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Abstract

End-users of high-performance computing resources
have come to expect that consistent levels of performance
be delivered to their applications. The advancement of the
Computational Grid enables the seamless use of a multitude
of computing resources by these users. The combination of
these developments has generated a need for users to moni-
tor the end-to-end performance available to an application.
In addition, tools are needed to alert users of degradation
in expected performance.

We present the NwsAlarm, a Java-based utility that en-
ables users to monitor performance levels of any resource
being monitored by the Network Weather Service. The
NwsAlarm is invoked by a user without special privileges
with a simple click on a web page link. More importantly,
the NwsAlarm allows any user of the NwsAlarm to register
and set expected performance levels. When performance
levels fall below these thresholds, the registered adminis-
trators are immediately notified via email. The NwsAlarm
uses prediction of performance measurements to filter false
alarm values. We exemplify the importance of and accu-
racy achieved by the NwsAlarm with real examples of per-
formance degradation caused by routing table changes and
loss of service on the Abilene, Internet-2 research network
used for experimentation with evolving Grid software tech-
nology. On average,

��
% fewer false alarms are raised by

the NwsAlarm than if raw measurements are used.

�
This work was sponsored by the NASA Information Power Grid

project and NASA Ames Research Center.

1 Introduction

As high-performance network connectivity proliferates,
end-users have come to expect delivered network perfor-
mance (and not just trunk capacity) to keep pace. In
addition, better end-to-end performance makes it possi-
ble to consider the use of distributed computing plat-
forms for applications that previously required expensive,
large-scale, and dedicated machines. The Computational
Grid [10, 3] is a new and successfully evolving distributed
computing metaphor for the seamless and dynamic acqui-
sition of resources from a heterogeneous, federated re-
source pool. In addition, “peer-to-peer” computing sys-
tems such a those developed by Entropia [8], ParaBon [19],
and SETI@Home [20] are attempting to harness unused but
ubiquitous computer capacity via the burgeoning internet-
work of high-performance connectivity.

These recent advances place a premium on the ability
to monitor theperformance deliverable to the application
end-to-end. Users need to ensure that the resources, for
which they are paying but which they do not own, meet
expected performance levels. System and network admin-
istrators responsible for appeasing this performance-hungry
user-base must be able to detect and, if possible anticipate,
deficient performance at the application level. The prob-
lem of performance monitoring is further complicated by
resource federation. Often, administrative policy prohibits
public access to low-level performance information for se-
curity and/or proprietary reasons. Even if low-level infor-
mation is published, however, it is often difficult to translate
it into a measure of performance delivered to the user.

In this paper, we describe a performance alarm system
based on theNetwork Weather Service(NWS) [25]. The



NWS is a user-level performance monitoring and forecast-
ing system designed to measure end-to-end resource perfor-
mance in Computational Grid settings. It supports a vari-
ety of performance sensors (available CPU capacity, avail-
able core memory, end-to-end TCP/IP bandwidth and la-
tency, etc.) and operates completely without privileged user
access. Using the NWS as a backbone infrastructure, we
have developed a Java-based tool for visualizing continu-
ously generated NWS readings, and automatically trigger-
ing an email alarm when observed performance falls out-
side a specified range. The system draws heavily upon the
adaptive statistical forecasting techniques that are part of
the NWS [24] and their Java applet implementation [15].

Our results show that the NWS alarm system
(NwsAlarm) can accurately detect problems such as rout-
ing misconfiguration by dynamically analyzing end-to-end
network performance. It does this through its use of the Java
implementation of the NWS forecasters. We illustrate these
results with examples from the Abilene [1] experimental re-
search network — a network facility deployed, in part, to
support Computational Grid research. While we focus on
network performance in this paper, our system also works
for available CPU and memory, and will accept readings
from any other NWS sensors that are configured.

In the next section, we briefly describe the infrastruc-
tures from which the NwsAlarm was developed we detail
the implementation of the NwsAlarm itself. In Section 3 we
provide the experimental methodology used for this study.
Section 5, 6, and 7 contain our empirical results, the related
work, and our conclusions, respectively.

