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Abstract—We present CENTAURUS, a scalable, easy to use,
cloud service and pluggable framework for k-means clustering
that automatically deploys and executes multiple k-means vari-
ants concurrently, and then scores them to provide a clustering
recommendation. CENTAURUS scores clustering results using
Bayesian Information Criterion to determine the best model fit
across cluster results. CENTAURUS visualization and diagnostic
tools help users interpret clustering results. We empirically
evaluate CENTAURUS and compare it to MZA, a popular desktop
tool that uses k-means clustering to extract farm management
zones from soil electroconductivity data. We show that CENTAU-
RUS produces better results, is more scalable, and requires less
guidance from the user.

Index Terms—K-means Clustering, Mahalanobis, Cloud.

I. INTRODUCTION

The environment in which we live is increasingly accessible
via sensing, observation, and monitoring. As a result, data
resources, and the opportunity to analyze them, has grown
explosively as “analytics” have become critical to business,
government, social, and scientific advances. As a result of this
pervasiveness, analysis must now become a tool available to
people with an ever widening range of expertise and skill sets.

Statistical clustering, also known as a separation of measure-
ments into related groups, is a key requirement for solving
many analytics problems. Lloyd’s algorithm [1], commonly
called k-means, is one of the most widely used approaches [2].
K-means is an unsupervised learning algorithm, requiring no
training or labeling, that partitions data into K clusters, based
on their “distance” from K centers in a multi-dimensional
space. Its basic form is simple to implement and has become
an indispensable component of pattern recognition, data min-
ing, image processing, information retrieval, and recommen-
dation applications across fields ranging from marketing and
advertising to astronomy and agriculture.

While conceptually simple, there are a myriad of k-means
algorithm variants based on how distances are calculated in the
problem space. Some k-means implementations also require
“hyper parameters” that control for the amount of statistical
variation in clustering solutions. Identifying which algorithm
variant and set of implementation parameters to use in a
given analytics setting is often challenging and error prone
for novices and experts alike.

In this paper, we present CENTAURUS as an approach to
simplifying the application of k-means through the use of
cloud-computing. CENTAURUS is a web-accessible, cloud-
hosted service that automatically deploys and executes multi-
ple k-means variants concurrently, producing multiple models.
It then scores the models to select the one that best fits the data
– a process known as model selection. It also allows for the

experimentation with different hyper parameters and provides
a set of data and diagnostic visualizations so that users can
best interpret its results. From a systems perspective, CEN-
TAURUS defines a pluggable framework into which clustering
algorithms and k-means variants can be chosen. When users
upload their data, CENTAURUS executes and automatically
scales its k-means variants concurrently using public or private
cloud resources. To perform model selection, CENTAURUS
employs a scoring component based on information criteria.
CENTAURUS computes a score for each result (across variants,
cluster sizes, and repeat runs) and provides a recommendation
of the best clustering to the user. Users can also employ
CENTAURUS to visualize their data, its clusterings, and scores,
and experiment with different parameterizations of the system
(e.g., the number of repeat runs, the combination of features
to cluster, and the dimensions to display).

We implement CENTAURUS using production-quality, open-
source software and validate it using synthetic datasets with
known clusters. We also apply CENTAURUS in the context of
a real-world, agricultural analytics application and compare
its results to the industry standard clustering approach. The
application analyzes fine-grained soil electrical conductivity
(EC) measurements, GPS coordinates, and elevation data from
a field to produce a “map” of differing soil zones. These zones
are then used by farmers and farm consultants to customize
management of different zones on the farm (application of wa-
ter, fertilizer, pesticides, etc.) [3]–[6]. We compare CENTAU-
RUS to the state of the art clustering tool (MZA [3]) for farm
management zone identification and show that CENTAURUS
is more robust, obtains more accurate clusters, and requires
significantly less input and effort from its users.

In the sections that follow, we motivate our work and discuss
related research. We then describe the general form of the k-
means algorithm and variants for computing covariance matri-
ces that CENTAURUS employs (Section III). In Section IV, we
detail CENTAURUS’s model scoring, system architecture, and
implementation. Finally, we present our datasets, an empirical
evaluation of CENTAURUS, and our conclusions.

II. RELATED WORK

To design and implement CENTAURUS, we leverage Mur-
phy [7]. This prior work identifies multiple ways of computing
the covariance matrices and using them to determine distances
and log likelihood.

The research and system that is most closely related to
CENTAURUS, is MZA [3]. MZA is a computer program
widely used by farmers to identify clusters in soil electro-
conductivity (EC) data to aid farm zone identification and



to optimize management. MZA uses fuzzy k-means [8], [9],
computes the global covariance matrix, and employs either
Euclidean, diagonal, or Mahalanobis distance to compute
distance between points. MZA computes the covariance matrix
based on all the data points and uses this same matrix in
each iteration. MZA compares clusters using two different
scoring metrics: fuzziness performance index (FPI) [10] and
normalized classification entropy (NCE) [9].

