66-line function written in a
subset of C. All results are measured on an 866 MHz
Pentium III.

1 Introduction
Recent years have seen explosive growth in ubiquitously
available computing power and network bandwidth, and
we have witnessed the advent of novel products like
smart mobile phones, wireless PDAs, and tablet PCs.
These advances have spurred a wide range of appli-
cations, including Internet radio stations, peer-to-peer
networks, and cellphone-based photography. Common
to all such ubiquitous devices and applications is the
need to guarantee high quality of service despite unpre-

dictable availability of platform resources and dynam-
ically varying user needs. Two methods of addressing
these issues have traditionally been resource reservation
and system adaptation. Because of its ability to provide
firm guarantees, the former has enjoyed strong popular-
ity in real-time and mission-critical applications. Such
firm guarantees, however, come at the cost of markedly
lower resource utilization and that fact has made adapta-
tion the method of choice for non-critical and consumer
applications [2, 20].

The need for adaptation has spurred an extensive body
of research into dynamically extensible systems at all
levels of the computing and networking infrastructure,
from library-based middleware techniques [6, 10], to ex-
tensible operating systems [4, 12, 15, 22, 27], to pro-
grammable network processors [13], and even active
networks [24].

Techniques for implementing runtime extensions must
balanceperformancewith safetyconcerns. Efforts to
achieve higher performance can degrade the safety and
security of services, while efforts to bolster security
may negatively impact performance by requiring time-
and resource-consuming runtime checks. Consequently,
a wide variety of solutions for extending kernel-level
services have been proposed, ranging from approaches
based on ‘little languages’ [16], to entirely new operat-
ing system kernels [4, 12]. One solution is to place ex-
tensions inside a virtual machine (VM) [25], completely
isolating them from the rest of the system and thereby
avoiding the need to trust them. The simplicity and
safety of this approach is accompanied by some draw-
backs, however, including: (1) the performance of vir-
tual machines is inferior to that of native hardware [22],
and (2) multiple OSes running in multiple VMs can
complicate resource sharing and result in inefficient re-
source usage.

Our research seeks a middle ground between the com-
plete isolation offered by virtual machines and the un-
safe practice of system extension by adding new ker-
nel modules. Our approach combines the use of virtu-
alization techniques with dynamic binary code genera-
tion and dynamic linking, resulting in thekernel plugin



framework for runtime kernel extension.

A kernel plugin is made up of one or more application-
supplied program functions that extend some kernel-
level service. It is installed upon a client application’s
request and runs on its behalf. Plugins are designed
to cooperate with, rather than replace, kernel-level ser-
vices. Their interactions are controlled, so that a plugin
only has privileges explicitly granted to it by the kernel.
A well-defined plugin/kernel interface governs all such
interactions. The efficient plugin mechanism permits
rapid creation, update, and removal of plugins, thereby
encouraging applications to frequently avail themselves
of the mechanism’s advantages.

Plugins are realized for the standard Linux kernel and
the popular x86 hardware platform, offering a safe, effi-
cient service extension mechanism to a broad set of de-
velopers. Our implementation achieves both high per-
formance and safety by integrating three key techniques:
(1) hardware fault isolation, (2) dynamic code genera-
tion, and (3) dynamic linking. Hardware fault isolation
protects kernel services from misbehaving plugins. Dy-
namic code generation enables rapid runtime creation
of custom plugins. Dynamic linking governs the ker-
nel/plugin interface.

A key result of our research is the high performance
of plugins, made possible by using isolation techniques
borrowed from virtualization research [8, 9, 25], and by
promoting frequent system adaptation through efficient
plugin creation and deletion. For instance, plugin in-
vocation costs are 0.45-0.62µS on an 866 MHz Pen-
tium III depending upon the number of plugin parame-
ters. In addition, plugin creation and setup costs are low,
thereby encouraging their use in ways that are not eas-
ily implemented with coarser-grain mechanisms. Code
generating a sample 66-line C code plugin on the same
platform takes 4mS, while linking and unlinking take
3.1µS and 1.6µS, respectively.

In the remainder of this paper, we describe the de-
sign and implementation of kernel plugins on Intel x86
platforms running the GNU/Linux operating system.
Kernel plugins are evaluated with micro- and macro-
benchmarks, as well as with a realistic application – an
accelerated web server augmented by a plugin specializ-
ing the data it delivers to clients. This example, evalu-
ated in detail, is on-the-fly transcoding of image data,
streamed from the server’s disk to its communication
link.

2 Related Work

While safe runtime kernel extension has previously been
addressed in the literature, unfortunately such function-
ality is not generally available in commonly used operat-
ing systems. Several classes of solution techniques have

been proposed:

Programming Language Techniques
In the SPIN operating system, the safety of kernel exten-
sions is based on the properties of the Modula-3 type-
safe programming language and a trusted compiler [4].
Furthermore, because SPIN’s kernel extensions use rela-
tively heavyweight external compile/link/execute facili-
ties, creation costs must be amortized over extended and
frequent use. As a result, SPIN extensions are best suited
to long-lived functionality.

The Open Kernel Environment (OKE) [5] employs a
variation of the same idea, substituting the type-safe
Modula-3 with Cyclone, an ‘elastic’ customizable ver-
sion of C, and trust management integrated with the
compiler.

In contrast to these schemes, kernel plugins are designed
to be lightweight, agile, and easy to adapt on-the-fly.
Plugin creation, invocation, and removal overheads are
very low and do not involve execution of external com-
pilers or linkers. Furthermore, our facility implements
both preemption and isolation and thus does not need to
trust any binaries outside the kernel.

Proof-Carrying Code
Proof-carrying code [18] is a mechanism for safety ver-
ification of code that requires that a ‘safety proof’ is at-
tached to each piece of code, certifying its adherence to a
pre-defined ‘safety policy’. The proof is such that quick
validation is possible without cryptography or external
references. Despite those desirable properties there are
three drawbacks to proof-carrying code.

The first and foremost one is that generating a compre-
hensive safety policy for non-trivial code is very hard.
The difficulty results from the fact that the policy needs
to cover all obvious and implied rules and invariants of
the execution environment. Furthermore, there is no way
to guarantee the completeness of the policy itself. Sec-
ond, the method has scaling issues because the safety
proof’s size grows large rather quickly. As an example,
a trivial function summing two numbers under a basic
safety policy is quoted to have 60 bytes of code and 430
bytes of safety proof [18]. Finally, no automatic proof
generators exist.