2 NwsAlarm Implementation

The NwsAlarm monitors performance levels, predicts
future performance levels, displays the data graphically,
and reports “performance faults” (occasions when predicted
performance does not match expected levels) to adminis-
trators when they occur. To enable this functionality, the
NwsAlarm extends the Network Weather Service [24] and
the JavaNws [15].

2.1 The Network Weather Service

The Network Weather Service (NWS) is a distributed,
generalized system for producing short-term performance
forecasts based on historical performance measurement.
The goal of the system is to characterize and forecast dy-
namically the performance deliverable to the application
level from a set of network and computational resources.
Such forecasts have been used successfully to implement
dynamic scheduling agents for Grid applications [21, 4],
and to choose between replicated web pages [2].

The NWS takes periodic measurements of the currently
deliverable performance (in the presence of contention)
from each resource and uses numerical models to generate
forecasts of future performance levels dynamically. Fore-
cast data is continually updated and distributed so that re-
source allocation and scheduling decisions may be made
at run time based onexpected levels of deliverable per-
formance. The NWS forecasts provide difficult to obtain,
statistical estimates of available service quality from each
resource of interest, as well as the degree to which those
estimates are likely to be accurate [23].

Since the NWS measures and forecasts performance de-
liverable to the application level, it is implemented using
the same communication and computation mechanisms that
applications use resulting in forecasts that accurately re-
flect the true performance an application can expect to ob-
tain. Separate implementations of the NWS have been
developed using sockets and for the Globus/Nexus [11]
and Legion [12] metacomputing environments, each of
which provides a software infrastructure that supports high-
performance distributed and parallel computing.

2.2 The JavaNws

The JavaNws is a Java implementation of a subset of
the NWS toolkit that provides measurement and prediction
for network resources. The JavaNws measures the TCP/IP
socket performance (bandwidth and round-trip time) be-
tween the user’s desktop and the web server from which the
JavaNws applet was downloaded. Predicted performance is
computed from the measurements by the applet and both are
visualized in real-time. The JavaNws enables users to cir-
cumvent the need to explicitly install and maintain an NWS
network monitoring process and any special-purpose visu-
alization software; NWS measurement and forecast data are
delivered to the users web browser in real-time. Previous
work with the NWS and Java-based applications indicates
that basing transfer decisions on NWS forecast data can dra-
matically improve execution performance [9, 22].

2.3 The NwsAlarm

Like JavaNws, the NwsAlarm is written in Java and re-
quires no installation or special privileges for execution and
access to the vast amount of performance data collected
by the NWS. A Java-language implementation is important
since it enables security, portability, and instant invocation
on the user’s desktop using the applet execution model. The
NwsAlarm enables visualization of performance foranyre-
source currently monitored by the NWS (CPU, memory,
networking) as well as the network performance between
the web server and the desktop. In addition, administrators
can use the NwsAlarm to set performance thresholds and to



send alarms when expected performance levels degrade.

The NwsAlarm consists of two parts: The applet that
executes on the user’s desktop and the server program lo-
cated at the machine from which the applet is downloaded.
Upon NwsAlarm invocation, the server program, started as
a background process, requests and acquires the list of avail-
able hosts from an NWS name server. This list is transfered
to the NwsAlarm applet on the user’s desktop and is dis-
played as a tree of choices as shown in Figure 1. A user
can select any host, any available resource (CPU, memory,
network performance, etc.) associated with that host, and
the destination host if the network resource is chosen. The
list can be refreshed by the user at any time to acquire a new
list updated with any, dynamically added, resources.

The selection made by the user is communicated by the
NwsAlarm applet to the server program which obtains and
returns the associated measurement from the NWS name
server. If the selection is the desktop, then a series of ex-
periments are performed to measure the connectivity be-
tween the desktop and server, just as in JavaNws [15].
For any selection, the resulting measurement is given to
the NwsAlarm forecasters (a Java implementation of the
NWS forecasters) to predict future performance of the re-
source. The measurements and predictions are then dis-
played graphically for the user as in Figure 2.

