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Abstract:We present Centaurus – a scalable, open source, clustering service for K-means clustering
of correlated, multidimensional data. Centaurus provides users with automatic deployment via
public or private cloud resources, model selection (using Bayesian information criterion), and data
visualisation. We apply Centaurus to a real-world, agricultural analytics application and compare its
results to the industry standard clustering approach. The application uses soil electrical conductivity
(EC) measurements, GPS coordinates, and elevation data from a field to produce a ‘map’ of
differing soil zones (so that management can be specialised for each). We use Centaurus and these
datasets to empirically evaluate the impact of considering multiple K-means variants and large
numbers of experiments. We show that Centaurus yields more consistent and useful clusterings than
the competitive approach for use in zone-based soil decision-support applications where a ‘hard’
decision is required.
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1 Introduction

Sensing, data analytics, and cloud computing have
revolutionised the way people with differing levels of
expertise make decisions in support of research and business
interests. Through their decreasing cost and increasing
connectivity, sensing technologies are becoming increasingly
accessible in wide range of human endeavors from agriculture
and farming to social networks and information retrieval.

Unsupervised clustering is commonly employed to
partition observation data into related groups. Clustering is
a popular form of learning that requires minimal human
intervention and precludes the need for model training and
data labeling. Lloyd’s clustering algorithm (Lloyd, 1982),
commonly called K-means, is the most widely used approach
to unsupervised clustering. The algorithm partitions data into
K clusters based on their distance to specific points in a
multi-dimensional space.

While K-means in its most basic form is simple to
understand and implement, there are a myriad of algorithm
variants that differ in how they calculate distances. Other
K-means implementations require ‘hyper-parameters’ that
control the amount of statistical variation in clustering
solutions. Identifying which algorithm variant and set of
implementation parameters to use in a given analytics setting
is often challenging and error prone for novices and experts
alike.

In this paper, we present an approach for simplifying the
application of K-means through the use of cloud-computing.
Centaurus is a web-accessible, cloud-hosted service that
automatically deploys and executes multiple K-means
variants concurrently, producing multiple models. It then
scores the models to select the one that best describes the
data – a process known as model selection. From a systems
perspective, Centaurus defines a pluggable framework
into which clustering algorithms, K-means variants, and
scoring metrics can be chosen. When users upload their

data, Centaurus executes and automatically scales its
K-means variants concurrently using public or private
cloud resources. Centaurus automates experimentation with
different hyper-parameters and provides a set of data and
diagnostic visualisations so that users can best interpret its
results and recommendation.

We integrate six K-means variants into Centaurus,
each of which implementing a different point-distance
computation. To performmodel selection, Centaurus employs
a scoring component based on information criteria. Centaurus
computes a score for each result (across variants, cluster sizes,
and repeat runs using randomly selected cluster centres) and
recommends the highest scoring algorithm configuration as
the ‘best’ clustering to the user. We implement Centaurus
using production-quality, open-source software and validate
it using synthetic datasets with known clusters.

We then apply Centaurus to a real-world, agricultural
analytics application and compare its results to the industry
standard clustering approach. The application analyses
fine-grained soil EC measurements, GPS coordinates, and
elevation data from a field to produce a ‘map’ of differing
soil zones. These zones are then used by farmers and
farm consultants to customise management or operations for
different zones on the farm (application of water, fertiliser,
pesticides, etc.) (Moral et al., 2010; Fortes et al., 2015; Corwin
and Lesch, 2003).

We analyse Centaurus clustering for EC measurements
taken from three farms. We illustrate both the impact of
including multiple K-means variants in the pool of algorithms
and the benefits of executing multiple randomised trials on
the quality of the clustering. Finally, we compare Centaurus
to an alternative state of the art clustering tool [MZA (Fridgen
et al., 2004)] for farm management zone identification and
show that Centaurus yields more consistent and utilitarian
clusterings for use in zone-based soil decision-support
applications where a ‘hard’ decision is required.
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In the sections that follow, we first overview related
work (Section 2) and provide background on the K-means
algorithms that Centaurus implements (Section 3). In
Section 4, we overview the design and implementation of
Centaurus.We then detail our datasets (Section 5), present our
experimental methodology, analysis, and results (Section 6)
and conclude in Section 7.

2 Related work

Extensive studies of K-means demonstrate its popularity for
data processing and many surveys are available to interested
readers (Jain et al., 1999; Berkhin, 2006). In this section
we focus on K-means clustering for multivariate correlated
data. We also discuss the application and need for such
systems in the context of farm analytics when analysing soil
electro-conductivity.

To integrate K-means into Centaurus, we leverage
Murphy’s (1998) work in the domain of Gaussian mixture
models (GMMs). This work identifies multiple ways of
computing the covariance matrices and using them to
determine distances and log likelihood. To the best of our
knowledge there is no prior work on using all six variants of
cluster covariance computation within a K-means system. We
also utilise the K-means++ (Arthur and Vassilvitskii, 2007)
work for cluster centre initialisation.