Kernel plugins provide an alternative – an engineer-
ing solution that achieves native code performance and
safety without the burden of a proof or type-safe lan-
guage restriction.

Software Fault Isolation
SFI approaches [26] rely on rewriting the machine code
of extensions so that memory accesses and jump targets
are checked and instrumented, thereby restricting them
to the scope of the extension’s protection domain. Only
after suchsandboxingis an extension allowed to exe-
cute. Program interpretation is a related approach in



which extensions are executed by a trusted interpreter
that enforces safety.
Typical examples of such extensible kernels are
VINO [21], which relies on SFI, and packet filters like
the Berkeley Packet Filter [16], which implements an in-
terpreted ‘little language’ for custom, in-kernel, packet
filtering rules. The primary problem with these ap-
proaches is that the price of safety is non-trivial per-
formance degradation, which makes them less appeal-
ing for high-performance applications. The performance
of type-safe language extensions is quoted to be 10%
to 150% worse than regular C code, and SFI can be as
much as 220% slower [8]. In comparison, kernel plu-
gins do not incur per-instruction execution overheads.
Plugin code generation is a one-time cost, significantly
smaller than compilation alternatives and amortized over
the lifetime of the plugin.
Hardware Fault Isolation
HFI relies on hardware-provided memory management
features to enforce the isolation between the kernel and
extensions. This is the same method that traditional op-
erating systems use to isolate their kernels from user-
space applications. It also forms the basis for most
‘virtualization’ and ‘isolation’ systems, which can be
viewed as very coarse-grain extension mechanisms. No-
table examples include the VMware [25] and Virtual
PC [9] virtual machines, as well as the library operating
systems supported by Exokernel [12], the Denali isola-
tion kernel [28], and Xen [3] – a new VMmonitor that
defines an abstract VM to which kernels are then ported,
reportedly achieving close to native performance.
Palladium [8] also uses hardware features to achieve
extension isolation, but on a somewhat finer grain and
without striving to provide a complete virtualization en-
vironment. It limits its scope only to untrusted kernel
modules, and uses segmentation and privilege-checking
hardware to ensure that they cannot interfere with the
kernel proper. While Palladium’s strategy results in bet-
ter performance compared to virtual machines, it still re-
stricts system adaptation to relatively coarse-grain ker-
nel modules, and limits the dynamic use of such exten-
sions because it requires off-line module compilation.
Kernel Plugins
Like some of the above approaches, we choose to em-
ploy a hardware-based scheme, exploiting the x86 ar-
chitecture’s segmentation hardware and unused privilege
rings to provide isolation. Specifically, the x86 hardware
provides 4 ‘privilege ring levels’. Typical operating sys-
tems use ring-0 (most privileged) and ring-3 (least priv-
ileged) for kernel and user modes, respectively. Kernel
plugins utilize one of the unused privilege rings. Thus,
memory protection and control-flow restrictions are en-
forced entirely in hardware, causing no discernible per-
formance degradation. This is a popular isolation ap-

proach employed by all x86 virtual machine projects of
which we are aware, as well as the implementation of
intra-address space protection in Palladium.

Unlike VMware and VirtualPC style VMs, however, we
do not strive to provide the illusion of a dedicated ma-
chine. Instead, we define a streamlined, lightweight ex-
ecution environment in a manner which is more mean-
ingful and fitting to a plugin’s purpose of customizing
existing services rather than deploying new ones. Unlike
Exokernel, Denali, and Xen, we do not modify host ar-
chitectural assumptions and require no porting or reim-
plementation of host-kernel subsystems that do not need
to be extensible. Finally, unlike Palladium we strive
to achieve finer granularity and enable runtime online
adaptation while keeping setup overheads low. Experi-
mental results presented in this paper demonstrate that
kernel plugins experience no additional runtime costs
per instruction. We also show that the overhead of pro-
tected control transfers to and from plugins are both
small and predictable.

3 Motivation

Previous work [4, 8, 12, 20, 21, 22] has already demon-
strated that application-specific extension of operating
system kernels can be a key contributor to attaining high
end-to-end performance. A wide range of specializa-
tions exist that can easily be realized using plugins –
the spectrum of opportunities spans virtually all subsys-
tems of a modern OS kernel. Plugins could augment
a file system with custom caching or prefetching algo-
rithms, or modify a TCP stack’s back-off strategy to re-
flect loss properties of a particular client’s link. They
could enhance core system services like scheduling, by
providing scheduling hints in the guise of payoff func-
tions, or extend memory management by specializing
the behavior of page replacement algorithms. Finally,
kernel plugins can even be useful in high-performance
kernel servers like the Linux accelerated web servers
TUX and kHTTPd. Some examples of the rich set of
application-specific plugins that can be deployed are (1)
dynamic compression and decompression of data to ef-
fect trade-offs in server vs. client CPU needs and/or re-
quired transmission bandwidth, (2) runtime downsam-
pling techniques reflecting a clients’ preferences for fi-
delity vs. timeliness, (3) region-of-interest type trans-
formations, removing unnecessary data from a commu-
nication stream, etc.

The following example kernel plugin usage scenarios
have guided our research:

Smart Filtering
One usage of plugins is to permit end users to directly af-
fect data production, transmission, and reception at the
kernel level. For instance, if certain data is not of current



interest to the recipient, it can be eliminated early in the
receiving OS kernel, rather than being transferred to user
level only to be discarded. Similarly, if only subsets of
data are of interest to specific recipients, then source-
based and client-specific data filtering may be imple-
mented with plugins [10]. Alternatively, plugins can be
used for ‘valuation’ of information being captured, pro-
cessed, transmitted, or received, by applying payoff or
utility functions to it. Research has shown that such util-
ity functions can be a very useful adaptation tool.
Intelligent Introspection
Another possible domain of use for kernel plugins is sys-
tem monitoring and instrumentation [23]. The idea is to
deploy code that is tailor-made for its specific purpose
and to allow it to evolve dynamically with the needs
of the client, instead of having to measure and export
a large and generic set of metrics. For instance, an NFS
client experiencing degradation of service can dynam-
ically instrument its server’s disk and network subsys-
tems to discover where the bottleneck is and adapt or
possibly work around it.
Runtime Adaptation
A final example of a kernel plugin usage scenario is to
enable low-overhead dynamic self-adaptation of a sys-
tem’s behavior, perhaps as a response to changes in mon-
itored conditions. For instance, the NFS client from our
previous example determines that there is a disk head
scheduling bottleneck and adapts by pushing into the
NFS server an aggressive prefetch algorithm customized
to its current access patterns.