2.4 NwsAlarm: Degradation Detection

The NwsAlarm also provides users with a mechanism
to alert administrators of degradation in performance. The
administrator sets performance thresholds and registers
his/her email address with the NwsAlarm. When perfor-
mance drops below a threshold, the administrator is notified
via email.

Two types of performance thresholds are available in the
NwsAlarm. The first is a performance value that must be
maintained; if a measurement is less than the given value,
it is considered a degradation. The administrator can in-
dicate the number of such events that must occur before
he/she is alerted. The second type of threshold is the num-
ber of communication errors between the desktop and the
server and the server and the NWS name server. If the
number of errors exceeds the given threshold the adminis-
trator will be notified. Such errors occur if either the server
from which the NwsAlarm applet was downloaded or the
name server becomes unavailable due to network partition,
other catastrophic failure, or transfer timeout. For the re-
mainder of this paper, we focus on network resources, how-
ever, any resource the NWS can access can be monitored by
NwsAlarm.

Figure 1. The NwsAlarm console. The con-
sole provides users with a click-able, refresh-
able tree menu of machines for which NWS re-
source data is configured. For each machine,
a list of resource types is given (network
bandwidth and round-trip time, CPU availabil-
ity and load, memory usage, etc).

Figure 2. NwsAlarm performance visualiza-
tion. When a user makes a resource selec-
tion from the console, the measurement data
(light-colored points) and predicted perfor-
mance (dark points) are displayed. The y-axis
indicates measurement values in the units as-
sociated with the resource type (here the re-
source is bandwidth and the units are Mb/s)
and x-axis is time. Summary data is provided
to the right of the graph.



3 Experimental Methodology

For the results described in this paper, we gathered data
between a machine at the University of Tennessee (UT)
and the University of California, San Diego (UCSD). The
predominant network technology between these two hosts
is Abilene [1]. Abilene is an advanced backbone net-
work that supports the development and deployment of
the new applications being developed within the Internet2
community. Abilene connects regional network aggrega-
tion points, called gigaPoPs, to support the work of Inter-
net2 universities as they develop advanced Internet applica-
tions. It is characterized by high-bandwidths and relatively
high round-trip times induced by large geographic distance.
When Abilene fails or routing tables change, the link can
degrade to the use of the common carrier between the hosts.

Measurements of link performance were made from May
7th, 1999 through September 25th, 2000. We used the NWS
to collect the data1 The measurements were made at ap-
proximately 30 second intervals. We collected both band-
width and round-trip time values.

In addition to these measurements, we logged tracer-
oute [14] data between the two machines at 1-hour inter-
vals. Traceroute is a UNIX utility that uses the IP protocol
to provide a trace of the network route between two ma-
chines. This data is used in our results section (Section 5)
to confirm that performance faults detected by NwsAlarm
correspond to incorrectly initialized routing tables.

4 Degradation Discovery Using Prediction

Since end-to-end network performance is highly vari-
able from one moment to the next, we must ensure that the
NwsAlarm is able to distinguish between random fluctua-
tions and true performance trends so that alarms are raised
accurately. Network performance, in particular, is highly
variable from one moment to the next. If an alarm were trig-
gered every time a low performance measurement occurs,
many false alarms will be generated. To enable accurate
alarm detection, the NwsAlarm compares “predicted” per-
formance data thresholds set by the NwsAlarm user. The
thresholds represent the performance expectation that the
user has for the monitored resources. The forecasts rep-
resent the expected performance for the resource based on
past history. The role of forecasting in this setting is to re-
move the random noise from the measurement history to
reveal the “true” performance signal. A fault is defined to
be when this true signal falls outside the specified range.