The research and system that is most closely related
to Centaurus, is MZA (Fridgen et al., 2004) – a computer
program widely used by farmers to identify clusters
in soil electro-conductivity (EC) data to aid farm zone
identification and to optimise management. MZA uses fuzzy
K-means (Dunn, 1974; Bezdek, 2013), computes a global
covariance (i.e., one covariance matrix spanning all clusters)
and employs either Euclidean (Heath et al., 1956), diagonal,
or Mahalanobis distance to compute distance between points.
MZA computes the covariance matrix once from all data
points and uses this same matrix in each iteration. MZA
compares clusters using two different scoring metrics:
fuzziness performance index (FPI) (Odeh et al., 1992) and
normalised classification entropy (NCE) (Bezdek, 2013).
Centaurus attempts to address some of the limitations ofMZA
(which is only available as desktop software, does not account
for poor initial cluster assignments, and places a burden on
the user to determine which cluster size, K-means variant,
and scoring metric to employ). We also show that although
MZA provides multiple scoring metrics (Centaurus provides
a single scoring metric) to compare cluster quality, the
MZA metrics commonly produce different ‘recommended’
clusterings.

The authors of x-means (Pelleg et al., 2000) use
Bayesian information criterion (BIC) (Schwarz, 1978) (which
Centaurus also employs) as a score for the univariate
normal distribution. Our work differs in that we extend
the algorithm and scoring to multivariate distributions and
account for different ways of covariance matrix computation
in the clustering algorithm. We provide six different ways of
computing covariance matrix for K-means for multivariate
data and examples that illustrate the differences.

Different parallel computational models were used to
speed up the K-means cluster initialisation (Bahmani et al.,
2012), or its overall runtime (Zhao et al., 2009). Our work
differs in that we provide not only a scalable system but
include K-means variants, flexibility for a user to select
any one or all of the variants, as well as a scoring and
recommendation system. Finally, Centaurus is also pluggable
enabling other algorithms to be added and compared.

3 K-means variants

TheK-means algorithm attempts to find a set of cluster centres
that describe the distribution of the points in the dataset by
minimising the sum of the squared distances between each
point and its cluster centre. For a given number of clusters
K, it first assigns the cluster centres by randomly selectingK
points from the dataset. It then alternates between assigning
points to the cluster represented by the nearest centre, and
recomputing the centres (Lloyd, 1982; Bishop, 2006), while
decreasing the overall sum of squared distances (Linde et al.,
1980).

The sum-of-squared distances between data points and
their assigned cluster centres provides a way to compare
local optima – the lower the sum of the distances, the closer
to a global optimum a specific clustering is. Note, that it
is possible to use distance metrics other than Euclidean
distance to compute per-cluster differences in variance,
or covariance between data features [e.g., Mahalanobis
distance (Mahalanobis, 1936)]. Thus, for a given dataset,
the algorithm can generate a number of different K-means
clusterings – one for each combination of starting centres,
distance metrics, and a method used to compute the
covariance matrix. Centaurus integrates both Euclidian and
Mahalanobis distance. Computation of Mahalanobis distance
requires computation of a covariance matrix for the dataset.

In Centaurus we integrate six different methods for
computing covariance matrices for K-means algorithm:
full-tied, full-untied, diagonal-tied, diagonal-untied,
spherical-tied, and spherical-untied (Murphy, 1998, 2012;
Bishop, 2006; Cerioli, 2005). Each of these methods is
defined as:

• Full: compute the entire covariance matrix
∑∑∑

and use
all of its elements to compute distance between points x
and y:

D(x,y) =

(
(x− y)T

−1∑∑∑
(x− y)

)1/2

This variant is commonly associated with the use of
Mahalanobis distance.

• Diagonal: compute the variance matrix, i.e., the
covariance matrix with its off-diagonal elements set to
zero. This approach ignores the covariance observed
between the dimensions of the dataset.

• Spherical: set covariance matrix diagonal elements to
the variance computed across all dimensions and set
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off-diagonal elements to zero. This method is
commonly referred to as using Euclidean distance.

In addition, each of these approaches for computing the
covariance matrix can be tied or untied. tied means that we
compute a covariance matrix per cluster, take the average
across all clusters, and then use the averaged covariance
matrix to compute distance. untied means that we compute
a separate covariance matrix for each cluster, which we use
to compute distance. Using a tied set of covariance matrices
assumes that the covariance among dimensions is the same
across all clusters, and that the variation in the observed
covariance matrices is due to sampling variation. Using an
untied set of covariance matrices assumes that each cluster is
different in terms of its covariance between dimensions.

We implement K-means in its general form using
Mahalanobis distance in Centaurus using the following steps:

1 We use K-means++ (Arthur and Vassilvitskii, 2007) to
randomly selectK points from the data and assign these
as the initial cluster centres µ(k), whereK is the number
of clusters, k is the cluster index, and k = 1, . . . ,K.

2 For data points having d dimensions, compute initial
covariance matrix

∑∑∑
using all data points:

Σij =
1

n

n∑
p=1

(x
(p)
i − µi)(x

(p)
j − µj)

where,
∑

ij is (i, j)
th component of the matrix

∑∑∑
, x(p)

i

is the ith component of the pth data point, and µi is the
ith component of the global mean.