4 Design

4.1 Approach

The success of any OS facility is strongly linked to its
performance characteristics and ease of use. Thus, a
principal goal of our framework is to provide an effec-
tive, efficient, and easy to use extension mechanism. The
following properties guided our design:

• Generality: The API should be generic and avoid
targeting a specific kernel service.

• Functionality: Unnecessary restrictions should be
avoided on what constitutes valid plugin code. Plu-
gin creation, use, and deletion should be possible
in runtime, using both statically pre-compiled and
dynamically generated code.

• Safety: The core kernel should be protected from
direct or unintended manipulation by plugin code.

• Efficiency: Implementation overheads should be
less than or comparable to alternatives.

Kernel plugins attain these properties by combining
three key technologies: (1) hardware fault isolation, (2)
dynamic code generation, and (3) lightweight dynamic

linking.
Hardware fault isolation protects the core kernel from
the untrusted plugins and helps to avoid costly per-
instruction runtime overheads. It provides an engi-
neering solution to the isolation problem without the
complexity and overheads inherent in programming-
language techniques, proof-carrying code, or software-
fault isolation.
While a library of pre-compiled adaptation strategies
that clients can choose from can go a long way, some-
times applications need tailor-made solutions. Adapt-
ing file system prefetching to irregular access patterns,
or filtering out or digesting parts of complex objects to
transfer are but a few such examples.
Dynamic code generation, thus, serves a two-fold pur-
pose. First, it provides a common language for arbi-
trary and cross-platform runtime adaptation in a het-
erogeneous environment, and second, it promotes per-
formance by translating extensions into native machine
code able to run at full speed on bare hardware.
It is important to realize that we do not mean to dis-
count the usefulness of libraries of pre-compiled plug-
ins. Such libraries are certainly instrumental for com-
plex, static codes like fast Fourier transforms, JPEG en-
coding/decoding, etc. Rather, we propose to augment
such libraries with a complementary mechanism that is
able to adapt to variable runtime conditions.
Dynamic linking controls the kernel/plugin interface. It
enhances the plugins’ expressive power by permitting
collaborative compositions of plugin functions to per-
form complex tasks.

4.2 Plugin Runtime

The base plugin mechanism is a simple abstraction of
an ‘execution environment’. This environment, termed
the plugin runtime, registers, handles, and manipulates
the kernel plugins of a single extensible entity. It can
be thought of as defining a streamlined abstraction of
a tiny virtual machine. As our aim is not to emulate
a particular systems platform but to create a clean and
efficient extension environment, we are able to design
for simplicity and reap the benefits of efficiency.
Each runtime has a restricted, but well-defined API pro-
viding the means to add new plugin functions, as well as
to execute and delete existing ones. Multiple runtimes
may exist simultaneously at any given time, each manag-
ing the extension functionality of a single client or client
instance. Each instance of an extensible entity creates its
own runtime and dynamically populates it with client-
supplied plugins. The resulting multiplicity of runtimes
serves a threefold purpose. It allows extensibility on
a per-instance basis, prevents plugin namespace pollu-
tion, and isolates related or cooperating plugin functions



within a single runtime. Actual coordination and coop-
eration of plugin functions of a single client is left to
the client itself, with the runtime only providing the glue
primitives to enable it.

As an illustration, consider two separate kernel services:
a kernel http daemon (as in our sample application), and
a kernel NFS server. Each server instance creates a run-
time for its plugins and populates it upon its clients’ re-
quest. The http daemon’s threads might install any num-
ber of image manipulation plugins, whereas the NFS
daemon’s threads might install various data compres-
sion algorithms. The separate runtimes ensure that the
namespaces of unrelated plugins belonging to different
clients are disjoint and that unrelated data and symbols
cannot be named or invoked.

Built-in Plugins
Sometimes application-specific plugin code will need to
call on certain kernel functions to achieve its goals, e.g.
enqueuing a packet or reading/writing a block from/to
disk. To accommodate suchcallbacksseamlessly within
our framework they are represented as a kind of plugin.
These ‘built-in’ plugins are explicitly added to the run-
time by the kernel service it extends. Even though they
act as kernel callbacks, within the restricted plugin en-
vironment they are indistinguishable from a regular ‘dy-
namic’ or user-supplied plugin. That is to say that they
are invoked and used in exactly the same fashion. Imme-
diately after its creation, a runtime’s namespace contains
only a default set of available built-ins listed in Figure 1.
They perform basic namespace maintenance expected
from the dynamic linker:create() , lookup() , and
delete() .

The availability of callbacks poses the question of how
to handle kernel resources acquired through them in the
event that a plugin needs to be terminated. Because of
the rich variety of kernel resources, we considered build-
ing a system that tracks all of them to be impractical. We
believe that the runtime’s owner service is able to handle
the cleanup of the limited number of kernel resources it
makes available to its plugins in a much more efficient
way, if at all needed, e.g. through callback wrappers
tracing resource usage, etc.

4.3 Memory Model

The memory model of the plugins’ execution environ-
ment is influenced by the choice of hardware isolation
mechanism. The scheme exploits features of the In-
tel x86 architecture’s segmentation and protection hard-
ware by placing all plugins into an unused privilege ring.
While such hardware dependence may seem restrictive,
the ‘privilege rings’ concept on which it relies is avail-
able on all modern CPU architectures. The most popular
ones, Intel’s IA32 and IA64, provide 4 privilege rings,

long create(runtime_t * rt, char * code, char * name);

long lookup(runtime_t * rt, char * name);

long delete(runtime_t * rt, char * name);

Figure 1: Built-in plugins’ prototypes

long call_plugin(int id, runtime_t * rt, ...);

Figure 2: Gate function for invoking plugins

whereas others like the SPARC and the PowerPC pro-
vide only 2 privilege rings for supervisor and user mode,
respectively. Kernel plugins can still be implemented on
the latter in at least two different ways. One is to place
plugins in pinned, unpaged memory in the user-level
privilege ring. Isolation is enforced by the hardware
and many overheads associated with using a process are
avoided. Another option is to place plugins within the
kernel privilege ring but to restrict them to dynamically
generated code, thereby guaranteeing that they cannot
interfere with paging and segmentation hardware. The
former approach allows the use of arbitrary code in plu-
gins at the expense of requiring somewhat complicated
transfer of control between privilege rings. The latter
approach invokes plugins just like ordinary kernel func-
tions, but restricts them to dynamically generated code.

