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In December 1999, IBM announced the start of
a five-year effort to build a massively parallel
computer, to be applied to the study of
biomolecular phenomena such as protein folding.
The project has two main goals: to advance our
understanding of the mechanisms behind protein
folding via large-scale simulation, and to explore
novel ideas in massively parallel machine
architecture and software. This project should
enable biomolecular simulations that are orders
of magnitude larger than current technology
permits. Major areas of investigation include:
how to most effectively utilize this novel platform
to meet our scientific goals, how to make such
massively parallel machines more usable, and
how to achieve performance targets, with
reasonable cost, through novel machine
architectures. This paper provides an overview
of the Blue Gene project at IBM Research. It
includes some of the plans that have been made,
the intended goals, and the anticipated
challenges regarding the scientific work, the
software application, and the hardware design.

This paper provides an overview of the Blue Gene
project at IBM Research. We begin with a brief

discussion of why IBM decided to undertake this ad-
venturous research project. We include an overview

of proteins and the protein folding problem, includ-
ing structure prediction and studies of mechanisms.
We discuss the limitations of experimental probes
of the folding process—a motivation for the use of
simulation. This is followed by a brief high-level
overview of computational approaches for studying
the mechanisms of protein folding, including a sur-
vey of some of the challenges, options, and areas of
exploration in the field. We then give a brief descrip-
tion of the skeleton science plan now being executed.

After making the case for the utility of large-scale
simulation, we focus on the elements of the machine
architecture that form the basis for the hardware and
software research that the Blue Gene project will
pursue. Finally, we describe some of the challenges
to be faced in creating a simulation application that
can efficiently execute the goals of the scientific pro-
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gram on the project hardware, along with some op-
tions for meeting those challenges.

Motivation for IBM

There are several reasons why IBM is interested in
the use of biomolecular simulations to study protein
science. The life sciences are receiving special atten-
tion from IBM because the field is demonstrating ex-
plosive growth, and the life sciences are creating what
will become one of the most significant industries of
the new century. Indeed, with advances in bioinfor-
matics and genomics, high-throughput screening of
drug candidates, and ready access to information on
the Internet, the life sciences have benefited from
computational capabilities and will be driving the re-
quirements for data, network, and computational ca-
pabilities in the future. The particular area of pro-
tein folding was chosen because there is great synergy
between IBM’s interests and capabilities in high-per-
formance computing and the scientific needs of the
field. The understanding of the protein folding phe-
nomenon is a recognized “grand challenge problem”
of great interest to the life sciences.

IBM has built research machines to explore novel ar-
chitectural ideas before, and these projects have fre-
quently been associated with important scientific
challenges, such as problems in lattice quantum chro-
modynamics.2,3

The mission of the Blue Gene scientific program is
to use large-scale biomolecular simulation to advance
our understanding of biologically important pro-
cesses, in particular our understanding of the mech-
anisms behind protein folding.

Increased computational power translates into an in-
creased ability to validate the models used in sim-
ulations and, with appropriate validation of these
models, to probe these biological processes at the
microscopic level over long time periods. A critical
component of our research program will be the con-
nection of the simulations to the experimental bio-
physics of protein dynamics.1 To achieve our high-
level scientific goals, it will be essential to collaborate
with the worldwide experimental, simulation, and
theoretical communities in order to utilize the com-
putational platform in the most intelligent way.

The scientific knowledge derived from research on
protein folding can potentially be applied to a variety
of related life sciences problems of great scientific and
commercial interest, including:

● Protein-drug interactions (docking)
● Enzyme catalysis (through use of hybrid quantum

and classical methods)4

● Refinement of protein structures created through
other methods

Protein science overview

The human genome is currently thought to contain
approximately 40000 genes, which code for a much
larger number of proteins through alternative splic-
ing and post-translational modification, a molecu-
lar toolkit assembled to handle a huge diversity of
functions. An understanding of how proteins func-
tion is essential for understanding the cell life cycle
and metabolism, how cells send signals to their envi-
ronment, and how cells receive and process signals
from their environment. An understanding of pro-
tein structure and function can serve as a basis for
innovation in new therapies, diagnostic devices, and
even industrial applications.

The function of proteins is intimately associated with
their structure.1 The examples shown in Figure 1 il-
lustrate this.5 When proteins fold into the wrong
structure, the results can be fatal, e.g., “mad cow”
disease probably results from an autocatalyzed wrong
fold in the prion protein6 and cystic fibrosis is also
connected with protein (mis)folding.7

Protein architecture. Protein architecture8 is based
on three principles:

1. The formation of a polymer chain
2. The folding of this chain into a compact function-

enabling structure, or native structure
3. Post-translational modification of the folded

structure

The protein chain (or peptide chain if short in length)
is a heteropolymer built up from alpha amino acid
monomers, as shown in Figure 2. The sequence of
amino acid residues in the peptide chain is termed
the primary structure of the protein. The 20 different
choices for each amino acid in the chain give the pos-
sibility of enormous diversity, even for small proteins.
For example, a peptide of 30 residues yields the as-
tonishing number of about 2030, or approximately
1039, possible unique sequences.

From the enormous number of possible protein se-
quences that could exist, we observe relatively few
in nature. It is thought that the diversity of viable
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proteins has been constrained by natural selection
to give:

1. Desired function
2. Adequate stability
3. Foldability
4. Evolvability from appropriate evolutionary pre-

cursors

The peptide chain has certain local fold character-
istics termed secondary structure. 7 Steric hindrance
and energetic considerations favor certain confor-
mations of the peptide chain. One such conforma-
tion is the alpha helix (see red helices in Figure 3).
Another secondary structure is the beta sheet (blue
flattened regions in Figure 3), in which two or more
strands of the peptide chain are aligned to form a

sheet. The relatively organized alpha helix and beta
sheet sections of a protein are joined by less orga-
nized loop or turn regions. The way in which the rel-
atively localized secondary structure elements com-
bine to form the overall compact protein is termed
the tertiary level of structure, as can be seen from
the example on the right in Figure 3. Finally, qua-
ternary structure refers to the way that tertiary struc-
tures from two or more chains combine to form much
larger structures.