The use of predicted values is the key difference between
this system and all others. Prediction enables the NwsAlarm

1Our prior work shows that there is little, if any, significantdifference
between measurements gathered using Java and those generated by a C
program [16].

to identify events that are imperceptible if the trace data is
graphed and observed visually. In this section we provide
two cases, the first in which fault occurrences are obvious
and a second in which they are not, to motivate the function
of the NwsAlarm.

A common event that causes disruptions in network per-
formance is a routing table change. Often, it is diffi-
cult for local network administrators and backbone service
providers to keep routing tables synchronized. When the
routing tables are incorrectly set, connectivity may be dis-
rupted entirely. This type of fault is easy for local admin-
istrators to detect since users will begin calling the hapless
administrators almost immediately to discuss the network
outage and to constructively suggest possible courses of ac-
tion. However, it is also possible for the routing tables to be
set incorrectly causing network traffic to take a functioning
but heavily congested path. In this case, connectivity qual-
ity is degraded, but since users expect a certain amount of
performance variation (which is difficult to quantify) they
may not report such problems to the overworked network-
ing staff.

An example of this second type of routing table prob-
lem is illustrated in the following output generated by the
traceroute utility.
Wed May 10 00:30:09 EST 2000

1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.937 ms 0.745 ms 0.804 ms
2 192.168.101.3 (192.168.101.3) 2.296 ms 1.366 ms 1.588 ms
3 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 33.318 ms 33.190 ms 32.945 ms
4 atla.abilene.sox.net (199.77.193.2) 33.475 ms 33.017 ms 34.511 ms
5 hous-atla.abilene.ucaid.edu (198.32.8.33) 46.454 ms 45.876 ms 45.739 ms
6 losa-hous.abilene.ucaid.edu (198.32.8.21) 77.904 ms 77.352 ms 77.955 ms
7 USC--abilene.ATM.calren2.net (198.32.248.85) 78.006 ms 78.311 ms 77.959 ms
8 UCSD--USC.POS.calren2.net (198.32.248.34) 81.943 ms 81.173 ms 81.286 ms
9 sdsc2--UCSD.ATM.calren2.net (198.32.248.65) 83.004 ms 87.349 ms 93.498 ms

10 cse-rs.ucsd.edu (132.239.254.45) 83.513 ms 83.264 ms 83.408 ms
11 conundrum.ucsd.edu (132.239.55.213) 91.528 ms * 91.058 ms

Wed May 10 01:30:17 EST 2000
1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.783 ms 0.801 ms 0.681 ms
2 192.168.101.3 (192.168.101.3) 1.612 ms 1.794 ms 1.471 ms
3 R7SM99.NS.UTK.EDU (128.169.54.8) 1.988 ms 2.281 ms 1.977 ms
4 205.171.49.165 (205.171.49.165) 20.043 ms 20.200 ms 20.449 ms
5 atl-core-02.inet.qwest.net (205.171.21.45) 20.042 ms 20.600 ms 20.267 ms
6 wdc-core-03.inet.qwest.net (205.171.5.241) 30.911 ms 31.092 ms 30.964 ms
7 wdc-core-01.inet.qwest.net (205.171.24.10) 30.988 ms 31.422 ms 30.979 ms
8 chi-core-02.inet.qwest.net (205.171.5.227) 54.913 ms 56.092 ms 55.025 ms
9 chi-core-03.inet.qwest.net (205.171.20.30) 55.234 ms 55.718 ms 55.063 ms

10 chi-brdr-01.inet.qwest.net (205.171.20.66) 55.479 ms 55.740 ms 55.463 ms
11 s2-0-1.chi-bb1.cerf.net (134.24.103.153) 71.576 ms 71.121 ms 72.423 ms
. . .
17 pos1-0-0-155M.san-bb1.cerf.net (134.24.29.190) 143.320ms 141.121ms 140.459ms
18 sdsc-gw.san-bb1.cerf.net (134.24.12.26) 189.463 ms 367.079 ms 149.953 ms
19 bigmama.ucsd.edu (192.12.207.5) 122.431 ms 130.265 ms 121.961 ms
20 cse-rs.ucsd.edu (132.239.254.45) 105.015 ms 112.668 ms 103.970 ms
21 conundrum.ucsd.edu (132.239.55.213) 104.508 ms * 133.320 ms

