
Enabling Automated HPC / Database Deployment via the
AppScale Hybrid Cloud Platform

Chris Bunch Chandra Krintz
Computer Science Department

University of California, Santa Barbara
{cgb, ckrintz} @ cs.ucsb.edu

1. ABSTRACT
In this paper, we discuss a prevalent issue facing the HPC

community today: the lack of automation in the installation,
deployment, and integration of HPC and database software.
As a result, scientists today must play a dual role as re-
searchers and as system administrators. The time required
for scientists to become proficient with software stacks is
significant and has increased with the complexity of modern
systems such as cloud-based platforms and infrastructures.

However, cloud computing offers many potential benefits
to HPC software developers. It facilitates dynamic acquisi-
tion of computing and storage resources and access to scal-
able services. Moreover, cloud platforms such as AppScale
abstract away the underlying system and automate deploy-
ment and control of supported software and services. As
part of this project, we have extended AppScale with do-
main specific language support called Neptune that gives
developers straightforward control over automatic configu-
ration and deployment of cloud applications. Neptune also
extends cloud support beyond web-services to HPC appli-
cations, components, and libraries. We discuss AppScale
and Neptune, and how they can be extended via more in-
telligent database usage to provide a better solution for the
next-generation of cloud-based HPC and data-intensive ap-
plications.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Software Engineering
- Language Classifications (Extensible Languages); C.2.4 [
Computer Systems Organization]: Computer-Commun-
ication Networks - Distributed Systems (Distributed Appli-
cations)

General Terms
Design, Languages, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPCDB’11, November 18, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1157-1/11/11 ...$10.00.

Keywords
Cloud Platform, Service Placement, Domain Specific Lan-
guage

2. INTRODUCTION
High Performance Computing (HPC) aims to solve prob-

lems normally intractable on a single computer via the use
of large numbers of machines (e.g., clusters, datacenters, or
supercomputers). Over several decades different types of
machine architectures, software frameworks, and program-
ming languages have been developed to aid the HPC com-
munity in using computing to work on scientific problems.
Throughout this period, one problem has remained persis-
tent to HPC users: the high barrier-to-entry imposed by the
lack of automation in software packages.

The lack of automation has meant that scientists look-
ing to use HPC resources have had to become system ad-
ministrators to understand how to use the large numbers
of machines typically involved for HPC applications. This
unnecessarily takes time away from their research and adds
a barrier-to-entry to scientists who want to use HPC re-
sources but lack the advanced technical skills of a system
administrator. Further time must be dedicated to sharing
data produced by scientific experiments, and the inability
to do so trivially stifles the ability of others to verify and
reproduce their work.

Social networking software created over the last decade
has proven that automated data sharing is possible. Like
the users of social networking applications, HPC users need
a simple service that they can save the outputs of their pro-
grams to and retrieve new inputs from. This service should
be able to act as a replicated, distributed, fault-tolerant
data storage mechanism that provides easy access for sci-
entists, the community at large, and other HPC programs.
Distributed file systems and databases have therefore been
natural choices for this job: file systems like NFS and Lus-
tre [11] have been used by the HPC community to varying
levels of success, while databases like MySQL and, as of re-
cent, NoSQL datastores like HBase [9] and Cassandra [3]
offer easier interfaces and greater data access mechanisms
(e.g., structured data formats, query languages) for users of
various programming languages.

Some of these software packages can be installed with a
single command-line instruction, as their installation process
is largely automated, but many are not, requiring scientists
who want to use these highly tuned software packages to
learn processes like kernel recompilation, which exists well
beyond the knowledge base that is comfortable to scientists

13

at large. Furthermore, for software packages that provide
automated installation (which is not the majority of those
in use by the HPC community), deploying the software in a
distributed setting is often equally difficult. For databases,
this can require scientists to learn the optimal parameters
for settings such as the block size of the underlying virtual
file system (in the case of HBase and Hypertable), the max-
imum number of clients that the database should support (a
common database configuration option), or the desired level
of consistency for the data itself. Setting any of these vari-
ables (as well as dozens more that each database exposes to
users) incorrectly can significantly degrade the performance
of applications using it, and a scientist who has not used
these technologies before is unlikely to know how to config-
ure these databases for optimal use.