On x86 hardware, the OS kernel runs in ring-0 (highest-
privilege). We allocate memory to hold all plugins’
code, data, and stacks in ring-1, thereby guaranteeing
the kernel memory’s safety. In contrast, callback built-
ins are invoked through a hardware trap, not unlike sys-
tem calls, and run in ring-0, that is, they run in the OS
kernel. Control and data flows between privilege rings
are governed by the host kernel through hardware traps.

Plugins have full access to their parameters and local
variables allocated on the plugin stack. They also have
full access to a pool of ring-1 memory, effectively acting
as a heap. The contents of the heap persist between plu-
gin invocations, so it is also used for static variables. The
heap is allocated on a per-runtime basis, which means
that all plugins within a runtime share it and can use it
for global variables, communication, and cooperation.
Additionally, it is possible to provide select plugins with
read-only access to parts of the kernel proper’s memory.
While such a feature could simplify the implementation
of system monitoring plugins or the sharing of data be-
tween the kernel and plugins, it can also have security
implications so it should be employed judiciously.



4.4 E-code Language Specification
In our design, plugins can be specified either as pre-
compiled machine code, or in E-code – a language akin
to ‘C [19] and developed as part of the ECho high-
performance event-delivery middleware [10]. E-code is
a fairly complete subset of the C language that compiles
to native machine code at runtime using a dynamic code
generator that processes one function at a time. A more
detailed list of E-code capabilities follows:

• Datatypes: E-code supports the following ba-
sic types: char , int , float , double , and
boolean . It also supports structures, pointers (in-
cluding pointers to structures), and pointer arith-
metic.

• Variables: Global variables are allocated on the
heap, which is a per-runtime pool of ring-1 mem-
ory persistent across plugin invocations. Local vari-
ables are allocated on the plugin stack.

• Function calls: Plugins are allowed to perform
function calls only to other functions or callbacks
registered within their runtime. Appropriate trap or
trampoline code for the invocation is generated au-
tomatically and transparently.

• Function prototypes:Plugin functions must con-
form to a prototype convention – their first argu-
ment must be a ‘runtime t ∗’ to provide link-
age back to their runtime. Furthermore, their result
type is restricted tolong , however, that is not a se-
vere restriction since most basic datatypes are eas-
ily cast to along value, with the notable exception
of the class of floating point numbers, which must
be passed back by reference.

• Language:E-code supports the C operators,for
loops,if , andreturn statements.

Currently, E-code doesnot support while loops,
switch statements, unions, and function pointers,
though they do not pose conceptual difficulties and can
be implemented if needed in the future.

4.5 Interface
The kernel/plugin interface consists of the runtime
namespace manipulation routines, any additional kernel
callbacks that an extensible subsystem instance exports
to its plugins, the plugin invocation mechanism, and the
pool of plugin static memory.
The runtime namespace manipulation routines displayed
in Figure 1 are implemented as kernel proper functions.
Thus, they are directly available to the kernel proper
and are isolated from plugins, yet available to them in
the form of ‘built-in’ plugins. Besides that mandatory
minimum, each extensible service can augment the in-
terface by exporting more kernel callbacks of its choos-
ing, e.g.sendmsg() andrecvmsg() , in the form of

additional ‘built-in’ plugins. We continue with a more
detailed description of the namespace manipulation in-
terface.
Creation
Each plugin function is specified by a tuple that de-
scribes it completely. The tuple consists of the following
elements:

• Runtime pointer:It refers to the runtime this func-
tion is to be created in. All functions’ prototypes
have a ‘runtime t ∗’ first argument serving as
a link to their runtime environment and allowing
them to interface with other functions. It provides
closure (in the mathematical sense) of the name-
space with respect to the operations of its functions.

• Code: This is either an ASCIIZ string specifying
a single E-code function or a pre-compiled relo-
catable machine code dump. In the former case
the runtime translates the E-code function into ef-
ficient, native machine code at creation time. The
translation is a one-time cost and is amortized over
all subsequent executions of that function. Trans-
lation costs are relatively small, thanks to the ef-
ficiency of E-code’s dynamic code generator [10].
For example, the image grayscaling plugin used in
our experimental evaluation consists of a 66-line E-
code function which translates in only 4mS, com-
pared to the 700mS it takes to spawn an external
compiler (with compiler binary already present in
the OS buffer cache).

• Name: A string constant providing the name this
function is to assume in the runtime’s symbol table.
After its creation, a function can be looked up and
called upon using that name.

Deletion
Deleting a function is a straightforward operation that
deallocates the code and static data resources associ-
ated with it and then unlinks it from the symbol ta-
ble. Thedelete() built-in plugin’s prototype is self-
explanatory and also appears in Figure 1.
Invocation
A function is available for execution immediately after
its creation. The actual invocation, however, is not as
trivial as a simple function call because of the privilege
ring-based isolation scheme.
From Kernel Space: Normally, hardware does not
allow higher-privileged code to call untrusted, lower-
privileged code. To circumvent the problem our frame-
work provides a ‘gate’ functioncall plugin() that
encapsulates the implementation complexity and hides
hardware details. This makes invoking any plugin as
simple as calling the gate function whose prototype is
shown in Figure 2.
The gate function looks up the target plugin’s entry in its



runtime’s symbol table and copies the declared number
of parameters from the kernel’s to the plugin’s stack. It
then invokes the plugin by branching to its address and
sidestepping the hardware restriction. The mechanics of
the latter are described in more detail in the implemen-
tation section.
From Plugin Space: To encourage function composi-
tion we provide a similar gate function in the isolated ad-
dress space, permitting plugin functions to invoke each
other. It is syntactically and semantically identical to its
counterpart employed from the host kernel despite sig-
nificant implementation differences.
Invoking a plugin function from another one has over-
head akin to that of a simple function call. The reason for
this being that control flows within the isolated address
space and no protection boundary needs to be crossed.
The benefit is that this enables plugin functions to coop-
erate easily and cheaply, thereby increasing the utility of
the model for complex extensions.
Invoking a kernel callback (built-in plugin) from a dy-
namic, user-defined one, however, does require crossing
the protection boundary from ring-1 back into ring-0.
This is achieved by means of a hardware trap, the details
of which are hidden in the gate function’s implementa-
tion and explained further in the next section.
Finally, irrespective of whether the call originates in
ring-0 or ring-1, invoking a plugin requires naming it un-
ambiguously, i.e., by its name and runtime context. Un-
fortunately, matching name strings in the symbol table
repeatedly is needlessly expensive. To avoid that over-
head, we map the string name to an integer id unique
within each runtime, thereby speeding-up lookup and si-
multaneously making id caching much easier. All built-
ins are also assigned fixed well-known integer ids. The
mapping between dynamic plugins’ names and integer
ids is performed by thelookup() plugin.