This trace was generated by a pair of systems that are
intended to route packets between themselves over Abilene
at all times. Abilene provides more consistent performance,
less contention, and, as can be seen from the output, fewer
hops in many cases. A loss of Abilene service can impact
the end-to-end performance experienced by users. If an ad-
ministrator is aware of the loss of service he/she may be
able correct the problem before users are inconvenienced.
The NwsAlarm is designed to be used in this setting to alert
administrators and users impacted by a change in network
performance.

Figure 3(a) shows a two hour trace in which a routing
table change occurs. Bandwidth (in Mb/s) was measured
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Figure 3. Sub-trace from 5-month Abilene bandwidth trace da ta. The data is a 2-hour trace Friday,
June 9 starting at approximately at 5:00am. (a) contains mea surement values only, (b) contains
measurement and predicted values, and (c) contains just the predicted values. Two vertical lines
indicating a routing table change in the associated tracero ute data from the same period are also
included. Horizontal threshold lines indicated the bandwi dth below which the routing table change
can be detected. In this case, it is obvious from the measurem ent data when the change takes
place. However, we show that this is rarely the case. Using pr ediction, with the NwsAlarm (predicted
values), fewer false alarms are raised and a tighter thresho ld can be set. False alarms occur when
the value drops below the threshold while the Abilene link is in use in this scenario.
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Figure 4. Sub-trace from 5-month Abilene bandwidth trace da ta. The pair is a 24-hour trace Friday,
June 1 starting at approximately midnight. The left graph co ntains measurement and predicted
values, and the right only the predicted values. Two vertica l lines indicating a routing table change
in the associated traceroute data from the same period are al so included. A horizontal threshold
line indicate the bandwidth below which the routing table ch ange should be detected. It is difficult
using a human eye and measurement values to determine when th e change occurs. The NwsAlarm
using prediction, however, can effectively and accurately raise alarms only when the common carrier
(QWest) is in use.

between two hosts, one at the University of Tennessee,
Knoxville, the other at the University of California, San
Diego. The y-axis for this and all other graphs in this paper
is time and the x-axis is bandwidth in Mb/s. (a) contains
measurement values only, (b) contains measurement (dark)
and predicted (light) values, and (c) contains predicted val-
ues only, for clarity. Two vertical lines indicating a routing
table change in the associated traceroute data from the same
period are also included. Horizontal threshold lines indi-
cated the bandwidth below which the routing table change
can be detected. In this case, it is obvious from the mea-
surement data when the change takes place.

The measurement data alone indicates that approxi-
mately midway through the trace there is a loss in perfor-
mance on the link. Traceroute data collected for the same
period confirms that the routing table changed from Abi-
lene to common carrier (QWest in this case). The routing
table changes are indicated by two vertical lines within the
graph with the textual link type (Abilene or common car-
rier (QWest)) given in each section of the resulting divided
graph. Using a threshold of 0.3Mb/s (horizontal red line on
the graph) we are able to visually identify the occurrence of
the event. That is, when the bandwidth measurements fall
below 0.3Mb/s, they indicate, in this scenario, that a rout-
ing table change occurred. The NwsAlarm, using predicted
values also discovers the routing table change and is able to
do so using an even tighter threshold of 0.5Mb/s.

However, consider the data shown in Figure 4. This 24-
hour sub-trace of bandwidth data is between the same pair

of hosts during different time period. In the left graph,
both measurements (dark) and predicted (light) values are
shown. The right graph contains only the predicted values.
In this example, it is very difficult to detect visually when
the routing tables were correctly initialized, and when they
were set erroneously using only measurement data.