3 Assign all the points to the closest cluster centre using
Mahalanobis distance metric:

D(x(p),µ(k)) =

(
(x(p) − µ(k))T

−1∑∑∑
(x(p) − µ(k))

)1/2

where, x(p) is the d-dimensional vector of components
of the pth data point, µ(k) is the centre of the kth cluster.

4 Compute covariance matrix
∑∑∑(k) for each cluster using

their cluster centre µ(k).

5 Compute the cluster centres µ(k): for each point in a
cluster, calculate the sum of its distances to all the other
points in the same cluster. Assign the point with the
minimum sum as the new centre.

6 Repeat (4) and (5) until convergence or completion of a
maximum number of iterations. The convergence
criteria is calculated by summing up the distances of
new cluster centres from the old cluster centres.

The output of the algorithm is a list of cluster labels, one per
data point, indicating the cluster index to which the data point
belongs and a list of cluster centres that correspond to the
maximum likelihood estimates of the cluster means. We use
the interpretation of K-means as the ‘hard’ cluster assignment
of GMM to compute the maximum log-likelihood [for use

by the BIC (Schwarz, 1978) or the Akaike information
criterion (Akaike, 1974)] in order to compare the local optima
generated from different variants of K-means and, ultimately,
to choose the ‘best’ one (Pelleg et al., 2000). We discuss
the use of information criteria as a ‘scoring’ method across
multiple runs of multiple variants in Section 4.1.

Once the labels are computed for each data point, we
can compute the likelihood (a function of the data given the
model) using the equation for GMM with hard assignment
(Bishop, 2006; Murphy, 2012), as:

f
(
X|µ,

∑∑∑)
=

n∏
p=1

K∏
k=1

π
1pk

k · N

x|µ(k),

(k)∑∑∑1pk

where, p is a data point having d dimensions, k is a cluster
index, πk is the ratio of the number of points in cluster
k and the total number of points, and 1pk is an identity
coefficient that is 1 if the point p belongs to the cluster k and
0 otherwise, µ(k) is the kth cluster centre,N

(
x|µ(k),

∑∑∑(k)
)

is the Gaussian probability density function with µ(k) mean
and

∑∑∑(k) covariance.
The log-likelihood function is needed to compute

information criteria that Centaurus uses to score a particular
clustering. We compute the log-likelihood function as:

l (X|µ,Σ) = ln f
(
X|µ,

∑∑∑)
=

K∑
k=1

nk ·

ln(nk

n

)
− d

2
ln (2π)− 1

2
ln |

(k)∑∑∑
|


−1

2

n∑
p=1

K∑
k=1

1pk · (x(p) − µ(k))T

 (k)∑∑∑−1

(x(p) − µ(k))

4 The Centaurus system

Centaurus implements a service for K-means clustering
that takes advantage of cloud-based, large-scale distributed
computation, automatic scaling (where computational
resources are added or removed on-demand), data
management to support visualisation, and browser-based
user interaction. Centaurus implements six different variants
of K-means (described in Section 3). The complete system
is described in detail in Golubovic et al. (2017). Centaurus
provides a scalable execution environment with a deployment
of multiple K-means algorithm parameterisations and variants
running in parallel. Centaurus also provides a user interface,
visualisation tools for viewing the results in different ways,
and a scoring metric for model selection which it uses to
provide a recommendation of the best-performing K-means
algorithm configuration for the given data.

For this work, we implement and employ a simple
web interface for Centaurus. Using this interface, a user
uploads the data file via a web browser and selects the
maximum value for K. The user can also specify the
maximum number of computational resources to be used
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which limits Centaurus parallelism but provides constrains
on resources. Resources are virtual servers each with a
single processor. Centaurus runs single, sequential K-means
algorithm instances in parallel using multiple virtual servers.
Centaurus adds virtual servers dynamically as the workload
increases, up to a specified maximum (the default is ten
servers). Centaurus then scores the model using a scoring
metric based on the BIC (Schwarz, 1978). When all runs
complete, Centaurus reports the result with the highest BIC
score as its recommended clustering.

4.1 Centaurus scoring

Centaurus performs N experiments for a particular K value
(where K = 1, ...,max k), each of which consists of M
initial cluster assignments to the K-means algorithm. Each
algorithm iterates until convergence or a maximum number
of iterations is reached (in Centaurus this value is 300). Thus,
Centaurus executes N ∗M runs of an algorithm for each
value of K. Across M initial cluster assignments, Centaurus
chooses the best performing one using the maximum log
likelihood.

Centaurus scoring takes label assignments from a
clustering result for a particular K value and returns a score
based on the BIC. BIC uses the log maximum likelihood
to rate a particular clustering and then subtracts a ‘penalty’
function that captures the number of parameters that must
have been estimated to generate the clustering, scaled by the
sample size.