The problem of installation and optimal deployment is
exacerbated in the case of newer technologies, such as the
NoSQL datastores, which have been around for less time
than databases like MySQL. This is not advocating against
their use: it is simply the case that less “best practices” are
available for newer technologies, and as these software pack-
ages mature, experimentation will reveal how to tune them
to get them working with HPC codes in an acceptable man-
ner. For example, the Cassandra datastore aims to yield
higher performance to programmers at the cost of strong
consistency, but to acquire these performance gains, pro-
grammers must rewrite their applications to keep in mind
that the data they receive might not be completely up-to-
date. This different mindset is difficult for seasoned pro-
grammers to accommodate, and it is reasonable to assume
that it is just as difficult (if not more so) for scientists.

We see a solution to these problems in the cloud com-
puting realm. Here, resources can dynamically (and inex-
pensively) be acquired and released as needed for computa-
tion and storage by users via web interfaces or within their
programs themselves. Cloud computing is typically broken
down into three layers of abstraction. The lowest level of
abstraction, infrastructure-as-a-service (IaaS), provides ac-
cess to scalable computation and storage resources. Amazon
Web Services, through their Elastic Compute Cloud offer-
ing, gives users rapid access to large numbers of virtualized
compute instances that can be spread out across multiple ge-
ographic locations if needed. At a higher level of abstraction
exists platform-as-a-service (PaaS), which exposes scalable
APIs that developers write programs against. Google App
Engine is a prominent force in this field, allowing users to
write web applications written in Python, Java, or Go, and
upload them to Google to utilize their resources.

It is our belief that the greatest amount of promise lies
at the PaaS layer. This middle ground builds on top of the
IaaS layer and thus can customize virtual machines it pro-
vides with any software package that end users may require,
exposing only the APIs required to get the job done. It also
has more flexibility than the SaaS layer, which only provides
a single software package. It is therefore viable to offer a
PaaS that integrates HPC and database software packages,
and does so in a way that allows HPC software packages to
publish their outputs to distributed, fault-tolerant database.
The platform can then make the data available automati-
cally to scientists or other programs. This automation is
crucial, and allows the public to utilize the data in their
own experiments.

3. CLOUD INFRASTRUCTURES FOR HPC
This system we propose is not tied to anything cloud-

specific, but utilizing cloud resources will enable a greater
class of scientists to use this system. This is largely a matter
of access: most scientists working at research facilities have
some access to shared cluster resources, but oftentimes find
an inadequate number of resources available for the work
they need to run experiments on. Additionally, this work
fits in nicely with the “bursty” style of access that the cloud
specializes in: scientists we have encountered often only need
a few resources at all times to develop their code on, and
many resources only when they are ready to run large-scale
experiments. This use case also makes better use of cloud
resources from a monetary standpoint than statically acquir-
ing a large number of machines for a grid and leaving them
idle for most of the time.

Cloud infrastructure providers such as Amazon Web Ser-
vices [1] have seen some use by scientists to date. How-
ever, the consensus among the HPC community appears
to be that since infrastructure providers employ virtualiza-
tion, which necessarily involves a performance degradation
depending on the workload involved (e.g., CPU, memory,
disk I/O, or network I/O) and virtualization technology em-
ployed (e.g., Xen, KVM, VMware), that virtualization is
thus an impediment to solving larger problems than a fur-
therance. This is exacerbated by the opaqueness of the cloud
itself: because resources are meant to be interchangable,
users often cannot specify that resources are meant to reside
in close physical proximity to one another. This is in great
contrast to the grid computing model HPC scientists are
familiar with, in which they can assume that the machines
they are operating with are in the same datacenter and en-
joy a low latency with one another (often being connected
with high-speed network technologies such as Infiniband).