We compare MZA and CENTAURUS in Section VI using
synthetic data and show that CENTAURUS achieves a lower
error percentage than MZA. Moreover, CENTAURUS resolves
many of the limitations of MZA (which is only available as
desktop software, does not account for poor initial cluster
assignments, and places a burden on the user to determine
which cluster size and k-means variant to employ).

EZZone [11] is a web service that is similar to CENTAURUS
in that it provides univariate clustering based on the Jenks
natural break optimization [12]. Users input the number of
clusters and the tool reports the Goodness of Variance Fit, a
measure of the homogeneity of the clusters, as a metric of
how well the clustering performed.

The authors of x-means [13] use Bayesian Information
Criterion (BIC) [14] (which CENTAURUS also employs) as a
score for the univariate normal distribution. The authors do not
discuss how to extend the algorithm and scoring to multivariate
distributions however. CENTAURUS provides six different ways
of computing covariance matrix for k-means for multivariate
data and examples that illustrate the differences. CENTAURUS
is also pluggable enabling other algorithms to be added and
compared.

III. K-MEANS CLUSTERING

The goal of k-means clustering algorithm is to separate
similar data points (represented as vectors) into K clusters for
a given K. In its basic form (that is, assuming equal cluster
variances), it attempts to find a clustering that minimizes the
sum of the squared distances of each point to the center of
its cluster. The algorithm begins with an initial set of K
centers and alternates between assigning points to the cluster
represented by the nearest center, and recomputing the centers.

Finding the optimal assignment is NP-hard. However, it
is typically possible to find a local optimum quickly by
terminating the algorithm when cluster assignments do not
change from iteration to iteration. In this case, the choice
of starting centers determines the specific local optimum
the algorithm will reach. Thus the termination state of the
algorithm is dependent on the initial assignment. Note, also,
that the sum-of-squared distances within from data points to
the center of their assigned cluster provides a way to compare
local optima – the lower the sum of the distances, the closer
to a global optimum a specific clustering is.

Note, also, that it is possible to use different measures
of distance to account for per-cluster differences in variance,
or co-variance between measurements (e.g. Mahalanobis dis-
tance [15]). Thus, for a given data set, the algorithm can

generate a number of different k-means clusterings – one for
each combination of starting center and distance measure.

More generally, k-means is equivalent to implementing Ex-
pectation Maximization under the assumptions of a Gaussian
Mixture Model (GMM) with “hard” cluster assignment (i.e.
for each point there is a cluster to which it belongs with
probability 1.0) [2], [16], [17]. As such, the centers correspond
to the maximum likelihood estimates of the cluster means.
For this reason it is possible to use information criteria based
on maximum log-likelihood (e.g. the Bayesian Information
Criterion [14] or the Akaike Information Criterion [18]) to
compare the local optima generated from different variants
of k-means and, ultimately, to choose the “best” one under
the assumptions of the GMM [13]. We discuss the use of
information criteria as a “scoring” method across multiple runs
of multiple variants in Section IV-A.

The two most common techniques for measuring distance
between points are Euclidean [19] and Mahalanobis [15] met-
rics. Euclidean distance is the straight line distance between
two points and assumes that the dimensions of the space
are orthogonal. However, dimensions often correspond to
measurements that are correlated and it is possible to transform
the feature space using Mahalanobis distance to correct for
inter-dimensional correlation.

We implement k-means in its general form using Maha-
lanobis distance in CENTAURUS using the following steps:

1) Randomly select K points from the data and assign these
as the initial cluster centers µ(k), where K is the number
of clusters, k is the cluster index, and k = 1, . . . ,K.

2) Compute initial covariance matrix Σ using all data points:

Σij =
1

n

n∑
p=1

(x
(p)
i − µi)(x

(p)
j − µj)

where, Σij is (i, j)-th component of the matrix Σ, x(p)i

is the i-th component of the p-th data point, and µi is the
i-th component of the global mean.

3) Assign all the points to the closest cluster center using
Mahalanobis distance metric:

D(x(p),µ(k)) =
(

(x(p) − µ(k))TΣ−1(x(p) − µ(k))
)−1/2

where, µ(k) is the center of the k-th cluster.
4) Compute covariance matrix Σ(k) for each cluster using

their cluster center µ(k).
5) Compute the cluster centers: For all the points in a cluster,

calculate the sum of its distances to all the other points
in the same cluster. Assign the point with the minimum
sum as the new cluster center, µ(k).

6) Repeat (4) and (5) until convergence or completion of a
maximum number of iterations. The convergence criteria
is calculated by summing up the distances of new cluster
centers from the old cluster centers.

The covariance matrix represents the covariance and vari-
ance observed in a sample between the dimensions of the
dataset. There are multiple ways to compute the covariance



matrix in step 4 of the algorithm [7], [16], [17], [20], each of
which has bearing on the output of the algorithm.

The most common methods for computing Σ are:
• Full: Compute the entire covariance matrix Σ and use

all of its elements to compute distance between points x
and y:

D(x,y) =
(
(x− y)TΣ−1(x− y)

)−1/2

This variant is commonly associated with the use of
Mahalanobis distance.