5 Implementation

A prototype of the kernel plugin facility has been im-
plemented in recent stable-tree Linux kernels (versions
2.4.18 and 2.4.19). The prototype implements hardware
isolation, dynamic code generation, and dynamic linking
fully, though details of the design are still evolving. This
section describes some relevant implementation details
and their implications.

5.1 Hardware Fault Isolation

Our plugin isolation scheme is a clean re-
implementation of a popular concept employed in
a number of systems, both virtual machines and others,
e.g. VMware [25], Palladium [8], etc. It exploits
features of the segmentation and privilege checking
hardware of the Intel x86 architecture to achieve
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address space isolation within the Linux kernel. We
briefly describe the method next; for a full discussion,
the reader is referred to the original papers and Intel
documentation.

The fundamental idea is to allow application-specific
code to run in the core kernel by placing it in a separate
protection domain and relying on hardware to enforce
it. The new domain is an address space – a proper sub-
set of the Linux kernel’s virtual address space. While the
kernel itself can access the plugins’ address space freely,
plugins cannot, in general, access the larger kernel mem-
ory.

Segmentation
In practice, domains are implemented as protected mem-
ory segments directly supported by the hardware MMU.
Segments are ranges of consecutive addresses described
by base address and length. The operating system main-
tains linear tables of ‘segment descriptors’ for all seg-
ments. In addition to base and length, each segment de-
scriptor stores privilege, access, and type information for
its segment. Two tables of descriptors are active at any
given point in time: the Global Descriptor Table (GDT)
and a Local Descriptor Table (LDT). While the former is
static and immutable, the latter is a per-process structure.

Figure 3 depicts how segmentation addressing works on
the x86. Logical addresses are composed of a 16-bit
segment selector and a 32-bit offset. Segment selector
values are used to index into segment descriptor tables.
The layout of a segment selector is shown in Figure 4.



It contains a linear table index, a one-bit Table Indica-
tor (TI), and a two-bit Requested Privilege Level (RPL).
The TI determines which of the two currently active ta-
bles the selector is referring to, whereas the RPL is used
in privilege checks. The chosen descriptor entry pro-
vides a base address, a limit to check the offset against,
read/write/execute permissions, and a descriptor privi-
lege level (DPL).

The CPU maintains a Current Privilege Level (CPL) for
the currently executing instruction. The DPL is com-
pared to the CPL and RPL for each memory access. In
general, CPL and RPL need to be numerically less than
or equal to the target segment’s DPL (i.e. at the same or
higher privilege) in order for access to be granted. For
a complete explanation of access permission checks and
motivation for the existence of the RPL the reader is re-
ferred to Intel documentation [1, pp. 105–140]. All ac-
cess violations, such as pointer dereferences to memory
outside of the ring-1 segment (including NULL pointer
dereference), attempts to execute an illegal or protected
instruction, etc., result in an exception being thrown and
a trap to the kernel proper to handle it. Additionally,
the owner service allows each plugin a quantum of time
in which to complete. Overrunning that quantum is de-
tected by a periodic timer interrupt and also results in
forceful preemption and a trap to the kernel.

Our current method for dealing with offending plugins is
immediate termination. An interesting future direction
we are considering is to implement a recovery mecha-
nism, allowing extensible services the choice to termi-
nate or to continue a plugin based on custom per-service
policies and the type of the failure or misbehavior.

Initialization
At boot time, the plugin facility allocates a region of
memory to be used exclusively for plugin code and data.
A simple first-fit private memory allocator is initialized
with the parameters of the pool and is used to allocate
memory for structures to be placed in the isolated area.

Two new segment descriptors are computed and in-
stalled in the GDT, each covering the whole isolated
memory pool. Both descriptors are assigned the same
ring-1 privileges but different types. The type of the first
one is set to ‘code’ and it is used to address executable
plugin code. The type of the second one is set to ‘data’,
and it is used for data manipulations involving plugin
stacks and heaps. This simple overlay scheme was cho-
sen to ease the initial implementation effort by avoiding
the need to parameterize the memory allocator for dis-
joint code and data memory pools. It could be replaced
with a split code and data design in the future, to pre-
vent the possibility for self-modifying plugin code and
to limit the amount of damage a misbehaving plugin can
wreak upon other plugins.

A third segment descriptor can be defined overlaying
part or all of the kernel’s ring-0 memory but accessible
in read-only mode from ring-1. Although such a seg-
ment has the potential of simplifying or optimizing ker-
nel/plugin data interactions it has to be used with great
care because of possible security implications. It can be
thought of as an optional feature for cases when perfor-
mance benefits outweigh potential security concerns.

Runtimes are created at the request of kernel services.
Each runtime’s control structure contains pointers to its
stack and heap as well as a symbol table of registered
plugins. The control structure is allocated in ring-0 ker-
nel memory to protect it from being tampered with by
plugins. The built-in plugins are implemented as trusted
kernel subroutines enabling them to modify the control
structures during operations like creation or deletion of
dynamic plugins. In contrast, the heap, stack, and code
of plugins are all allocated within ring-1 memory.

Control Transfers
Passing control from a plugin in ring-1 to the kernel in
ring-0 is straightforward, by use of a trap gate similar
to the one implementing system calls from user-space
(ring-3). The hardware handles the trap and passes con-
trol to the kernel in a protected fashion. Any state needed
for returning to ring-1 is saved on the kernel stack. If the
control transfer is to be one way (e.g. return from a plu-
gin) rather than two way (e.g. kernel callback), then that
state is simply cleaned up by the kernel trap handler.

Passing control from the kernel to a plugin, unfortu-
nately, is more difficult. There is an inherent asymmetry
in control transfers between privilege levels because the
hardware is designed to prohibit high-privileged code
from invoking lower-privileged code. To sidestep the
problem, a stack frame is carefully forged (on the ring-0
stack) that emulates the state the stack would have had if
it had been called from ring-1 and then executes aret
instruction to the forged return address. This causes the
CPU to switch into ring-1 and start execution of the tar-
geted plugin function.