Cloud infrastructure providers have made some progress
towards removing opacity in exchange for greater perfor-
mance. Amazon Web Services enables users to pay for access
to “Cluster Compute Instances”, a special type of resource
that is guaranteed to be colocated within close range of other
instances of the same type (and thus enjoy low network la-
tencies), and boasts more CPU and memory for HPC jobs
in exchange for more than an order-of-magnitude price com-
pared to the low-end“Small” instance type. Yet the ultimate
customization is offered by private cloud infrastructures like
Eucalyptus [12], which facilitate the use of any type of hard-
ware to be used to construct a cloud infrastructure. This
use case is a prevalent one to date within scientific projects,
as now machines that a group or lab operates can be re-
purposed to be served and managed automatically without
a system administrator. The downside of this approach is
that this requires a dedicated cloud system administrator.
If the cloud deployment is sufficiently large, the cost may be
justifiable, but it may not be feasible for small private cloud
deployments.

Another worry that prevents scientists from more actively
seeking the use of cloud technologies is that the infrastruc-
ture is simply out of their control. If the machines fail, they
may be unavailable for several hours, and the vendor may
simply not release any information about the downtime until
long after it has occurred. These downtimes have been seen
across cloud infrastructure providers such as Amazon [13] as
well as platform providers like Google App Engine [8] and
Heroku. In the case of Heroku, their resources were hosted

14

in a single datacenter offered by Amazon, so instances where
Amazon’s infrastructure has failed caused Heroku’s services
to fail as well, leaving Heroku and its customers with no
way to restore service to their users [10]. The effect of these
failures to scientists is highly variable: if no large scale ex-
periments are being run, the price of failure is low, but in
the rare “bursty” periods when the resources are needed, a
failure or datacenter outage can have a significant negative
effect upon those who have come to rely upon it.

4. ENTER THE CLOUD PLATFORM
Our solution to the problems with utilizing the cloud for

HPC has been a consistent one: we advocate the use of an
open platform-as-a-service that can harness multiple cloud
infrastructures. This gives us the ability to customize the
infrastructure to automatically install HPC software and
databases, tune them as needed, and be resilient in the face
of failures in a single cloud. We have developed an open
cloud platform, known as AppScale, that automatically de-
ploys Google App Engine applications over a variety of dif-
ferent datastores, including HBase, Cassandra, and MySQL.
A key feature of AppScale is its automation: when used over
a cloud infrastructure, software is installed and configured
automatically for use over as many machines as the user
can afford. When not used over a cloud infrastructure (e.g.,
when in use over virtualized instances), automation is still
supported: users only need specify the IP addresses where
their machines are located, and AppScale acts identically to
the cloud scenario.

In its initial implementation [4], AppScale offered automa-
tion for web applications, but not HPC applications. We
thus expanded upon this with Neptune [2], a domain spe-
cific language that allows scientists to automatically deploy
certain HPC software packages via AppScale. Users write
code in Neptune, a superset of the Ruby [14] programming
language, and need only tell it where their code is located,
what type of code it is (MPI, MapReduce, and so on), and
how many machines are needed. Neptune then instructs
AppScale to start all the services needed to run that compu-
tation (e.g., spawning that many nodes up and configuring
them accordingly) and then runs the user’s code. Automa-
tion is preserved: the scientist does not need to know where
the machines are, nor how to recompile kernels or deal with
eventual consistency (to cite previous examples).

Database inclusion is also automatic: for codes that pro-
duce output via standard out, the output is automatically
saved to any of the nine databases supported by AppScale or
Amazon S3. As Google Storage and Eucalyptus’ Walrus im-
plementation are API-compatible to Amazon S3, users can
also utilize Neptune with these storage backends.