The NwsAlarm (prediction) values, however, effectively
and accurately indicate when changes occur. Accuracy is
determined by the number of alarms that are falsely sent; in
this case, when a value is below threshold and the Abilene
network is in use. Raising many false alarms makes it diffi-
cult for administrators to efficiently distinguish when prob-
lems actually occur. The right graph exemplifies the accu-
racy of the NwsAlarm: the predicted values only fall below
threshold when the common carrier is in use. In particular,
the 0.3Mb/s threshold value that worked for measurement
data in Figure 3 is ineffective as a threshold in this latter
example. The reverse is not true, however. In both cases,
using a 0.5Mb/s threshold and the NWS forecasts (instead
of the measurements) accurately detects the routing faults.

It should be pointed out that traceroute data alone can be
used to discover such faults. There are several advantages
to using end-to-end measurements taken at the application
level over lower-level mechanisms such as traceroute. First
traceroute is a setuid program which makes it inappropri-
ate for many security settings. Indeed, access to low-level
monitoring features is often carefully controlled and is dif-
ficult to manage. Application-level performance, however,
must be measurable or applications will not function. More



importantly, however, the NwsAlarm methodology is gen-
eral. In the case of network faults, we can call upon tracer-
oute to verify the efficacy of the system, but traceroute it-
self might prove a better choice in some settings. For re-
sources without analogous low-level measurement utilities
(i.e. non-paged real memory on Unix systems) NwsAlarm
is also applicable (although its accuracy is more difficult to
verify). It is our conjecture that since the performance fault
detection methodology we describe in this paper is effective
in cases where it can be verified, it will also be effective in
the cases where it can’t.

5 NwsAlarm Validation

The NwsAlarm is able to identify accurately events that
cause changes in expected performance levels. It does this
by monitoring changes in forecasted values as opposed to
raw data measurements. In this section, we verify this accu-
racy by comparing the number of false alarms that are raised
when measurement data alone is compared against perfor-
mance thresholds, and when forecast data is used instead.

In our first example we monitored the bandwidth on an
ISDN link between between the University of Tennessee
and the home of a local user in Knoxville, Tennessee. This
data is displayed in Figure 5. We show both the measure-
ment and the forecasted data taken at 10 second intervals
and collected over a period of 5 hours. The left graph shows
both the measurement (dark) and forecasted (light) data to-
gether. The right graph contains only the forecasted values
(from the left graph) for clarity. In addition, each graph
contains an NwsAlarm threshold line (in red for colored
version) at� �

�
Mb/s. This indicates an arbitrary threshold

set by an administrator. For the measurement data case, a
measured value below this threshold causes an alarm to be
triggered. Similarly, for the forecast case, an alarm is trig-
gered when the forecast value falls below� �

�
Mb/s.

During the measurement period, four large transfers
were made causing a reduction in available bandwidth. In
addition, the network failed in the 3rd and 4th hours (as in-
dicated on each graph). The NwsAlarm was used to indicate
when failures or low bandwidth availability occurred. The
total number of alarms that should have be sent in this sce-
nario is 136. Using measurements to evaluate threshold lim-
its cause 32 alarms to be falsely sent; using the NwsAlarm
predicted values, only 2 false alarms were sent. Unlike our
other examples, the NwsAlarm is used in this scenario to
distinguish events that have no other low-level measurement
facility, namely, the loss of bandwidth due to contention. If
the link was intended to be free of other traffic, the alarms
would have been indicative of either a routing problem (i.e.
other traffic was erroneously being routed over the link) or
a security breech.

The NwsAlarm can also be used to alert administrators to

loss in Abilene service, as described in the previous section.
If Abilene becomes unavailable, either due to catastrophic
failure or routing table misconfiguration, users, expecting
the quality of service Abilene provides, can be alerted using
the NwsAlarm.