Interrupts
x86 interrupt handlers run in ring-0. In case an inter-
rupt occurs while the CPU is already executing in kernel
mode, the interrupt simply grows the current stack. If,
however, the CPU is executing in a privilege level differ-
ent from ring-0, then it switches to ring-0 immediately,
performing the necessary stack swap to thebottomof the
kernel stack. This behavior is predicated on the premise
that an interrupt occurring while in user-space has no
kernel state to preserve, so the new frame can start from
the base of the kernel stack.

It is not hard to see how this otherwise normal behav-
ior can cause trouble when interacting with ring-1 plu-
gins, however. The aforementioned premise is negated



because pluginsare, in effect, a part of the kernel, yet
they execute outside of ring-0. If an interrupt fires while
a plugin is running, the CPU switches immediately to a
ring-0 handler and uses the kernel stack. Unfortunately,
starting from thebaseof the stack it overwrites the state
already there, accumulated prior to invoking the plugin.
This effect is due to the unconventional use of privilege
rings to implement what amounts to protected upcalls of
which the hardware is unaware.

There are a few possible solutions to this problem: (1)
disable interrupts while plugins are running, (2) save and
restore the kernel stack before and after plugin invoca-
tions, and (3) trick the hardware togrow the stack upon
an interrupt in ring-1.

While the first solution does not add any overhead to
plugin execution, it has the undesirable effect of block-
ing interrupts for potentially non-trivial lengths of time.
In the kernel, blocking ofall interrupts is allowed only
for the shortest times, since it could lead to loss of im-
portant device interrupts and disrupt the operation of pe-
ripherals. Moreover, such a solution would also prevent
the implementation of plugin preemption, which relies
on a periodic hardware timer interrupt. Clearly, this ap-
proach is unsuitable.

The second solution, saving the kernel stack’s state be-
fore plugin invocation and restoring it immediately after
that, is workable. It was our first implementation, but
it increased plugin invocation overheads and introduced
significant irregularities in their cost, due to the unpre-
dictable amount of state (up to a page frame in the worst
case) that needs to be saved and restored each time.

These disadvantages led us to come up with our final so-
lution. It is based on an architectural programming trick
that fools the interrupt handling hardware intogrowing
the kernel stack rather than overwriting its bottom, de-
spite the fact that the interrupt occurs outside of ring-0.
The trick involves careful manipulation of the stack base
pointer in the task state segment structure (TSS) of the
CPU [1]. This allows us to continue servicing interrupts
while plugins are running, yet, at the same time avoid
the unpredictability of kernel stack saving and restoring.
As an added bonus, the overhead of this method is ex-
tremely small, its implementation consisting of only a
few assembly instructions.

A Remaining Issue
A discussion of kernel plugins would not be complete
without mention of any remaining issues with their cur-
rent implementation. One such issue is the lack of pro-
tection across multiple plugins. Thanks to the compart-
mentalization of each client’s plugins into a separate
runtime, plugins have no means of naming symbols in
other runtimes. This, however, does not provide firm iso-
lation guarantees, even though it raises the bar for how

difficult it would be for a plugin to interfere with plugins
in other runtimes.
To address this issue, we are considering developing our
scheme further to include two GDT descriptorsper run-
time, to describe each runtime’s code and data sepa-
rately from other runtimes. In this way, we can exploit
the segmentation hardware further and achieve isolation
not only between the kernel proper and plugins but also
among runtimes. Such an enhancement would not add
any runtime overhead and is under active development.

5.2 Dynamic Linking

As part of the provided trusted runtime environment,
a dynamic linker operates on a runtime’s symbol table
and implements symbol creation, lookup, execution, and
deletion. The symbol table is an array of symbol struc-
tures, and looking a symbol up in it has linear complex-
ity. This choice was made to simplify the initial imple-
mentation and will not result in problems unless a very
large number of plugins are registered within a single
runtime. Re-coding the symbol table as a hash table may
be used to address this issue should it become necessary.

5.3 Machine Code Generation

The E-code dynamic code generator operates by pars-
ing the source language and emitting the appropriate in-
structions into a memory buffer from which they can be
executed directly. Currently, E-code supports dynamic
code generation for Intel x86, MIPS, StrongARM, and
Sun SPARC (32- and 64-bit) processors. Support for In-
tel’s 64-bit EPIC architecture is under development.
The code generator is subroutine-based and does not re-
quire invocation of external binaries. Code is emitted
during parsing in the form of virtual instructions for an
idealized RISC architecture. Simple, low-hanging fruit
optimizations are applied (constant propagation, regis-
ter renaming, and limited common subexpression elim-
ination), and then the virtual instructions are mapped to
their physical counterparts for the target architecture.
E-code’s early versions were based upon Icode, an in-
ternal interface developed at MIT as part of the ’C
project [19]. Icode is itself based on Vcode [11], also de-
veloped at MIT by Dawson Engler. E-code’s recent ver-
sions, however, are based on DRISC, a low-level DCG
package developed at Georgia Tech. The performance
of the two versions are similar. More information about
characteristics of the E-code language, such as examples
of the generated code, further details on its performance,
and generation times can be found elsewhere [10].

6 Experimental Evaluation

This section demonstrates the base performance of
plugins using two micro-benchmarks, two macro-
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benchmarks, and finally, an evaluation of the utility and
practicality of plugins with a realistic image-transcoding
plugin. The latter color-downsamples images using an
application-specific integer-only method as per some
client’s needs.

Experimental results reported in this section are obtained
on an 866 MHz Pentium III processor, with 16 KB
L1 I&D caches, 256 KB unified L2 cache, 512 MB of
PC133 RAM, and a 20 GB Western Digital WD205AA
hard drive used in UDMA66 mode. The operating
system is Fedora Core 1 running Linux kernel version
2.4.19 augmented by our kernel plugin facility.

Timing is performed using the Pentium processor’s
internal time-stamp counter (TSC), except for the
httperf [17] macro-benchmark which uses much coarser
granularity system timers. The TSC is a 64-bit register
zeroed at power-up and incremented by exactly 1 with
each clock tick of the CPU core. Its 2nS error is in-
significant in comparison to statistical variations in ex-
perimental data.