The protein folding problem. There are two impor-
tant facets to the protein folding problem: predic-
tion of three-dimensional structure from amino acid
sequence, and understanding the mechanisms and
pathways whereby the three-dimensional structure
forms within biologically relevant timescales.
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The prediction of structure from sequence data is
the subject of an enormous amount of research and
a series of conferences that assess the state of the
art in structure prediction.9 While this area is ex-
tremely important, good progress in the area of struc-
tural predictions has been made using only modest
amounts of computational power. The effort de-
scribed in this paper is aimed at improving our un-
derstanding of the mechanisms behind protein fold-
ing, rather than at structure prediction. Even though
biologists have been most interested in structure pre-
diction, there has been an increasing recognition of
the role that misfolding of proteins plays in certain
disease processes, notably Alzheimer’s disease and
mad cow disease.6 The section that follows describes
some of the fundamental reasons for interest in the
process of protein folding.

Why protein folding mechanisms are important. The
fact that a subset of heteropolymers constructed from
amino acids and used in biological processes actu-
ally take on reproducible three-dimensional struc-
tures in a relatively short time of seconds or less is
one of the marvels of nature. Heteropolymers typ-
ically form a random coil in solution and do not
“fold” to any reproducible structure in experimen-
tally accessible times. Consider the paradox noted
by Levinthal,10 which asks the reader to consider that
if, say, we allow three possible conformations for ev-
ery amino acid residue on the peptide chain, a 100-
residue protein would have 3100 5 1047 configurations.
Any unbiased exploration of this conformational
space would take a vast amount of time to complete.
Thus, the proteins that fold reproducibly and quickly
into particular shapes must have been selected in
some way for these properties. It is hypothesized that
these proteins conduct this conformational search
along particular pathways that allow the folding pro-
cess to proceed quickly. One of the challenges in the
study of protein dynamics is to understand the mech-
anisms behind this behavior. An improved under-
standing of these mechanisms is not only interesting
from a purely scientific perspective, but might even-
tually allow us to engineer other “self-assembling”
structures.

Current view of folding mechanisms. A simplistic
but illustrative way of viewing protein folding is to
note that the amino acid R groups (see Figure 2, cap-
tion) fall into three main classes: (1) charged, (2) hy-
drophilic (“water-loving”), and (3) hydrophobic
(“water-hating”). In the simplest picture, the folded
state of the peptide chain is stabilized primarily (for
a globular protein in water), by the sequestration of

much of the hydrophobic groups into the core of the
protein—out of contact with water, while the hydro-
philic and charged groups remain in contact with wa-
ter. The stability can be described in terms of the
Gibbs free-energy change DG

DG 5 DH 2 TDS,

where DH is the enthalpy change and DS is the en-
tropy change. DH is negative due to the more fa-
vorable hydrophobic interactions in the folded state,
but so is DS because the folded state is much more
ordered and has lower entropy than the unfolded
state. The balance between the enthalpy and entropy
terms is a delicate one, and the total free-energy
change is only of order 15 kilocalories per mole. Ev-
idently the internal hydrophobic/external hydrophilic
packing requirement places strong constraints on the
amino acid sequence, as does the requirement that
the native state be kinetically accessible.

It is helpful to think of the physics of the folding pro-
cess as a “free-energy funnel,”11 shown schematically
in Figure 4. Since the folding process is slow relative

Figure 2   The generic formula for an alpha amino acid is 
NH2 − CαHR − COOH, where the suffix denotes
the alpha carbon. The different amino acids, also
termed “residues” in protein architecture, differ in
the “R” group attached to the alpha carbon. 
There are 20 possible choices of R group. In the
polymerization process successive monomers  
are added, resulting in a peptide chain, as shown. 
The peptide and ultimately the protein chain
has the formula NH2 − CαHR1 − CO − NH −  
CαHR2 − ... − CαHRL − COOH. 
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to motions at atomic scale, we can think of partially
folded configurations as having a quasi-equilibrium
value of the free energy. The free energy surface may
be displayed as a function of some reduced dimen-
sionality representation of the system configuration
in a given state of the protein.12 Figure 4 is a vertical
plot of free energy in a contracted two-dimensional
space (horizontal plane) representing the configura-
tion of the peptide chain. The most unfolded con-
figurations are the most numerous, but have the high-
est free energy, and occur on the rim of the funnel.
Going into the funnel represents a loss of number
of configurations (decrease of entropy), but a grad-
ual decrease in free energy, until the native state with
very few configurations and the lowest free energy
is reached at the bottom of the funnel. The walls of
the funnel contain only relatively shallow subsidiary
minima, which can trap the folding protein in non-
native states, but only for a short time. Now the evo-
lution of the system as it folds can be described in
terms of the funnel. The system starts off in a phys-
ically probable state on the rim of the funnel, and
then makes transitions to a series of physically ac-
cessible states within the funnel, until the bottom of
the funnel is gradually approached.

Figure 3 illustrates folding. Here the unfolded pep-
tide chain on the left already contains some folded
secondary structure, alpha helices (red), and a beta

hairpin (blue). It is still a long way from the com-
pact native structure at right. The folding process in
different proteins spans an enormous dynamic range
from approximately 20 microseconds to approxi-
mately 1 second.

Probes of folding. In biophysical studies of protein
folding, current emphasis is on the reversible fold-
ing of moderate-sized globular proteins under closely
controlled conditions in vitro. Many globular proteins
can be made to unfold in vitro and then to undergo
a refold back to the native structure without any ex-
ternal assistance.1 The unfolding process can be
driven in several ways, for example by changes in de-
naturant concentration, by heat pulses, by pressure
pulses, etc. In this manner, refolding times down to
tens of microseconds can be measured.

Although the study of protein dynamics and folding
pathways via experiment is an active area of research
and much progress is being made,1,13 experimental
probes do not yet provide as complete a view of pro-
tein dynamics at the microscopic length and time-
scales as one would like. Numerical simulations of-
fer a potential window into this microscopic world,
and models that treat the relevant physical phenom-
ena with varying degrees of abstraction have been
useful sources of insight, particularly for the theo-
retical community. As larger computational re-
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sources have become available and simulation tech-
niques have improved, more detailed simulations of
larger systems and longer timescales have become
possible.