We compute the BIC score for a full tied clustering with
K clusters as:

BICK = l

(
X|µ̂,

∑̂∑∑)
− rK

2
logn

where, µ̂ is the maximum likelihood estimator for the
cluster centres,

∑̂∑∑
is the d-dimensional maximum likelihood

estimator for the cluster covariance matrices, l(X|µ̂,
∑̂∑∑

) is
the maximum log likelihood, and rK is the number of free
parameters in the model. rK is computed as the sum ofK − 1
cluster probabilities (πk), (K · d) coordinate parameters for
all the cluster centres, and (K · d·(d+1)

2 ) parameters for each
of theK symmetric cluster covariance mattrices:

rK = (K − 1) + (K · d) + (K · d · (d+ 1)

2
)

when a single covariance matrix is used for all clusters (the
Untied variants), the factor of K in the third term is set to
1. Similarly, when the off-diagonal elements are zero, the
fraction in the third term is either d (for the diagonal variants)
or 1 (for the Spherical variants). For BIC, the penalty function
is rK multiplied by logn

2 where n is the total number of points.
Note that because these techniques require estimates of the

covariance matrix for each cluster, there must be a minimum
number of data points per cluster for this estimate to be
meaningful. As a result, Centaurus discards (does not score
or consider in the scoring average) any clustering result
which has one or more clusters with fewer elements than this

minimum. This minimum threshold is user configurable with
a default setting of 30 data points in the current system.

4.2 Implementation

The Centaurus implementation consists of a user-facing web
service and distributed cloud-enabled backend. Users upload
their datasets to the web service frontend as files in a simple
format: as comma-separated values (CSV files). Advanced
users can modify the following Centaurus parameters:
maximum number of clusters to fit to the data (K); number
of experiments (N ) per K to run; number of times to
initialise the K-means clustering (M ); type(s) of covariance
matrix to use for the analysis (all options – full-tied,
full-untied, diagonal-tied, diagonal-untied, spherical-tied,
and spherical-untied – are selected by default.); whether to
scale the data so that each dimension has zero mean and unit
standard deviation (scale).

Centaurus considers each parameterisation that the user
chooses (including the default) as a ‘job’. Each job consists
of multiple tasks (experiment runs) that Centaurus deploys.
Users can check the status of a job or view the report for a
job (when completed). The status page provides an overview
of all the tasks with a progress bar for the percentage of tasks
completed and a table showing task parameters and outcomes
available for download and visualisation.

Centaurus has a report page to provide its
recommendation. The recommendation consists of the
number of clusters and K-means variant that produced the
best BIC score. This page also shows the cluster assignments
and spatial plots using longitude and latitude (if included in
the original dataset). For additional analysis users can select
‘advanced report’ to see the correlation among features in the
dataset, BIC scores for each K-means variant, best clusterings
for each one of the variants, etc.

We implement Centaurus using Python and integrate
a number of open source software, packages, and cloud
services. The cloud system is a private cloud that runs
Eucalyptus software v4.4 (Nurmi et al., 2009; Aristotle
Cloud Federation, 2018) and integrates virtual servers with
different CPU, memory, and storage capabilities based on the
requirement of a particular component. Centaurus consists of
five primary components:

1 Frontend: we couple the Python Flask (2018) (v0.12.1)
web framework with Gunicorn (2018) (v19.7.1) web
server and NGINX (2018) (v1.4.6) reverse proxy server
to provide a robust application hosting service.

2 Backend worker: we use Python Celery (2018) (v4.0.2),
a distributed computation framework, to perform data
analysis computation tasks asynchronously and at
scale (Lunacek et al., 2013). We leverage auto-scaling
groups in Eucalyptus to automatically grow and shrink
the number of workers performing the computation
according to the demand for each job.

3 Backend queue: we use RabbitMQ (2018) (v3.2.4)
message broker to send information about each job from
the frontend to the workers. This enables frontend to
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quickly offload its work to the queue where it is sent
systematically to the workers as and when they become
available.

4 Backend satabase: We support both PostgreSQL
(v9.5.11) SQL database (PostgreSQL, 2018) and
MongoDB Community Edition (v3.4.4) NoSQL
database (Mongodb, 2018) to store parameters and
results for jobs and tasks. MongoDB had advantages in
fast writing of experiment results but analysis cost was
high, while PostgreSQL had high cost of writing but
offering high performance for data analysis once the
experiments were completed.

5 Backend file store: we use Amazon simple storage
system (S3) (Amazon S3, 2018) to store user uploaded
files.

Other packages that Centaurus leverages include Numpy
(Walt et al., 2011) (v1.12.1), Pandas (McKinney et al., 2010)
(v0.19.2), SciKit-Learn (Pedregosa et al., 2011) (v0.18.1),
and SciPy (Jones et al., 2001) (v0.19.0) for data processing
and Matplotlib (Hunter, 2007) (v2.0.1) and Seaborn (2018)
(v0.7.1) for data visualisation.

5 Datasets

We use both synthetic and real-world datasets to evaluate
Centaurus empirically. We generate the synthetic datasets
with known clusters (as ‘ground truth’), which we use
to validate and measure the accuracy of the Centaurus
implementation. Using the real-world application data from
precision agriculture, we also compare the results generated
by Centaurus for management zone determination to the
industry standard and use them to illustrate the Centaurus
visualisation capabilities.

5.1 Synthetic datasets

We first create multiple two-dimensional synthetic datasets
using multivariate Gaussian distributions. The datasets have
three clusters with 1,000 points per cluster and varying
degrees of inter-dimensional correlation in each cluster.
Figure 1 shows these datasets with their ground truth cluster
assignments.