6.1 Micro-benchmarks

Plugin Execution
Two metrics important to any server application are la-
tency and throughput. We measure the impact that plac-
ing code in a kernel plugin has on these metrics. We de-
fine latency overheadas the amount of time passing be-
tween the first instruction of a kernel plugin invocation
and the execution of the plugin’s first instruction. La-
tency overhead thus defines the latency cost of utilizing
the kernel plugin facility. Similarly, we definethrough-
put overheadto be the execution time of a null plugin.
This represents the pure cost of the plugin abstraction.
Since plugins are executed directly on the underlying
hardware, these metrics are the only runtime costs in-
curred by kernel plugins.

Micro-benchmark data displayed in Figure 5 depicts the
execution time of a null kernel plugin (in nanoseconds),

versus the number of long word arguments passed to it.
Execution time is comprised of two parts: entry into the
plugin and exit from the plugin. The first part charac-
terizes the latency overhead experienced due to plugin
use, whereas the second part represents the remaining
cleanup overhead at exit time. It is easily observed from
the graph that the entry latency is weakly linearly de-
pendent on the number of plugin parameters, whereas
the exit overhead is constant. It is important to realize
that the measurements in Figure 5 are for plugin invo-
cation from the kernel. Function invocation from within
ring-1 is almost identical to a user-space function call,
meaning that it is essentially ‘free’.

Results are obtained by timing 2001 runs, dropping the
first one to avoid cold CPU cache effects and averag-
ing the rest. Furthermore, interrupts are disabled during
each individual benchmark run to shield measurements
from the high timing variability that interrupts induce
under Linux v2.4 [14]. The observed standard deviation
for this plot is less than 1% from the mean, implying
very high confidence in the data and predictability of the
mechanism’s performance.

The main result is that for a reasonable number of pa-
rameters, the baseline cost of kernel plugins is between
0.45µS and 0.62µS for this hardware. Thus, our imple-
mentation’s performance is on par or better than similar
schemes [8] (after adjusting for our faster hardware) de-
spite major differences in kernel architecture (2.0.34 vs.
2.4.19) and implementation methodology.

Plugin Creation/Deletion
Since kernel plugins are intended to be easily and fre-
quently updated, it is important to characterize their cre-
ation and deletion costs.

Our dynamic code generator uses subroutine-based tech-
niques that do not require invocation of an external com-
piler. It is fast and of time complexity roughly linearly
proportional to the source code size. For the sample
image-transcoding plugin used in our experiments the
costs for code generation, linking, and unlinking of the
plugin are 4mS, 3.1µS, and 1.6µS respectively.

6.2 Macro-benchmarks

To better understand application-level effects of the
baseline costs associated with different isolation tech-
niques and with kernel plugins in particular, we next turn
our attention to macro-benchmarks. We compare and
contrast the overheads and service effects of two pro-
posed isolation techniques for user-specific kernel exten-
sions: placing extensible services in virtual machines,
and implementing extensions as kernel plugins.

Modern services need to provide customizability while
maintaining high levels of performance. Generally these
two imperatives are in conflict. For our particular exper-
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iments, we chose to look at a web server, as it is a rel-
atively simple, typical, and popular service with many
available implementations. A well-known approach to
building high-performance web servers is to run the ser-
vice daemon within the OS kernel. While this elimi-
nates many inefficiencies inherent to user-space and in-
creases the performance of the server substantially, it has
the unfortunate effect of discouraging extensibility due
to safety concerns when running within the kernel. We
propose to use kernel plugins to rectify this problem.
To quantify our assertions and to provide a better gauge
for the expected performance of typical kernel- vs. user-
space web servers, as well as different isolation tech-
niques, we measured the server reply latency and reply
throughput of popular web server implementations and
report our findings in figures 6, 7, and 8.
The web servers ran on the machine described previ-
ously, while the test load was provided by a more pow-
erful Dell Workstation 340 (2.2 GHz Pentium 4, 512 KB
L2 cache, 512 MB of RDRAM-400) over an otherwise
quiescent 100 Mbps Ethernet network. Results for these
three figures were measured in user-space at the client
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workstation and include jitter induced by interrupt pro-
cessing on both ends. Therefore, these are a good indi-
cator of subjective performance for a client application
in this environment.
Figure 6 provides a server reply latency comparison be-
tween kernel- vs. user-space based servers, as well as
a measure of the cost of full virtualization (as measured
on an industry standard product VMware 3.2.0). The
figure shows that a typical kernel-space web server’s la-
tency (kHTTPd) is roughly half of a user-space server’s
latency (Apache). It also shows that full virtualization
increases service latency 2-2.5 times. Thus, the addi-
tion of safe extensibility through virtual machine tech-
niques likely cancels the performance benefits of em-
ploying kernel-based web servers.
Our proposed alternative, kernel plugins, compare fa-
vorably latency-wise to the baseline case and the VM
solution, as shown in Figure 7. We measure an unmod-
ified kernel web server (baseline), the same server ex-
tended with a null kernel plugin (invoked once per re-
quest from within kHTTPd), and another copy of the
server isolated in a VMware virtual machine. Kernel
plugins add minute latency overhead to the service be-
ing extended. Figure 7 shows an average plugin over-
head of 8µS, though that value is inflated due to the
well-known significant variability that interrupt process-
ing induces in Linux [14]. A comparison between the
averages of the top 10% timing samples provides a less
variable and more accurate estimate of the real plugin
overhead (less than 1µS), consistent with the jitter-free
results of Figure 5. The small cost is striking compared
to the larger latency overhead imposed by the VM ap-
proach. The benefit obtained by using plugins over vir-
tual machines comes from achieving extensibility with-
out complete virtualization. Instead, only the isolation
properties of virtualization are really needed. Since ker-
nel plugins are designed to provide exactly that, they are
able to avoid unnecessary overhead.
The last macro-benchmark we consider explores the



server’s throughput degradation as a function of the iso-
lation technique. We define throughput as the relation
between the clients’ request rate and a server’s sustained
reply rate. We measure throughput utilizing the well-
knownhttperfbenchmark [17].
Figure 8 shows a family of graphs describing the
throughput performance of an unmodified kernel-based
web server (baseline), a null-plugin modified server,
and an unmodified server running in a virtual machine.
While kernel plugins preserve the server’s ability to
handle high throughput almost untouched, the virtual
machine-based server is saturated at a little more than
half the throughput. Similarly, consistency and pre-
dictability inside a virtual machine are severely de-
graded. In contrast, the kernel plugin approach is re-
markably stable and consistent. Again, the disparity is
attributed to the many unnecessary non-isolation-related
aspects of full virtualization.
We note that the inefficiencies inherent in virtualization
schemes like VMware’s are known and that there are
promising alternatives like Xen [3]. However, Xen re-
quires a host OS kernel to be ported to its specially de-
fined abstract VM model, whereas plugins can be used
with existing operating system kernels. The Xen ap-
proach, therefore, is complementary to our research.