The simplest systems for study are those with less
than approximately 120 residues, which constitute
“two-state folders,” i.e., there is no intermediate be-
tween the denatured and native states. Such ideal
systems should also not contain prosthetic groups,
i.e., they should be pure peptides, should not require
the assistance of “chaperones” to fold, and should
preferably not have disulfide bonds.

Consider the following three types of protein science
studies that might employ large-scale numerical sim-
ulation techniques:

● Structure prediction
● Folding pathway characterization
● Folding kinetics

Protein structure prediction can be carried out using
a large number of techniques8 and, as previously dis-
cussed, it is unnecessary to spend a “petaflop year”
on the prediction of a single protein structure. That
said, there is some reason to believe that atomistic
simulation techniques may be useful in refining struc-
tures obtained by other methods.

Folding pathway characterization typically involves the
study of thermodynamic properties of a protein in
quasi-equilibrium during the folding process. Map-
ping out the free-energy “landscape” that the pro-
tein traverses as it samples conformations during the
folding process can give insights into the nature of
intermediate states along the folding pathway and
into the “ruggedness” of the free-energy surface that
is traversed during this process. Because such stud-
ies involve computations of average values of selected
functions of the system’s state, one has the choice
of either averaging over time as the system samples
a large number of states (molecular dynamics) or av-
eraging over configurations (Monte Carlo). Aggres-
sive sampling techniques that may improve the com-
putational efficiency with which such averages can
be computed can be used to good effect in these stud-
ies. Simulation techniques to compute these aver-
ages over the appropriate thermodynamic ensem-
bles are available.14

Simulation studies of folding kinetics are aimed at
understanding the rates at which the protein makes
transitions between various conformations. In this

case, the calculation of thermodynamic averages is
not enough; the actual dynamics of the system must
be simulated with sufficient accuracy to allow esti-
mation of rates. Of course, a large number of tran-
sition events must be simulated in order to derive
rate estimates with reasonable statistical uncertain-
ties. Another challenge faced in such simulations is
that the simulation techniques used to reproduce
thermodynamic averages in ensembles other than
constant particle number, volume, and energy (NVE)
are, strictly speaking, inappropriate for studies of
folding kinetics.

Both pathway and kinetic studies may “zoom in” on
selected regions of interest in the folding process
rather than trying to simulate the process from end

Figure 4 The free energy is plotted vertically as a function  
  of the accessible configurations of the peptide 
  chain, which are projected into the plane in this 
  representation. The most unfolded configurations
  are the most numerous, but have the highest free 
  energy, and occur on the rim of the funnel. Going
  into the funnel represents a loss of a number of
  configurations (decrease of entropy), but a 
  gradual decrease in free energy, until the native 
  state with very few configurations and the lowest 
  free energy is reached at the bottom of the funnel.
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to end. If probing the dynamics of the folding pro-
cess through repeated simulation of large portions
of complete folding trajectories is the method used,
then some logical starting points would be peptides
or small fast-folding proteins with well-characterized
properties.15 Preferably, folding times should be un-
der 100 microseconds for convenience of simulation.

Computational approaches to studying
folding mechanisms

In principle, computer simulations of biomolecular
processes such as protein folding can be carried out
using techniques spanning a broad range of sophis-
tication in modeling the basic physical processes and
spanning a broad range in computational cost.

At one end of the spectrum in sophistication of treat-
ment of the interatomic interactions are the so-called
lattice and beaded-string models. Often in these
treatments each amino acid residue of a protein is
approximated as a point particle. In the lattice mod-
els these particles are constrained to occupy sites on
a lattice in three dimensions. In the beaded string
models this restriction can be relaxed. These mod-
els have been extremely useful because they can be
exhaustively investigated with a modest amount of
computer resources.16,17

A more detailed treatment of the interatomic inter-
actions is provided by united-atom models that are
simulated in a vacuum or in what is known as im-
plicit solvent. As the name indicates, united-atom
models treat groups of atoms within the protein as
if they were a single particle. The implicit solvent
approximation treats the water surrounding the pro-
tein not as discrete molecules, but rather as a con-
tinuum, perhaps with a dielectric interaction on the
protein. These models, because of their increased
sophistication, require significantly more computer
resources than the lattice and beaded-string mod-
els, and so, many fewer simulations can be run and
not as many variables can be easily investigated.

Next in sophistication are the all-atom models of pro-
teins, in which the water solvent is treated with an
atomistic resolution. This treatment of the water,
known as an explicit solvent treatment, adds consid-
erable computational cost to the calculation, since
the interactions between water molecules become
the dominant part of the simulation.

Finally, the ultimate in treatment of interatomic in-
teractions would include quantum mechanical (QM)
methods that treat the actual electronic wave func-
tion of the system explicitly. Such calculations are
used, in fact, to study relatively short-time biomo-
lecular processes such as enzyme catalysis.

As Figure 5 indicates, as the degree of sophistica-
tion of the treatment of the interatomic interactions
increases, it becomes more and more difficult to ex-
haustively simulate the entire process of protein fold-
ing, because the computational requirements rise so
quickly. However, all approaches have been fruit-
ful, some workers choosing to take advantage of the
ability to simulate the entire folding process, albeit
at a lower level of sophistication of interatomic in-
teractions. Others have focused their efforts on higher
quality treatment of the interactions, but with much
less exhaustive exploration of the folding process.
The addition of hardware with the capabilities
planned for Blue Gene should significantly improve
the ability to perform simulations of many degrees
of sophistication. The current plan for the Blue Gene
project is to use all-atom explicit solvent simulations
as our first targeted approach.

So far the most ambitious attempt to fold a protein
is that of Duan and Kollman18 on the villin head-
piece in water. In three months, on a 256-node Cray
T3E processor, the authors were able only to follow
the folding trajectory for one microsecond, still too

Figure 5   Schematic plot of degree of sophistication of
interatomic interactions vs amount of biophysical 
process that can be simulated
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short a time for folding, and in fact the authors were
not able to achieve a fully folded configuration,
though extensive secondary structure formation oc-
curred. Subsequently three more trajectories have
also been obtained by these authors.