• Dataset-1 clusters have no correlation and equal
standard deviations of 0.2 for each dimension. Cluster
centres are set at positions (1, 0), (−1, 0), and (0, 2) as
can be seen in Figure 1.

• In Dataset-2 cluster centred at (0.25, 0) has two
dimensions that are independent (not correlated) with
the same standard deviations of 0.2. The cluster centred
at (1, 1) has correlation 0.70 between dimensions, while
the cluster centred at (0.5, 1) has correlation 0.97
between dimensions. When all three clusters are
combined the correlation between the two dimensions
is 0.75.

• In Dataset-3, the cluster centred at (1, 0) has two
independent dimensions, while the clusters centred at
(0.75, 1.5) and (0.35,−0.35) have correlations of 0.98
and −0.89 respectively. The correlation of the entire set
is 0.2.

Figure 1 Synthetic datasets shown with ground truth assignment,
(a) Dataset-1 (b) Dataset-2 (c) Dataset-3 (see online
version for colours)

(a)

(b)

(c)

5.2 Application datasets

Our farm data consists of electrical conductivity (EC)
measurements of soil measured (at 30 cm and 90 cm depths)
using an instrument manufactured by Veris Technologies
Inc. (2018). The surveyor collects EC as well as the GPS
coordinates and elevation data associated with each EC
measurement. The approach produces a data file containing
five dimensions of data: longitude, latitude, elevation, EC at
30 cm depth (EC1), and EC at 90 cm depth (EC2).
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Three different farms listed below represent good
variety of different management practices and EC sampling
capabilities. The data sampling is not uniform, the distance
between data points is influenced by the type of plant; if it
is perennial plant (e.g., trees at Cal Poly) we can only gather
readings between rows, whereas an empty field (e.g., after
season corn field at UNL) allows for narrow row spacing.
Sampling is further influenced by the speed at which the
sensor was driven. At the speed of 10 km/h the sensor
produces around 275 readings per hectare.

The EC datasets come from three different farms:

• Cal Poly dataset is a 4.85 ha lemon farm at California
Polytechnic State University, San Louis Obispo,
California from which we have collected 3,232 data
points.

• Sedgwick is a 12.1 ha field located in the Santa Ynez
Valley, California from which we have collected
2,675 data points.

• UNL is a 36.8 ha field at University of Nebraska,
Lincoln, from which we have 5,823 data points. It is
mostly used for corn and soybean.

6 Results

In this section, we evaluate Centaurus K-means cluster quality
for multiple K-means variants. We first compare cluster
resolution power of the variants using synthetic datasets.
We then detail the clustering that Centaurus determines for
Veris (Veris Technologies Inc., 2018) ECmeasurements taken
from three farms. From this data, we illustrate both the
advantage of including multiple K-means variants in the pool
of algorithms that Centaurus implements and the effect of
executing multiple randomised trials on the quality of the
clustering. Finally, we compare Centaurus clusterings to those
produced by MZA for the same Veris EC data.

6.1 K-means variants

To illustrate the cluster resolution power of different variants
of K-means, we use three synthetic datasets, each of which
is drawn from a bivariate Normal distribution. For each of
the six variants described in Section 3, we use Centaurus to
repeat the clustering 2,048 times using a different, randomly
selected, initial cluster centre assignments and to compute the
BIC score for each.

Figure 2 shows histograms of the BIC scores for each of
three synthetic datasets. We divide the scores among 100 bins.
For each dataset we present six histograms, one for each of
the K-means variants, represented in different colors, where
each variant has a total of 2,048 single K-means runs. The
X-axis depicts BIC scores from experiments – farther right
corresponds to larger BIC and thus higher quality clusterings.

Dataset-1 consists of well-separated clusters. All six
variants perform well making the simpler (i.e., those with
fewer parameters to be estimated) variants generate slightly
higher BIC scores [as depicted in Figure 2(a)].

Figure 2 BIC score histograms for three synthetic datasets and
six K-means variants, (a) Dataset-1 (b) Dataset-2
(c) Dataset-3 (see online version for colours)

(a)

(b)

(c)

However, for datasets where the dimensions are more
highly correlated and/or where that correlation differs across
clusters, the complex variants (full tied and full untied)
outperform their simpler counterparts in terms of BIC score.
Dataset-2 and Dataset-3 differ in that for the latter, the
cross-dimensional correlation varies by synthetic cluster.
Nonetheless, as shown in Figures 2(b) and 2(c), the full-untied
variant (which computes a separate co-variance matrix for
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each cluster) performs best. These experiments, although
synthetic, show the importance of considering different
variants when employing K-means clustering.

6.2 Veris EC datasets

In what follows, we refer to an experiment as ten repeated
clusterings [using K-means++ (Arthur and Vassilvitskii,
2007) to make initial assignments in each repetition] for each
number of clusters k between 1 and 10, for each of the six
K-means variants we examine in this study. Thus, each single
experiment consists of 10 ∗ 10 ∗ 6 = 600 individual cluster
assignments using K-means.