6.3 A Practical Example
To demonstrate the utility and actual real-life perfor-
mance of plugins we provide a practical example of their
use. Specifically, we compare and contrast the perfor-
mance of a user-space and a kernel-space web server,
both with and without extensions. The user-space web
server is the popular Apache (version 2.0.48). We ex-
tend Apache with an image-transcoding function that
reduces image color-depth from 24-bit true-color to 8-
bit monochrome. It is an example of a useful exten-
sion that a PDA with modest display, CPU, and power
resources, could use to adapt images to its capabilities
and/or to shift workload to the server. For a kernel-
space web server, we use kHTTPd which comes stan-
dard with stock Linux v2.4 kernels. We extend kHTTPd
with the same color-depth reduction code, placing it into
the kernel both as an unprotected kernel function and as
a dynamically deployable, isolated kernel plugin. The
transcoding function consists of 66 lines of E-code in-
cluding whitespace and comments and compiles to 371
instructions totaling 1078 bytes of machine-code. For
comparison, gcc 3.2.2 without optimizations compiles
the same code into 245 instructions totaling 623 bytes,
and -O2 optimizations shrink that further to 151 in-
structions and 338 bytes. Despite its larger size E-code
machine-code has roughly similar code path length as
unoptimized gcc code, determined by hand comparison
of the resulting machine-code. The absolute size dif-

ference is a consequence of E-code’s simpler but faster
code generation strategy.
Experiments consist of repeatedly requesting images
from the web servers and recording request service times
(measured at the server side). Timing instrumentation is
implemented using the Pentium time-stamp counter, and
again 2001 samples are taken, disregarding the first to
control against cold OS buffer-cache effects. The images
we used were in the Portable Pixmap (PPM) format with
sizes 9 KB, 99 KB, 270 KB, and 3.3 MB. The sizes were
chosen to approximate both extremes, as well as average
typical online image sizes. Most image data on the Inter-
net today is encoded in the JPEG format, which is highly
compressed and harder to transcode than the relatively
simpler PPM format. To avoid the graphics complexity,
yet account for the format differences, we emulate typ-
ical JPEG file sizes with the thumb, small, and medium
PPM data sets. To emulate the pixel dimension of JPEG
files we use the large PPM data [7]. Moreover, note that
during color-depth reduction PPMs are reduced by 66%,
because each pixel’s RGB components are replaced with
a single monochrome value. Therefore, the processed
images have sizes of 3 KB, 33 KB, 90 KB, and 1.1 MB,
respectively.
Figures 9, 10, 11, and 12 present our experimental re-
sults. Each figure plots service times for the servers with
and without transcoding. The first item to note is the
oscillation in the performance of Apache from Figure 9
to Figure 10, as opposed to the performance of kHTTPd.
The reason for this oscillation is that the transcoding plu-
gin touches the contents of the entire file during con-
version and the time spent transcoding exceeds the time
saved by bandwidth reduction for small files. In contrast,
kHTTPd does not exhibit such oscillation, despite iden-
tical transcoding size reductions. We believe that this
is due to a combination of factors related to efficiency
gained from co-location in the kernel: (1) avoiding mul-
tiple user/kernel protection boundary crossings, (2) re-
lated reduction in data copying, (3) benefits from kernel
code non-preemptability in Linux, (4) related improve-
ment in CPU cache and TLB performance. In essence,
the overhead of reading data from disk should dominate
this benchmark, but once the data is in memory (after
the OS buffer cache has warmed up), the co-located in-
kernel transcoding and the asynchronous network send
cost relatively little when compared to their counterparts
in user-space, which are further subject to scheduling.
The minimal difference between transcoding costs in-
curred by the unprotected kernel function and the dy-
namically deployed kernel plugin suggest that plugins
are on the same order of latency. In practice today, func-
tion invocations are considered to be essentially ‘cost-
free’. We view the fact that kernel plugins’ costs are
comparable as a validation for our design’s achievement
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of its efficiency and performance goals.
To summarize, experimental evaluation shows that ker-
nel plugins enable applications to adapt kernel services
and extract significant flexibility advantages, while be-
ing sufficiently lightweight to not compromise the gains
from co-location in the kernel.

7 Conclusions and Future Work
We have presented the design, implementation, and eval-
uation of a novel framework for safe deployment of
application-specific code into an OS kernel. The mecha-
nism is based on three key technologies: hardware fault
isolation, dynamic code generation, and dynamic link-
ing. HFI relies on commonly available hardware fea-
tures, and offers low-overhead isolation. Our dynamic
code generation is based on E-code, a DCG package
developed at Georgia Tech. Using DCG, plugins may
be comprised of user-defined code, thereby enabling ar-
bitrary application-specific specializations of the kernel
services with which they are associated. Dynamic link-
ing enforces a narrow kernel/plugin interface, provides
logical isolation between extensible system-level enti-
ties, and eliminates kernel namespace pollution.
Micro-benchmarks evaluating kernel plugins show the
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base cost of plugin invocation to be between 0.45µS
and 0.62µS. Plugin code generation, linking, and un-
linking costs are 4mS, 3.1 µS and 1.6µS, respec-
tively, for the sample image-transcoding plugin used in
this paper. In general, code generation cost depends on
code size, and both linking and unlinking costs can be
improved further by optimization of the symbol tables
currently used in the plugin facility. More importantly,
macro-benchmarks and experimental results from a re-
alistic sample application showcase performance advan-
tages offered to end-user applications using kernel plug-
ins in lieu of specializations implemented at user level.

In its current state, the plugin facility fully implements
hardware fault isolation, dynamic code generation, dy-
namic linking, and plugin preemption based on hard-
ware system timers. Planned future work and improve-
ments include tighter integration of code generation and
isolation, further performance characterization, explo-
ration of inter-plugin memory protection, implementa-
tion of a fault recovery and continuation mechanism,
porting the system to Intel’s 64-bit Itanium 2 archi-
tecture, and optimization of the implementation bottle-
necks.
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