Challenges for computational modeling. The current
expectation is that it will be sufficient to use classical
techniques, such as molecular dynamics (MD), to
model proteins in the Blue Gene project. This is be-
cause many aspects of the protein folding process
do not involve the making and breaking of covalent
bonds. While disulfide bonds play a role in many pro-
tein structures, their formation will not be addressed
by classical atomistic simulations. In classical atom-
istic approaches, a model for the interatomic inter-
actions is used. This is known as a potential, or force
field, since the forces on all the particles can be com-
puted from it, if one has its mathematical expres-
sion and all its parameters. The MD approach is to
compute all the forces on all the atoms of the com-
puter model of the protein and solvent, then use that
force to compute the new positions of all the atoms
a very short time later. By doing this repeatedly, a
trajectory of the atoms of the system can be traced
out, producing atomic coordinates as a function of
time.

Newton’s equation is integrated for each particle us-
ing a small time step of the order of 10215 seconds.
This small time-step size is required to accurately
describe the fastest vibrations of the protein and sol-
vent system, which tend to be those associated with
movement of hydrogen atoms in the protein and wa-
ter. The magnitude of the computational cost can
be seen when one notes that folding times of approx-
imately 1024 seconds are observed in some fast-fold-
ing systems, requiring the computation of approx-
imately 1011 MD time steps. As can be seen in Table
1, the computational requirements for studying pro-
tein folding are enormous.

Various methods can be used to improve the sta-
bility and efficiency of the dynamic simulation. These
include the use of integrators with good stability
properties such as velocity Verlet,19 and extensions
such as RESPA.20 Additional efficiencies can be re-
alized through freezing the fastest modes of vibra-
tion by constraining the bonds to hydrogen atoms
to be fixed in length using algorithms such as SHAKE21

and RATTLE.22 This approximation is consistent with
many of the most popular models for water inter-
actions, such as TIP3P, TIP4P, TIP5P,23 and SPC and
SPC/E,24 since these models for water interactions

treat the molecules as completely rigid. The use of
RESPA and the fixing of bond lengths involving hy-
drogen atoms with SHAKE and RATTLE allow the use
of larger time-step sizes without much degradation
in the accuracy of the simulation.

One would like to study the dynamics of a single pro-
tein in an unbounded volume of water. Since only
a finite simulation cell can be modeled, the most
common approach is to use periodic boundary con-
ditions in the simulation volume. Thus the simula-
tion models a periodic structure of unit cells, such
as a simple cubic array, each cell consisting of a box
of water containing a protein within it, and all cells
being identical. The charges in different cells are par-
tially screened from each other by the high water di-
electric constant, which is exhibited by water mod-
els commonly used in simulations. Long-range
electrostatic interactions for such a periodic struc-
ture can be treated via the Ewald summation tech-
nique.25

One of the key challenges faced in implementing
classical atomistic simulations is that of adequately
modeling the interatomic interactions in the systems
required to study problems of biological interest such
as protein folding. The forces that are typically taken
into account in MD simulations of protein and water
systems (and many others) are illustrated in Figure
6, which displays some of the types of energy expres-
sions involved in a typical model potential. The en-
ergy terms may be classified as either bonded or non-
bonded interactions. Bonded interaction terms in
most model potentials consist of at least bond stretch-
ing, angle bending, and torsion energy terms, but
may include more complex terms such as stretch-

Table 1 The computational effort required to study protein
folding is enormous. Using crude workload
estimates for a petaflop/second capacity machine
leads to an estimate of three years to simulate
100 microseconds.

Physical time for simulation 1024 seconds
Typical time-step size 10215 seconds
Number of MD time steps 1011

Atoms in a typical protein and
water simulation

32000

Approximate number of
interactions in force
calculation

109

Machine instructions per force
calculation

1000

Total number of machine
instructions

1023
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bend interaction. Bond stretch and angle bending
movements are generally very small, but torsional
movement may involve significant rotational dis-
placements. As Figure 6 indicates, bond and angle
expressions are often harmonic in nature, whereas
torsional energy contributions are usually expressed
as a short sum of cosine functions. Note that the sum
in the bond expression is over all pairs of atoms that
are considered to be covalently bonded. The sum in
the angle expression is over all sets of three atoms
that share two covalent bonds. The sum in the tor-
sion expression is over all sets of four atoms that
share three covalent bonds.

The nonbonded forces are also illustrated in Figure
6. These consist of Coulomb interactions and Van
der Waals interactions. The Coulomb interactions
between the atoms are due to charges and have the
longest range in terms of the extent of their influ-
ence. These interactions play a key role in defining
the energies of hydrogen bonds, which are ubiqui-
tous both intraprotein, intrawater, and between pro-
tein and water. The binding of solids such as solid
hydrocarbons, and many of the interactions within
the cores of folded protein molecules, are dominated

by the Lennard-Jones (LJ), or Van der Waals inter-
action. This is comprised of the fluctuating-dipole
or dispersive attraction (r 26 term), together with ex-
change repulsion, which in the LJ form of the inter-
action is artificially modeled by the r 212 term. Note
that the sums in the Coulomb and LJ expressions in-
clude only nonbonded pairs of atoms. These are pairs
of atoms that are neither covalently bonded nor con-
nected by an angle energy expression. Pairs of at-
oms that are neither bonded nor connected by an
angle expression, yet are coupled by a torsion expres-
sion, are sometimes known as 1–4 nonbonded pairs.
Depending on the model potential in use, these non-
bonded interactions are typically excluded or mod-
ified. The modifications may, for example, be dif-
ferent LJ parameters or use some multiplicative
attenuation factor.

In these energy expressions, note that there are a
number of force field parameters, such as spring con-
stants for bond stretch and angle bending, equilib-
rium bond lengths and angles, torsional energy pre-
factors and phase angles, LJ parameters and atomic
charges. The different model potentials in common
use differ not only in the choice of parameters, but
also to some extent in the number and complexity
of functional forms they employ.