Centaurus repeats each experiment N times, where
N = 2i, for i = 0, ..., 11. In this study, we refer to a set
of N experiments as job-N. Thus job-N consists of N ∗ 600
individual clusterings. Centaurus filters out any clustering
with a cluster having fewer than 30 points (so that any
per-cluster statistical estimates are statistically valid). To
determine the best clustering from a job, Centaurus computes
a BIC score for each clustering in the job and selects the one
with the largest score.

6.2.1 Cluster quality analysis

To show the effect of using a large sample when determining
the ‘best’ clustering, in Figure 3 we plot the largest observed
BIC score (on the y-axis) versus the experiment number N
(on the x-axis, which uses a log scale). Figures 3(a), 3(b), and
Figures 3(c) showECdata fromCal Poly, Sedgwick, andUNL
respectively.

As the sample size goes up, the probability of determining
a clustering with the ‘best’ BIC score (or, at least a
consistently good BIC score) should increase as well. For
the Sedgwick data [Figure 3(b)] this effect is clearly visible.
Once the number of experiments exceeds N = 28, there is
no further improvement in BIC. However for Cal Poly and
UNL, the presence of a higher BIC occurring only atN = 211

indicates that even more repetitions are necessary to identify
a consistently ‘best’ clustering. Thus, for these datasets, the
best clustering in the ‘space’ of all possible clusterings is rare
since it does not occur repeatedly when the sample size is less
than 1.23 million (211 ∗ 600).

6.2.2 Cluster specificity

One possibility is that the ‘best’ clustering (the one with the
highest BIC score) and the next best are similar. In this case,
then, a large exploration of the clustering search space may
be unwarranted because the best is not substantially different
from the next best (which might be more common and require
less computational effort to find).

To investigate this possibility, we consider the two largest
jobs from the Cal Poly dataset: the largest job withN = 211

experiments (job-2048) and the second largest job with
N = 210 experiments (job-1024). The largest job, Job-2048,
with twice the number of experiments of job-1024, has the
best BIC score of –8,847.9 [Figure 4(a)]. This corresponds

to a clustering with four clusters having cardinality of 2,188,
531, 308, and 205, respectively. The second best clustering
has BIC score of -8925.4 and three clusters with cardinality
1733, 973, and 526, respectively, as shown in Figure 4(b).

Figure 3 Largest observed BIC score vs number of experiments
(log scale), (a) Cal Poly (b) Sedgwick (c) UNL
(see online version for colours)

(a)

(b)

(c)

Figure 4(c) shows the difference between these two
clusterings. A specific data point is shown (i.e., is considered
‘different’) if it has a different cluster number assignment (is
in a different cluster) whenwe rank clusters by cardinality. For
this data, clearly these clusterings differ. Thus, doubling the
number of experiments from 1,024 to 2,048 allows Centaurus
to find a clustering with a better BIC score.
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Figure 4 Clusterings of Cal Poly dataset, (a) best with BIC
–8,847.9 (b) second best with BIC –8,925.4
(c) differences (see online version for colours)

(a)

(b)

(c)

The Sedgwick dataset has more stable outcome in terms of the
best BIC score when increasing the number of experiments.
Figure 3(b) shows that even with 256 experiments (150 K
K-means runs), we achieve the same maximum BIC score as

with 2,048 experiments. The best result has a BIC score of
–7,468.0 and three clusters with 1,111, 996, and 568 elements
[as shown in Figure 5(a)]. This result is consistent over many
repeated jobs with a sufficiently large number of experiments,
i.e., any job with more than 256 experiments produced this
same clustering as the one corresponding to the largest score.

Figure 5 Clusterings of Sedgwick dataset, (a) best with BIC:
–7,468.0 (b) second best with BIC: –7,529.8
(c) differences (see online version for colours)

(a)

(b)

(c)
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Figure 6 Clusterings of UNL dataset, (a) best with BIC: 37,039.6
(b) second best with BIC: 32,108.6 (c) differences
(see online version for colours)

(a)

(b)

(c)

The second best clustering agrees with the best result on the
number of clusters (k = 3) with cluster cardinalities of 963,
879, and 833, and a BIC score of –7,529.8 [as shown in
Figure 5(b)]. While these clusters do differ, Figure 5(c) shows
that the differences are scattered spatially. Thus the best and
second best clusterings may not differ in terms of actionable
insight.

For the UNL field, the best and second best clusterings
(and their respective BIC scores) are shown in Figure 6.

These are both from job-2048. The best clustering has six
clusters with cardinalities 2,424, 1,493, 1,138, 561, 111, and
70, respectively. The second best clustering has four clusters
with cardinalities 2,730, 1,615, 838, and 614, respectively.
From these features and the differences shown in Figure 6(c)
it is clear the best and second best clustering are dissimilar.

Further, the second best clustering from job-2048 [shown
in Figure 6(b)] is the best clustering in job-64, job-512, and
job-1024 respectively. As with the Cal Poly data (but not the
Sedgwick data), doubling the number of experiments from
1,024 to 2,048 ‘exposed’ a better and significantly different
clustering.