Neptune has also shown itself to be extensible: in ad-
dition to serving general purpose HPC software packages
such as MPI and UPC, Neptune has also been adapted for
use by computational scientists seeking automation for their
codes. Specifically, their codes are implementations of the
Stochastic Simulation Algorithm [7], which employ Monte
Carlo methods to simulate biological processes. To enjoy a
reasonable amount of accuracy in their simulations, a large
number of them must be run with differing seed values, so
Neptune is employed as a coordinator. It acquires as many
nodes as the scientist asks for, splits up the work evenly,
and merges the final results. Scientists require no system
administrator experience to use the system, and a preferred

storage system is Amazon S3 due to the large number of
tools (such as the Firefox plugin ElasticFox) that seamlessly
integrate with it to retrieve their results (here, a series of
MATLAB graphs depicting the results). Neptune supports
the specialized SSA algorithms provided by the Diffusive Fi-
nite State Projection algorithm [6] and the doubly-weighted
SSA [5] as well as the general purpose SSA implementation
provided by StochKit [15].

5. HPC & DB, MEET HYBRID CLOUD
AppScale and Neptune currently do operate over hybrid

cloud deployments. However, there are new directions we
can take to better serve the intersection of HPC and databases.
We propose two approaches: first, we can utilize hybrid
clouds to minimize the downtime caused by a single provider
failing (or datacenter within a provider). Hybrid clouds have
been explored previously, but only the interoperation be-
tween multiple cloud infrastructure providers. We propose
utilizing multiple cloud platform providers to greater effect.
This allows an application written once to run in multple
providers who handle scaling automatically, without user in-
tervention. Cloud platforms like Google App Engine allow
for programs to be written in Python, Java, or Go, and then
be deployed over Google’s hardware. Our proposal is to de-
ploy these applications over Google’s platform and the App-
Scale platform, which can then utilize resources via Amazon
or Eucalyptus. Application-level logic present within App-
Scale can then allow for the two sets of resources to act in
unison, and the application (running over either platform)
can present a web interface by which new jobs can be started
or the results of old jobs viewed.

The second approach harnesses AppScale’s automated place-
ment support, by which users can specify which nodes fulfill
which roles in the system and have them be automatically
configured as needed. We propose to use this support more
intelligently in hybrid cloud scenarios: for example, we could
place a single database node in each cloud and use App-
Scale’s automated configuration support to ensure that the
database instances all communicate with one another with-
out user intervention. We can automatically utilize Cassan-
dra’s variable read and write policy setttings to speed up
write access at the cost of reads for applications favoring it
and utilize it as the underlying database in AppScale. For
users who do not know the read/write frequency of their
application, we can default to a neutral strategy that favors
neither or adaptively switch the strategy, which is possible
since we have complete database access.

An example use case of this approach is shown in Figure 1.
Here, AppScale is deployed in a hybrid cloud strategy across
three clouds: one in Amazon EC2’s West Coast availabil-
ity zone, a second in Amazon EC2’s East Coast availability
zone, and a third in a local, privately managed Eucalyptus
cloud. Each cloud contains one database node and one or
more compute nodes to ensure that reads and writes can
always be performed via a node in the same cloud. Our
example utilizes Cassandra’s eventual consistency model, in
which only a single node needs to be contacted for reads and
writes, to minimize the impact HPC clients face when ac-
cessing the database. Database nodes are connected across
clouds and update via their internal protocols (e.g., the gos-
sip protocol in the case of Cassandra). In the unlikely event
of a failure or outage in a single cloud, nodes still survive
in other clouds, and if the underlying framework and com-

15

Compute
Node

DB Node

Compute
Node

DB Node

Compute
Node

Compute
Node

DB Node

Compute
Node

Compute
Node

Cloud 1 - EC2 West Coast Cloud 2 - EC2 East Coast

Cloud 3 - Private Eucalyptus Deployment

Figure 1: An example of how AppScale’s automated
placement support can be used to provide better in-
teraction between HPC applications and databases
in hybrid cloud deployments. Here, a single Euca-
lyptus deployment is used when a small number of
machines are needed, and two public clouds are used
(availability zones in Amazon EC2) when more ma-
chines are needed.

putational model is fault-tolerant, as is the case for Hadoop
MapReduce, then this failure will not result in the failure of
the entire computation.