In order for a science program based on large-scale
simulation to be a success, the model potentials used
must adequately represent the relevant physics and
chemistry involved. The project is to some extent hos-
tage to the accuracy of the force fields available. Ex-
isting force fields are remarkably successful in some
areas. However, the suitability of existing force fields
for accurately modeling the dynamics of the folding
process is an area of active investigation and refine-
ment of the models used is an ongoing process. The
force fields in common use to model the protein and
water system include, for example, CHARMM,26

AMBER,27 GROMOS,28 and OPLS-AA.29 Beyond im-
proved parameterization of the existing models, the
inclusion of additional physical phenomena such as
polarizability is being investigated.30,31

It seems obvious that calculations of protein folding
pathways and rates would be very sensitive to vari-
ations in the force field. However, strong arguments
exist that in fact, paradoxically, the phenomenon of
folding may be quite robust. The notion of design-
ability of a native fold, meaning that the fold is sta-
ble over a significant variation of amino acid con-
tent, is one aspect of the robustness. Also, many
proteins exist in highly mutated forms across and

Figure 6  Representative functional forms for interparticle
  interactions used in force fields for atomistic 
  simulations, Utotal = UStretch + UBend + UTorsion +  

  UCoulomb + ULJ. Bond stretch interactions involve 
  two particles, angle bending interactions involve  
  three particles, and the torsion terms involve  
  four particles. All of the nonbonded interactions  
  involve pairs of particles. The nonbonded inter- 
  actions between particles that also have bonded  
  interactions are typically modified or eliminated.
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within species. These mutated forms often have the
same fold. On the other hand, mutated proteins of-
ten have much slower folding rates, even if the same
structure is ultimately produced. And furthermore,
it is well known that a number of diseases exist that
can be traced to changes in a single amino acid in
the protein, which presumably results in unfoldable
or misfolded proteins. This argues for the possibil-
ity that folding may be very sensitive to force-field
quality. Characterizations, comparisons, and assess-
ments of force fields are expected to represent a sig-
nificant area of activity for the Blue Gene science
program. Thus, the software application infrastruc-
ture that supports the science must have the ability
to support multiple force fields and new develop-
ments in force-field technology.

Simulation options. It is very important to dispel the
notion that the Blue Gene resource will be applied
to study a single folding event of a single protein.
For physically meaningful studies of protein folding,
it will be necessary to simulate a large number of
trajectories in order to reach conclusions supported
by reasonable statistics. Estimates of the number of
trajectories required, for each system studied, range
from 10 to 100 in order, for example, to derive a
crude estimate of the characteristic time for a step
in a folding process. This requirement places lim-
itations on the sizes of systems and the lengths of
individual dynamical simulations that can be under-
taken. There is some evidence that multiple simu-
lations of limited duration provide more informa-
tion than a single longer trajectory representing an
equivalent amount of computation.32 For force-field
characterizations, too, many simulations will be re-
quired on a large variety of protein and peptide sys-
tems using different force fields.

We therefore anticipate the simulation of a large va-
riety of protein and smaller peptide systems in the
Blue Gene program for various amounts of time and,
for many, with a high degree of replication in order
to obtain meaningful statistics. We also anticipate
that effort will be spent on the implementation and
investigation of newly developed, and perhaps more
efficient, algorithms for investigating protein science.

A number of new techniques are becoming available
that might prove useful for studying protein pro-
cesses such as folding. These, and others yet to come,
should be examined for applicability in the context
of the hardware and science program. For studies
of protein folding kinetics, it may be possible to ex-
ploit acceleration techniques. Examples include the

parallel replica method of Voter,33,34 the reaction
path approach of Elber,35 and the transition path
sampling approach of Chandler and coworkers.36

Among the areas we plan to investigate are folding
kinetics, pathway characterization, and force-field
comparison and assessment. In kinetic studies, many
occurrences of the relevant events are required to
reach any well-supported conclusions. Simulations
that probe for information about kinetics will need
to be performed using constant energy dynamics, and
highly accurate trajectories will need to be gener-
ated to avoid heating the system. Among the impor-
tant questions to investigate in kinetic studies, in ad-
dition to attempting to predict rates, is whether any
observations are consistent with recent theories that
relate folding to chemical reaction kinetics or nu-
cleation events as observed in first-order phase tran-
sitions.16 These studies will also require the devel-
opment of new trajectory analysis tools.

For folding pathway characterizations, we might de-
velop and employ technology similar to that of Shei-
nerman and Brooks,37 where free energy along fold-
ing pathways is characterized using sophisticated
thermodynamic sampling techniques. These meth-
ods can provide quantitative (subject to the approx-
imations of the model and simulation methods) char-
acterization of the protein folding landscape. Such
simulations require the implementation of thermal-
and pressure-control technology in the application,
as well as the implementation of potential of mean
force and umbrella sampling techniques.

Some of the studies will target force-field character-
ization through a variety of probes. The simplest of
these are studies of the structural stability of exper-
imentally generated native structures using differ-
ent force fields. These are likely to involve both ki-
netic and thermodynamic sampling simulations12 of
small peptides in water over tens of nanoseconds—
times characteristic of fast alpha-helix formation. An-
other type of study in which known protein struc-
tures are partially unfolded by applying a heat pulse,
and then refolded, can provide further insight into
the ability of the force fields to correctly reproduce
free-energy minima. Another possible way to com-
pare and assess force fields is to see if the trends in
the free energy of solvation or the partition coeffi-
cient for peptides that is observed in experiments can
be computed using free-energy methods imple-
mented in the Blue Gene application.
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Overview of planned science program. The Blue
Gene science program is planned to be incremen-
tal, with early studies being carried out on currently
available hardware platforms. An application suite
will evolve that makes use of existing software tools
and biomolecular modeling and simulation software
packages, where appropriate. In fact, a rich set of
function exists today in commercial, academic, and
public domain tools that allow visualization, prob-
lem setup, molecular coordinate manipulation, and
trajectory generation and analysis. Some of the ini-
tial simulations may be performed using these com-
mercially available software packages. However, new
software will ultimately need to be developed for the
computational core in order to efficiently exploit the
special hardware being designed and to explore novel
techniques and algorithms.

Even with the anticipated computational power
available to the Blue Gene project for MD simula-
tions, careful consideration must be given to the sci-
entific program in order to utilize the capability of

the hardware most effectively to advance our under-
standing of the protein folding process. Therefore,
a key aspect of the Blue Gene science program will
be outreach to the worldwide scientific community
of protein experimentalists, simulation methodology
and application experts, and biophysical theorists in
academia, government laboratories, and commercial
life sciences institutions. It is hoped that this project
can help catalyze interactions within the life sciences
community, as shown in Figure 7. This is essential
if we are to have a strong and relevant scientific im-
pact in protein science through the application of
the hardware.