6.2.3 K-means variants

Unlike the results for the synthetic datasets, the best clustering
for the Veris EC datasets is produced by the full untied
variant for sufficiently large job sizes. This result is somewhat
surprising since the full untied variant incurs the largest
score penalty in the BIC score computation among all of the
variants. The score is penalised for the mean, variance, and
co-variance estimates from each cluster. The other variants
require fewer parameter estimates (and thus have a lower
penalty). Related work has also argued for using fewer
estimated parameters to produce the best clustering (Fridgen
et al., 2004) leading to an expectation that a simpler variant
[e.g., full tied as in Fridgen et al. (2004)] would produce the
best clustering, but is not the case for these datasets. Because
Centaurus considers all variants, it will find the best clustering
even if this effect is not general to all Veris data.

6.3 Comparison with MZA

We next compare the Centaurus performance against
‘management zone analysis’ [MZA (Fridgen et al., 2004)] for
the Veris EC farm datasets. MZA is a popular methodology
with concomitant software for clustering Veris EC data.
Results for such clusterings are available from Fridgen et al.
(2004); Odeh et al. (1992); Corwin and Lesch (2003).MZA
requires users to set a real numbered parameter known as the
‘fuzziness index’ that controls the degree of specificity of the
algorithm. The authors of Fridgen et al. (2004) use a value of
1.5 in their experiments, an additionally suggest that values
between 1.2 and 1.5 are appropriate for clustering soil EC
measurements.

For the chosen fuzziness parameter m (for m > 1.0) and
the maximum number of clustersK, MZA runs a single fuzzy
clustering for each k (2, . . . ,K). MZA scores the resulting
clusterings using two metrics: FPI (Odeh et al., 1992), and
normalised classification entropy (NCE) (Odeh et al., 1992;
Bezdek, 2013). FPI is a measure of the degree of separation
between partitions (lower fuzziness means a higher degree of
separation) while NCE measures the disorganisation of each
one of the fuzzy partitions. The authors of Fridgen et al. (2004)
and Odeh et al. (1992) suggest that the best clustering is the
one with the smallest value of k that also has the smallest
scores for both metrics among all clusterings.
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Table 1 MZA results for the farm datasets for different values of k and fuzziness coefficients (m)

K
Cal Poly Veris EC

m = 1.1 m = 1.3 m = 1.5 m = 2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.044 0.016 0.120 0.044 0.265 0.093 0.475 0.162
3 0.028 0.013 0.095 0.048 0.170 0.088 0.361 0.189
4 0.027 0.014 0.083 0.046 0.143 0.084 0.328 0.207
5 0.025 0.014 0.087 0.053 0.166 0.105 0.370 0.255
6 0.027 0.016 0.098 0.062 0.180 0.122 0.393 0.291
7 0.031 0.019 0.099 0.065 0.173 0.121 0.386 0.304

K
Sedgwick Veris EC

m = 1.1 m = 1.3 m = 1.5 m = 2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.018 0.006 0.063 0.023 0.126 0.047 0.413 0.143
3 0.020 0.010 0.081 0.040 0.145 0.074 0.315 0.164
4 0.025 0.013 0.080 0.044 0.140 0.081 0.324 0.201
5 0.025 0.015 0.088 0.053 0.158 0.100 0.356 0.244
6 0.026 0.016 0.091 0.057 0.172 0.116 0.383 0.281
7 0.028 0.017 0.094 0.062 0.167 0.116 0.388 0.299

K
UNL Veris EC

m = 1.1 m = 1.3 m = 1.5 m = 2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.038 0.014 0.126 0.044 0.201 0.069 0.341 0.117
3 0.020 0.010 0.068 0.033 0.115 0.057 0.233 0.119
4 0.019 0.010 0.059 0.033 0.102 0.059 0.229 0.142
5 0.017 0.010 0.056 0.034 0.100 0.063 0.239 0.163
6 0.025 0.015 0.082 0.051 0.094 0.062 0.239 0.177
7 0.021 0.013 0.073 0.046 0.136 0.092 0.285 0.212

We run MZA for the three farm datasets and present results
in Table 1. For this study, we set k = 2, . . . , 7 and consider
fuzziness values of 1.1, 1.3, 1.5, and 2.0. The value of k is
given in the first column. The table shows the FPI and NCE
scores for each fuzziness value and for each k in the data
columns. The lowest (considered the best) score is shown in
italic.

The results show that MZA often recommends different
clusterings depending upon the scoring metric and fuzziness
value used. We first consider scores across values ofm and k.
In all cases, across datasets, NCE and FPI select m = 1.1 as
producing the best clustering. This is in contrast to

1 the MZA default (m = 1.3)

2 the values recommended by the authors (1.2–1.5)

3 the value form used in the original MZA study
(1.5) (Fridgen et al., 2004), which all perform worse.

Unfortunately, the best performing cluster size differs
between NCE and FPI for both Cal Poly (top table) and UNL
(bottom table). For the Cal Poly dataset (top table), NCE
reports that the best clustering is (k = 3, row 3, column 3).
FPI reports that the best clustering is (k = 5, row 5, column 2).
For Sedgwick (middle table), NCE and FPI agree on (k = 2,
row 2, columns 2 and 3). For the UNL (bottom table), NCE

selects (k = 3, row 3, column 3) and FPI selects (k = 5,
row 5, column 2).