To empirically evaluate the accuracy of the NwsAlarm
in this situation, we present four different traces of Abi-
lene data from the link between the University of Ten-
nessee, Knoxville, and the University of California, San
Diego (UCSD) in Figures 6. Bandwidth values are shown
in Mb/s (y-axis) at approximately 30 second intervals. The
length of the traces varies for each pair of graphs, but is
given along the x-axis. Two graphs are shown for each trace
period.

The left graph of each pair again shows the measurement
(dark) and predicted (light) data. The right graphs help to
distinguish the two series by providing only the predicted
data. A NwsAlarm threshold value of� �� Mb/s was used
in this study and is indicated by the horizontal (red) line on
each graph. Each time a value is below the threshold line, it
indicates that an alarm has been sent to an administrator of
the link. To verify that the NwsAlarm accurately determines
routing table changes, we have imposed two vertical lines
on each graph indicating when such events occurred in our
traceroute data logged over the same period.

The goal of the NwsAlarm in this scenario is to send
an alarm only when the Abilene service degrades to com-
mon carrier. Common carrier is indicated on the graphs
as “QWest”. Once Abilene service has resumed, no fur-
ther alarms should be sent. Obviously, if raw measurements
are used to determine when to send an alarm, many false
alarms occur. Using the NwsAlarm results in far fewer
false alarms. These counts are shown in Table 7. On aver-
age, 92% fewer false alarms are sent using NwsAlarm with
NWS-predicted values.

6 Related Work

Much research has gone into the measurement and pre-
diction of resource performance. For network performance
specifically, the authors in [6] describe characteristics and
theoretical predictability but do no on-line analysis as is
provided by the NwsAlarm. Carter et.al. perform dynamic
probing of networks with bprobe [5], and use basic fore-
casting techniques to predict short term performance. The
prediction utilities of NWS-based tools are more sophis-
ticated than those used in bprobe, although it is possible
that even simple forecasting techniques will be effective.
Bprobe, however, is not designed to detect and signal per-
formance faults in the way NwsAlarm does.

In [7], Downey describes the effectiveness and limita-
tions of using pathchar [13], a tool for measurement of
bandwidth, round-trip time, average queue length, and loss
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Figure 5. 5-hour ISDN bandwidth trace data. The left graph sh ows both the measurements (dark-
colored series) and NWS predicted values (light-colored se ries) taken at 30 second intervals. The
right graph shows only the predicted values for clarity. The x-axis is time and the y-axis is bandwidth
in Mb/s. Three large transfers occurred during the trace and two network failures. The NwsAlarm
is used to identify these events. A horizontal line is shown a t � �

�
Mb/s, this value is the NwsAlarm

threshold value. Alarms are sent when predicted values fall below this threshold. Using actual
measurements to send alarms cause inaccurate, false alarms .

rate, to predict Internet link characteristics. Pathchar is im-
plemented using ICMP echo and/or port-unreachable pack-
ets and require super-user privileges. While the tool and
Downey’s analysis of its use are exceptional, he points out
that in many wide area settings (such as Abilene) pathchar
may yield erroneous readings. In particular, the predictions
it makes for application-deliverable bandwidth performance
can be substantially in error. Since the NWS uses end-to-
end measurements, it does not suffer from these inaccura-
cies. An advantage of pathchar, however, is that it does not
require “hard collaboration”, but the NWS does.

Dinda et.al. articulate the predictability of CPU load
in [18]. The NwsAlarm can also predict CPU load and
availability using the same forecasters as those used for
network performance prediction. NWS-based tools differ
in that the forecasters are computationally less intensive
while offering similar accuracy. In [17], the authors use raw
transfer time and CPU load of mirrored World Wide Web
servers to determine which server sites should be selected
at any given time. This work differs from the NwsAlarm
for the same reasons noted above. The NwsAlarm can be
used to visualize raw and predicted data between a user’s
desktop and any server, mirrored or otherwise, at which the
NwsAlarm is installed. This way, users can dynamically de-
termine which server (if mirrored) to use and change his/her
decision when alerted by the NwsAlarm.