We intend to engage the scientific community di-
rectly by organizing and hosting workshops, confer-
ences, and seminars. At the time this paper was be-
ing written, the first IBM-sponsored protein science
workshop planned to meet at the University of Cal-
ifornia in San Diego on March 30–31, 2001. One of
the primary functions of the meeting was to gener-
ate suggestions for new collaborative work in the
field, especially, but not limited to, work that may
bear directly on the Blue Gene project.

Hardware

A petaflop/s power (1015 floating-point operations
per second) computer, with something like 50 times
the computing power of all supercomputers in the
world today, can only be realized through massive
parallelism. Such a machine would need to have high-
bandwidth, low-latency communications; otherwise
it would be essentially limited to data-parallel op-
eration, a mode resulting in unacceptably long turn-
around time for jobs, each of which would be run
on a low-power subset of the machine. A conven-
tional implementation of a petaflop/s machine would
be too massive, expensive, and unreliable. Because
of the communications requirement, solutions in-
volving huge numbers of loosely coupled personal
computers are too inefficient for the desired appli-
cations.

In the MD GRAPE approach,38 a set of boards con-
taining a GRAPE chip hard-wired to implement the
full O(N 2) 39 long-range force calculation is coupled
to a host machine in which the short-range forces
are computed; in this approach the use of finite-range
cutoffs of the long-range forces to improve perfor-
mance is discarded and compensated for by the ef-
ficiency of “pipelining” the calculation of the long-
range forces done in the GRAPE chip. There is also
a WINE chip for implementing the k-space part of

Figure 7   This figure illustrates the interactions between the
major intellectual communities participating in the 
science of protein folding. Extensive opportunities 
for interchange of ideas exist between each of 
these communities. Experimentalists can suggest 
new systems and properties to study in 
simulations. Simulators can suggest systems to 
be probed by experimentalists. Theorists can
suggest systems for study by experimental and 
simulation methods. Simulators can feed back 
microscopic information to theorists that may 
support or refute existing theories or suggest 
potential avenues for improvement. 
Experimentalists can similarly interact with 
theorists via their data. It is hoped that the Blue
Gene project will allow IBM to act as a catalyst
to stimulate these interactions.

EXPERIMENTALISTS

THEORISTS SIMULATORS
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Ewald. Scaling up such a highly specialized machine
to the necessary size would require an appropriate
scaling up of the host machine so that the bonded
force component (which is calculated more fre-
quently than the long-range forces when using the
multiple time-step technique) remains in scale. This
would seem to be a highly complex project involving
many different types of chips, and therefore an ex-
pensive approach.

We next discuss the “cellular” Blue Gene architec-
ture for achieving a petaflop/s machine, a relatively
unspecialized approach that seems to be feasible.

High-performance supercomputers are built today
by connecting together large numbers of nodes, each
consisting of a conventional server system (unipro-
cessor, or small-scale shared-memory multiproces-
sor). The ASCI Blue Pacific IBM SP* system, which
achieves a performance in excess of 10 tera-
flops/second (peak), demonstrates the top perfor-
mance achievable by such systems. However, it will
be difficult to scale up the performance of such sys-
tems to petaflop/s performance in the near future.

A petaflop/s system built out of conventional server
nodes would consume hundreds of megawatts of
electrical power; it would require many acres of ma-
chine room floor; it would likely have an unaccept-
ably low mean time between failures (an MTBF in
excess of 100 hours is considered remarkable in cur-
rent high-end supercomputers); it would be exceed-
ingly difficult to program and manage; and it would
have an unacceptably high price tag.

There are several reasons for this. Conventional mi-
croprocessors are built to execute one sequential in-
struction stream as fast as possible. Increasingly large
amounts of hardware are used to extract parallel-
ism from a sequential instruction stream with tech-
niques such as register renaming, speculative exe-
cution, branch prediction, and so on. These
techniques yield diminishing returns: whereas the
number of gates in integrated microprocessors has
increased by three orders of magnitude in the last
two decades, the number of instructions executed at
each cycle has increased by a factor of ten, at best.

A simplified microprocessor design leads to higher
efficiency and enables many processor cores to fit on
a single chip. This has the added advantage that wires
in the processor core can be kept short, further im-
proving performance, and that it is possible to
achieve higher chip manufacturing yields by using

chips with some faulty processors. This approach is
worthwhile if one targets applications with signifi-
cant amounts of parallelism, so that a large number
of individual processors can be usefully applied. Mo-
lecular dynamics is one example of such an appli-
cation.

Current microprocessor architectures suffer from the
well-known “Von Neumann bottleneck”: memory
access time is measured in hundreds of processor cy-
cles, and the compute units often stall, waiting for
data to arrive from memory. This leads to increas-
ingly complex logic to support long execution pipe-
lines and to increasingly complex cache hierarchies
to satisfy most memory accesses from smaller, but
faster, cache memory. While caches may take half
of the area of a microprocessor chip, they still do a
poor job for many scientific codes. Current CMOS
(complementary metal-oxide semiconductor) tech-
nology, in particular, IBM Blue Logic technology,40

provides efficient support for embedded DRAM (dy-
namic random-access memory) cores on logic chips.
The Von Neumann bottleneck is minimized if this
technology is used to integrate processor(s) and
memory on one chip, thus providing a low-latency,
high-bandwidth processor-memory interface. How-
ever, while it is quite easy to fit on one chip suffi-
cient floating-point logic to execute tens of billions
of floating-point operations per second (flop/s), it is
not possible to fit on one processor chip much more
than 32 megabytes of memory. The usual “rule of
thumb” of one byte of memory per flop/s precludes
the use of merged DRAM logic for systems with any
interesting performance. The door for the creative
use of merged DRAM logic opens, once it is under-
stood that these rules of thumb for balanced systems
apply to servers built to accommodate a broad mix
of workloads, but may not apply to systems target-
ing a narrower range of applications. Preliminary
analysis indicates that some MD codes can be run ef-
ficiently using less than one byte per second per 1000
flop/s.