Moreover, FPI and NCE disagree more often than they
agree for these datasets. For the Cal Poly dataset (top table)
both scores agree only whenm = 1.5 suggesting that k = 4
(row 4, columns 6 and 7) is the best clustering. For other
values ofm, MZA recommends cluster sizes that range from
k = 2 to k = 5. For Sedgwick (middle table) and m = 2.0
(columns 8 and 9), FPI selects k = 3 and NCE selects k = 2.
For UNL, no FPI-NCE pairs agree on the best clustering, with
MZA recommending all values of k (except 7) for different
m.

Because fine-grained EC measurements (e.g. using soil
core samples and lab analysis) are not available for the
Cal Poly, Sedgwick, and UNL farm plots, it is not possible to
compare the MZA and Centaurus in terms of which produces
a more accurate spatial maps from the Veris data. Even
with expert interpretation of the conflicting MZA results for
Cal Poly and UNL, we do not have access to ‘ground truth’ for
the fields. However, it is possible to compare the two methods
with the synthetic datasets shown in Figure 1. In particular,
Table 2 shows the percentage of 3,000 data points (1,000 per
cluster) that were incorrectly classified in terms of their cluster
label Centaurus and MZA. That is, it shows the fraction (as a
percentage) of data points that were mis-assigned by the ‘best’
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Centaurus clustering for each (first row) and same measure of
error rate for MZA (second row).

Note that this evidence suggests Centaurus is more
effective for some clustering problems but (again, due to a
lack of ground truth) is not conclusive for the empirical data.
Instead, from the empirical data we claim that Centaurus is
more utilitarian than MZA because disagreement between
FPI and NCE differing possible best clusterings based on
user-selected values of m, can make MZA results difficult
and/or error prone to interpret for non-expert users. MZA
recommendations may be useful in providing an overall high
level ‘picture’ of the Veris data clustering, but its varying
recommendations are challenging to use for making ‘hard’
decisions (e.g. to control irrigation duration) by experts and
non-experts alike. In contrast, Centaurus provides both a
single ‘hard’ spatial clustering assignment and a way to
explain (in terms of maximum likelihood and BIC penalty
score) why one clustering should be preferred over another
and which one is ‘best’ when ground truth is not available.

Table 2 Percentage error (out of 3,000 data points per dataset) for
Centaurus and MZA on the synthetic datasets shown in
Figure 1

Dataset-1 Dataset-2 Dataset-3

Centaurus 0.0% 3.6% 0.1%
MZA 0.0% 13.8% 11.6%

In contrast, Centaurus is able to use its variants of K-means, a
BIC-based scoring metric, and large state space exploration to
determine a single ‘best’ clustering. The only free parameter
the user must set is the size of the state space exploration (the
default is N = 2,048 experiments which is 1.23 M K-means
runs). As the work in this study illustrates, Centaurus can find
rare and relatively unique high-quality clusterings when the
state space it explores is large.

A large state space (each requiring a separate ‘run’ of the
K-means algorithm) of course requires more computational
power thanMZA.MZA is a stand alone software package that
runs on a laptop or desktop computer. In contrast, Centaurus
is designed to run as a highly concurrent and scalable cloud
service (via a browser) and uses a single processor per
K-means run. As such, it automatically harnesses multiple
computational resources on behalf of its users. Centaurus can
be configured to constrain the number of resources (CPUs)
it uses; doing so proportionately increases the time required
to complete a job (each independent K-means run takes
between 0.3 s and 1 s in our experiments). As part of future
work, we are investigating the use of both spot instances
and serverless functions to keep the cost of jobs as low as
possible if/when Centaurus is deployed in the public cloud.
For this work, we host Centaurus on two large private cloud
systems: Aristotle (Aristotle Cloud Federation, 2018) and
Jetstream (Stewart et al., 2015; Towns et al., 2014).

7 Conclusions

With this work, we present Centaurus, a scalable cloud service
for clustering multivariate and correlated data. Centaurus

simplifies selection of K-means clustering variants, provides
a recommendation of the best variant, and enables users to
visualise their results in multiple ways. Centaurus leverages
cloud resources and services to automatically deploy, scale,
and score K-means runs.

We empirically evaluate Centaurus using synthetically
generated and real-world data from an agricultural analytics
application, which uses EC measurements of soil (along
with elevation) to identify regions that are similar. We use
this data to evaluate the impact of considering multiple
K-means variants and large numbers of experiments, and
to compare against a popular industry standard clustering
approach (MZA). We find that Centaurus overcomes many
of the limitations of MZA and yields more useful clusterings
for zone-based soil decision-support. Finally, we provide a
detailed analysis of the results that shows that for these
datasets, large numbers of experiments are necessary to
identify the clustering variant that produces the highest quality
clustering.

As part of future work, we are extending Centaurus with
other data analysis methods (DBSCAN, Spectral Clustering,
GMM, etc.) and metrics for model evaluation and selection
(Silhouette Score, Rand Index, Mutual Information, etc.). We
plan to incorporate other publicly available datasets (e.g.,
SSURGO) to improve clustering methods when applicable.
From the systems perspective, we are investigating the use of
both spot instances and serverless functions to keep the cost of
jobs as low as possible if Centaurus is deployed in the public
cloud.
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