7 Conclusion

Knowledge of end-to-end performance deliverable to an
application enables users to make informed decisions about
the use of available resources. Tools are needed to aid
users by measuring and visualizing available performance
and by alerting users when expected performance degrades.
In this paper we present one such utility, the NwsAlarm,
which displays this available performance (CPU, memory,
or network performance), reports short-term performance
forecasts, and alerts users to unexpected degradations. Ad-
ministrators of Grid-computing infrastructures can use the
latter to maintain expected performance levels or to inform
users when they are unable to do so.

We illustrate the utility of the system by demonstrating
how it is able to detect erroneous routing table configu-
rations by dynamically analyzing end-to-end performance
measurements. By comparing forecasts to user-specified
thresholds, the NwsAlarm accurately identifies periods of
time during which the routing tables are correctly config-
ured between a pair of hosts, and periods when they are
misconfigured causing a performance degradation. In ad-
dition, the system correctly detects link contention and of
course, link outage.

To investigate the efficacy of forecasting, we compare
the number of false performance alarms that are generated
when raw measurement data is used as a trigger, and when
NWS forecasts are used to trigger and alarm. Since the
forecasting techniques effectively filter random fluctuations
from the performance traces, the NwsAlarm, on average



(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959851948

Abilene AbileneQWest

NwsAlarm Threshold

NwsAlarm Predictions

Actual Measurements

Hour 1 Hour 15 Hour 31
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959851948

Abilene AbileneQWest

NwsAlarm Threshold

NwsAlarm Predictions

Hour 1 Hour 15 Hour 31

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

966011905

QWest AbileneAbilene

NwsAlarm Threshold

NwsAlarm Predictions
Actual Measurements

Hour 1 Hour 41 Hour 83
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

966011905

QWest AbileneAbilene

NwsAlarm Threshold

NwsAlarm Predictions

Hour 1 Hour 41 Hour 83

\

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959208584

Abilene QWestQWest

NwsAlarm Threshold

NwsAlarm Predictions
Actual Measurements

Hour 1 Hour 11 Hour 22
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959208584

Abilene QWestQWest

NwsAlarm Threshold

NwsAlarm Predictions

Hour 1 Hour 11 Hour 22

(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959327033

AbileneQWestAbilene

NwsAlarm Threshold

NwsAlarm Predictions
Actual Measurements

Hour 1 Hour 17 Hour 34
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

959327033

AbileneQWestAbilene

NwsAlarm Threshold

NwsAlarm Predictions

Hour 1 Hour 17 Hour 34

Figure 6. Sub-traces from 5-month Abilene bandwidth (Mb/s) trace data. Pair (a) is from a 31-hour trace
starting June 1 at approximately 5:30am; (b) from a 83-hour t race starting August 11 at approximately
12:38pm. Pair (c) is from a 22-hour trace starting May 24 at ap proximately 3:21am; (d) from a 83-hour
trace starting May 26 at approximately 3:55am. The left grap h shows both the measurements (dark-
colored series) and NWS predicted values (light-colored se ries) taken at 30 second intervals; the right
graphs shows predictions only. The NwsAlarm was used to dete rmine when Abilene connectivity
degraded to common carrier (QWest) and when service resumed . A horizontal line is shown at
� �� Mb/s, this value is the NwsAlarm threshold value. Alarms are sent when predicted values fall
below this threshold. Using actual measurements to send ala rms cause inaccurate, false alarms as
indicated by the data. NwsAlarm accurately indicates loss a nd restoration of Abilene service.



Table 1. Comparison of false alarm count us-
ing NWS-predicted values and raw measure-
ment data in the NwsAlarm. Use of predicted
values enable more accurate error detection.

Predictions Raw Measurements
Sub-trace False Alarms False Alarms
Figure 6a 0 298
Figure 6b 112 477
Figure 7a 0 250
Figure 7b 13 494

Avg 31 380

raises
��

% fewer alarms than if raw bandwidth measure-
ments are used to detect performance changes.
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