More generally, thinking on algorithm and system
design is still dominated by the invalid perception
that compute units are the most expensive resource
in a computing system. Applications are designed
to minimize the number of operations required to
solve a problem. Systems are designed with enough
memory and I/O to achieve a high usage of the com-
pute units, even if this leads to low memory or disk
utilization. In fact, the cost of systems is dominated
by storage cost, and by the cost of the logic required
to move data around (caches and buses). If one
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thinks anew from basic principles, the conclusion will
often be that algorithms that use more computing
but less memory, or use more computing but require
less communication, coupled with systems designed
to ensure more effective use of memory and com-

munication, even at the expense of lower utilization
of the processing units, are more cost-effective than
conventional algorithms and systems.

Conventional high-end systems are clusters of nodes,
each controlled by a full operating system. This sig-
nificantly increases (software) error rates, as well as
introduces major inefficiencies. The predominant us-
age mode for such machines is a partition dedicated
for a significant period of time to the execution of
one parallel application; the efficient execution of
such an application requires the tight coordination
of all resources in the partition. Yet, each operating
system instance allocates resources (processor time
slices and memory) autonomously, with no aware-
ness of the required coupling with other nodes. In-
deed, efficient performance is achieved only when
the operating system is “out of the way”; many of
the mechanisms and policies of the operating sys-
tem become obstacles to performance, rather than
supporting the right virtual parallel machine abstrac-
tion. Performance and stability can be significantly
improved by using at each node a simple kernel that
provides a thin layer of protection atop the hardware,
and by providing global mechanisms and policies for
the management of partitions.

Even though access to on-chip memory can be much
faster than to off-chip memory, DRAM access will still
require multiple cycles. We use simultaneous mul-
tithreading to hide this memory latency. The basic
building block for processors is a thread unit that ex-
ecutes an autonomous instruction stream. Each
thread unit has its own register set and its own in-
struction sequencer. Multiple thread units within one
processor share more expensive resources, such as
the double-precision floating-point units, instruction
cache, and memory bus. If one thread unit stalls as

it waits for a load to complete from memory, then
the shared processor resources can be used by other
thread units. In effect, one has replaced one fast pro-
cessor by multiple slower thread units that are bet-
ter matched to the memory latency. This is a worth-
while choice if application-level parallelism is there
to be exploited. Assuming a 500-megahertz clock,
each processor can execute up to one gigaflop/s (two
floating-point instructions at each cycle).

These considerations dictate the design for the Blue
Gene system. The building block for Blue Gene will
be a single chip that integrates multiple processors,
as just described, memory, and communication logic.
This will allow us to build a full system, essentially
by replicating this one chip.

We have determined that it is possible to fabricate
in currently available standard cell technology an in-
expensive chip with double-precision scalar perfor-
mance on the order of 32 gigaflop/s, internal DRAM
capacity around 8 megabytes, and external commu-
nication bandwidth exceeding 12 gigabytes per sec-
ond. A novel mechanical packaging scheme maps a
32 3 32 3 32 cube of these chips into a system cov-
ering an area of about 40 3 40 feet. Power consump-
tion for a performance of one petaflop/s is under two
megawatts.

The basic programming model offered by a Blue
Gene system is very similar to that offered by large-
scale clusters today. Each chip is a shared memory
multiprocessor that runs simultaneous multiple
threads. Threads running on the same chip commu-
nicate via shared memory. Communication between
chips uses message passing. However, the sheer size
of the system will force us to evolve toward higher-
level programming models that will be mapped on
the actual hardware by a combination of compile-
time and run-time techniques.

A major concern on a system of this size is error re-
covery. We expect that the incidence of software er-
rors will be kept low by keeping the resident soft-
ware very simple, and by applying correctness-
proving techniques to key software subsystems, such
as the communication software. However, the large
number of components imply that hardware failures
will be very likely to occur during any one job run.
Furthermore, there will be a non-negligible likeli-
hood that hardware errors will corrupt the state of
a computation without being detected by hardware.
Software must assume responsibility for error cor-
rection and, to some extent, for error detection. A

The building block for
Blue Gene will be a chip

that integrates multiple processors,
memory, and

communication logic.
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simple method for detecting errors is to replicate
computation and compare results. However, com-
putation mirroring reduces the effective performance
by a factor of two. Less onerous error detection may
be possible through use of application-dependent re-
dundancy, in the computation state, to periodically
validate this state. Error recovery will be based on
the ability to isolate faulty components and to re-
start a computation on the remaining components
from a previously taken checkpoint.

The architectural choices outlined in this section
have their downside; the low amount of memory re-
stricts the range of applications that can exploit this
architecture. Compatibility with existing software is
not guaranteed. We believe that an improvement of
two orders of magnitude in compute performance
per watt, or compute performance per gate count,
is well worth this trade-off. At the very high end this
might be the only practical way of approaching
petaflop/s performance levels.

Application issues

Given the nature of the architecture just described,
it is clear that a number of challenges must be faced
in crafting an application to execute the science pro-
gram on the target machine platform. At the high-
est level, a major challenge is to understand how to
extract the maximal amount of concurrency from the
application. The scientific goals of the project may
require simulation of a fixed-size system for a very
large number of time steps.

In the following discussion, some of the known strat-
egies for mapping such simulations onto very large
numbers of nodes are described, along with the is-
sues connected with these strategies. A high-level de-
scription of selected algorithmic alternatives avail-
able for improving the efficiency of the dominant
computational burden is provided; we end with a
brief survey of some areas of exploration.

Scalability challenge. With an immense number
(more than 30000) of nodes, an even larger number
of CPUs (approximately 1000000), and a yet larger
number of hardware thread contexts (more than
5000000), the challenge of mapping a fixed-size N-
body simulation onto such a massively parallel ma-
chine is considerable.41 It is most common to define
scalability in terms of the ability to employ greater
numbers of nodes to solve larger problems, where
“larger” in this case refers to the number of parti-
cles, N.

One important research area for the scientific pro-
gram is the study of very long timescale phenomena
within the protein folding process. We would like to
use the approximately 100-fold increase in compu-
tational power that the hardware potentially offers
to realize a similar 100-fold increase in the time-
scales probed by the scientific program.

This requires the ability to use additional hardware
threads to increase the number of time steps that
can be simulated in a fixed amount of time on a prob-
lem of fixed size. Since the systems most relevant to
the science program contain approximately 30000
atoms, the ability to use more hardware threads than
there are particles in the simulation is required, if
one wishes to run on the full unpartitioned machine.