Two points are critical to make in this example: the au-
tomation and potential cost savings. With AppScale and
Neptune, this system can be deployed automatically, and
does not require the scientist to be an expert user with Ama-
zon EC2, Eucalyptus, Cassandra, and Hadoop MapReduce
to be able to run their scientific codes. Furthermore, the
scientist can develop and test their code locally against the
Eucalyptus deployment, and only when they need more ma-
chines, they can be acquired via Amazon EC2.

6. CONCLUSIONS
We see the use of an open cloud platform as a viable

means to solve pressing issues facing the HPC community
today, especially with respect to automation. Utilizing cloud
platforms provides scientists with automated access to HPC
resources, including their installation and deployment over
independent cloud providers, and alleviates scientists of the
burden of knowing how to perform these non-trivially dif-
ficult tasks. Furthermore, since a cloud platform could au-
tomatically publish and make public the results of scien-
tific jobs, data would be readily accessible via a database
that provides data replication and fault-tolerance even if a
datacenter fails or becomes inaccessible. Finally, the data
stored here is portable: Neptune provides a single interface
by which it can store or retrieve data stored in databases it
is compatible with, so users can copy their data out of an
AppScale-backed deployment running Cassandra and place
it in a public cloud-based repository ala Amazon S3 or Google
Storage, a private cloud-based repository ala Eucalyptus
Walrus, or even another AppScale-backed deployment (with

the ten different databases it supports). Additionally, any
other databases that the open source community implements
support for within AppScale can automatically be utilized
by scientists within their codes, without requiring expert
database knowledge.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful

comments. This work was funded in part by Google, IBM,
and NSF grants CNS-CAREER-0546737 and CNS-0905237.

8. REFERENCES
[1] Amazon Web Services. http://aws.amazon.com/.

[2] C. Bunch, N. Chohan, C. Krintz, and K. Shams.
Neptune: A Domain Specific Language for Deploying
HPC Software on Cloud Platforms. In ACM 2nd
Workshop on Scientific Cloud Computing, 2011.

[3] Cassandra.
http://incubator.apache.org/cassandra/.

[4] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa,
S. Soman, and R. Wolski. AppScale: Scalable and
Open AppEngine Application Development and
Deployment. In ICST International Conference on
Cloud Computing, Oct. 2009.

[5] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R.
Petzold. Automated estimation of rare event
probabilities in biochemical systems. J. Phys. Chem.,
2011.

[6] B. Drawert, M. J. Lawson, L. Petzold, and
M. Khammash. The diffusive finite state projection
algorithm for effficient simulation of the stochastic
reaction-diffusion master equation. J. Phys. Chem.,
132(7), 2010.

[7] D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem., 81(25):2340–2361,
1977.

[8] Java App Engine Outage, July 14, 2011.
http://googleappengine.blogspot.com/2011/07/

java-app-engine-outage-july-14-2011.html.

[9] HBase. http://hadoop.apache.org/hbase/.

[10] Heroku Learns from Amazon EC2 Outage. http:
//searchcloudcomputing.techtarget.com/news/

1378426/Heroku-learns-from-Amazon-EC2-outage.

[11] Lustre. http://www.lustre.org/.

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-source Cloud-computing System. In
IEEE International Symposium on Cluster Computing
and the Grid, 2009. http:
//open.eucalyptus.com/documents/ccgrid2009.pdf.

[13] Amazon Web Services Reports Outage in the U.S.
Last Monday.
http://www.pcworld.com/businesscenter/article/

237588/amazon_web_services_reports_outage_in_

the_us_late_monday.html.

[14] Ruby language. http://www.ruby-lang.org.

[15] K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim, and
L. R. Petzold. StochKit2: Software for Discrete
Stochastic Simulation of Biochemical Systems with
Events. Bioinformatics, 2011.

16