Existing approaches. For concreteness, this discus-
sion focuses on approaches aimed at molecular
dynamics. An extensive review of atomistic simula-
tion techniques on parallel machines has recently ap-
peared42 that provides a broader survey than that
provided here. We provide a brief description of cur-
rent approaches to decomposing the problem on a
parallel machine and also some of the currently pop-
ular algorithmic alternatives.

In the process of integration of the equation of mo-
tion required by molecular dynamics, the integration
itself occupies negligible time, since it is of order N
in an N-atom system, and involves simple arithmetic.
The various contributions to the potential energy of
the system are shown in Figure 6, and the evalua-
tion of the corresponding force components on each
particle dominates the computation.

There are only O(N) bonded force evaluations and
they typically consume anywhere from one to 20 per-
cent of the total force computation in a uniproces-
sor environment.25 This variation is due to both vari-
ation in system type and to use of multiple time-step
integration techniques like RESPA20 that can change
the relative frequencies at which various force terms
are evaluated. The force computation is dominated
by the nonbonded interactions, comprising the LJ and
Coulomb contributions. The LJ forces go out to large
numbers of near neighbors, whereas the long-ranged
Coulomb forces created by one charge are felt by
every other charge in the system. Calculation of the
long-range forces is the most expensive part of the
MD calculation.

How can the immense parallelism of the machine
be exploited to distribute this computational burden
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without running into communications problems and
problems with the machine’s limited memory? In a
parallel environment, there are three basic approach-
es:

1. Atom decomposition binds the computation of all
the forces on a single particle to a particular hard-
ware thread.

2. Force decomposition binds the computation of a
particular force term (usually a two-body force)
to a particular hardware thread.

3. Spatial decomposition binds the computation of
all the forces on particles within a volume element
to a particular hardware thread. Particles may
“migrate” from hardware thread to hardware
thread during the course of the simulation.

The communication expense of these three ap-
proaches has been reviewed by Plimpton43 with re-
gard to molecular dynamics simulations with short-
ranged interactions.

Spatial decomposition is most efficient if the cutoff
radius for the real space force sums is relatively small,
but there is heightened interest in using Ewald14,25

methods in simulations of biomolecular systems to
take into account long-ranged Coulombic forces via
periodic boundary conditions. The use of this tech-
nique imposes additional considerations and com-
plicates the issue of choosing the most appropriate
approach for problem decomposition.

The Ewald technique expresses the slowly conver-
gent Coulomb sum in terms of two rapidly conver-
gent series, one in real space and one in Fourier (k-)
space. The optimal complexity of the Ewald Cou-
lomb sum is O(N 3/ 2), i.e., each charge can be thought
of as interacting with only O(N 1/ 2) other charges.
Implementation of the Fourier transform using fast
Fourier transform (FFT) techniques44 enables a speed
up to O(N log N); due to the communication de-
mands of the FFT, this approach presents challenges
in a massively parallel environment and may raise
the crossover point in particle number at which the
FFT-based methods become more efficient than a
standard Ewald calculation.

A different approach, with a computational complex-
ity of O(N), uses multipole expansions to evaluate
the Coulomb interaction.45 But the crossover in N
at which the multipole approach becomes the most
efficient is typically at higher N than for the FFT ap-
proach. The optimal choice of algorithm depends on
system size and efficiency of implementation on a
particular hardware platform. It should be noted that
the effective system size, N, is the number of charges,
not the number of atoms, and can be influenced by
the choices made in modeling the system. For the
TIP5P23 model of water, five charge centers per wa-

Figure 8   The vertical axis represents the rate at which 
time steps are computed. With perfect scalability,
the data would fall on a line with slope equal to 
one. The behavior shown here is typical of a 
parallel molecular dynamics code; scalability is
better for systems with large numbers of particles.
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ter molecule are required as opposed to the three
charge centers required by other models, such as
TIP3P23 or SPC/E.24

A feeling for the “state of the art” in mapping mo-
lecular dynamics codes onto parallel machines is pro-
vided in Figure 8.46,47 It is important to remember
that these codes are addressing the challenge of map-
ping macromolecular system simulations containing
bonded as well as nonbonded interactions onto mas-
sively parallel machines. One of these studies notes
that scalability begins to fall off when the average
number of atoms per hardware thread drops below
O(10).46 It is clear that there is a considerable moun-
tain to climb in the course of mapping a single mo-
lecular dynamics simulation of modest size onto ma-
chine architectures with hardware thread counts
much larger than one thousand.

Areas for exploration. There are a number of areas
to be explored that might allow one to overcome or
evade the scalability challenge just described:

● Improved integrators that might allow use of larger
time steps

● Improved implementations and algorithms for
long-range force evaluation. It is possible that ex-
isting statements about the suitability of specific
algorithms for specific problems based on prob-
lem size may have to be modified to take into ac-
count the suitability of those algorithms for map-
ping onto a massively parallel machine.

● Improved techniques for calculating thermody-
namic ensemble averages. Use of ensemble-aver-
aging techniques such as Monte Carlo may allow
more efficient utilization of the machine than con-
ventional molecular dynamics in calculating ther-
modynamic ensemble averages. Also, free-energy
calculation techniques have an embarrassingly par-
allel component that can utilize a partitioned set
of hardware threads.

● Novel methods for studying long-time dynamics
in biomolecular systems that may circumvent ex-
isting scalability issues32,33

In order to explore algorithmic and decomposition
alternatives, it is essential to have a good set of sim-
ulation environments and tools to support applica-
tion development and tuning. Modeling the highly
threaded machine architecture currently being
planned represents a considerable challenge. In or-
der to achieve performance on such platforms, a non-
intrusive run-time environment with extremely low
overhead will also be needed.48

Summary

The Blue Gene project represents a unique oppor-
tunity to explore novel research into a number of
areas, including machine architecture, programming
models, algorithmic techniques, and biomolecular
simulation science. As we discussed, every aspect of
this highly adventurous project involves significant
challenges. Carrying out our planned program will
require a collaborative effort across many disciplines
and the involvement of the worldwide scientific and
technical community. In particular, the scientific pro-
gram will engage with the life sciences community
in order to make best use of this unique computa-
tional resource.

*Trademark or registered trademark of International Business
Machines Corporation.
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