• Diagonal: Compute the variance matrix, i.e., the covari-
ance matrix with its off-diagonal elements set to zero. If
the data are orthogonal, the full covariance matrix is a
diagonal matrix with the non-zero elements representing
the variance across dimensions. This approach ignores
the covariance observed between the dimensions of the
dataset.

• Spherical: Set the diagonal of the covariance matrix to
the variance computed across all dimensions and set all
off-diagonal elements to zero. This variant assumes that
the data is best represented by a GMM in which each
Gaussian (corresponding to each cluster) has a single
variance across dimensions. It is also commonly referred
to as using Euclidean distance.

In addition, each of these approaches for computing the
covariance matrix can be Tied or Untied. Tied means that
we compute a covariance matrix per cluster, take the average
across all clusters, and then use the averaged covariance
matrix to compute distance. Untied means that we compute
a separate covariance matrix for each cluster, which we use
to compute distance. Using a tied set of covariance matrices
assumes that the covariance among dimensions is the same
across all clusters, and that the variation in the observed
covariance matrices is due to sampling variation. Using an
untied set of covariance matrices assumes that each cluster is
different in terms of its covariance between dimensions.

CENTAURUS considers all six combinations of meth-
ods for computing covariance matrices: Full-Tied, Full-
Untied, Diagonal-Tied, Diagonal-Untied, Spherical-Tied, and
Spherical-Untied. The output of the algorithm is a list of
cluster labels, one per data point, indicating the cluster index
to which the data point belongs.

Once the labels are computed for each data point, we can
compute the likelihood (a function of the data given the model)
using the equation for GMM with hard assignment [16], [17],
as:

f (X|µ,Σ) =

n∏
p=1

K∏
k=1

π
1pk

k · N
(
x|µ(k),Σ(k)

)1pk

where, p is a data point, k is a cluster index, πk is the ratio
of the number of points in cluster k and the total number of
points, and 1pk is an identity coefficient that is 1 if the point
p belongs to the cluster k and 0 otherwise, µ(k) is the k-th
cluster center.

The log-likelihood function is needed to compute infor-
mation criteria that CENTAURUS uses to score a particular
clustering. We compute the log-likelihood function as:

l (X|µ,Σ) = ln f (X|µ,Σ)

=

K∑
k=1

nk ·
(

ln
(nk
n

)
− d

2
ln (2π)− 1

2
ln |Σ(k)|

)

− 1

2

n∑
p=1

K∑
k=1

1pk · (x(p) − µ(k))T (Σ(k))−1(x(p) − µ(k))

IV. THE CENTAURUS SYSTEM

CENTAURUS implements a service for k-means cluster-
ing that takes advantage of cloud-based, large-scale dis-
tributed computation, automatic scaling (where computational
resources are added or removed on-demand), data management
to support visualization, and browser-based user interaction.
The system implements the six different variants of k-means
(described in Section III) and runs them each for a succession
of values of K ranging from 1 to a user-assigned large number,
max k. For each clustering, CENTAURUS computes a pair
of scores based on both the Bayesian Information Criterion
(BIC) [14] and the Akaike Information Criterion (AIC) [18].
It also allows the user to change the number of independent,
randomly seeded runs (referred to as experiments) to account
for statistical variation. Finally, it provides ways for the user
to graph and visualize both two-dimensional “slices” of all
clusterings as well as the relative BIC and AIC scores. It
also implements a decision support feature in which the “best”
clustering is identified based on BIC score across all variants.

CENTAURUS is extensible in that different clustering algo-
rithms can be “plugged in” easily, and automatically deployed
with and compared against others. For this work, we plug in
the k-means variants described in the previous section. The
variants include different distance computations (Euclidean
and Mahalanobis), input data scaling (e.g. whether or not to
scale each dimension to have zero mean and unit standard
deviation), and the six combinations of covariance matrices.

A. CENTAURUS Scoring

CENTAURUS performs N experiments for a particular K
value (where K = 1, ...,max k), each of which consists of
M initial cluster assignments to the k-means algorithm. Each
algorithm iterates until convergence or a maximum number of
iterations is reached (in CENTAURUS this value is 300). Thus,
CENTAURUS executes N ∗M runs of an algorithm for each
value of K. Across M initial cluster assignments, CENTAU-
RUS chooses the best performing one using the maximum log
likelihood.

The scoring component takes label assignments from a
clustering result for a particular K value and returns a score.
CENTAURUS then computes the average score (across the N
experiment runs) and uses it as part of its recommendation
and visualization services.

We currently integrate two different information criteria as
plug-ins to CENTAURUS: BIC and AIC. BIC and AIC measure



the goodness of fit of an estimated statistical model. In our
case, we use them to measure the fit of the models (clustering
results) that are output from the various k-means algorithms
that CENTAURUS implements. When a user requests a single
recommendation, CENTAURUS uses the BIC score to make this
recommendation.

We compute the BIC score for a model with K clusters as:

BICK = l(X|µ̂, Σ̂)− rK
2

log n

where, µ̂ is the maximum likelihood estimator for the cluster
centers, Σ̂ is the maximum likelihood estimator for the cluster
covariance matrices, l(X|µ̂, Σ̂) is the maximum log likeli-
hood, and rK is the number of free parameters in the model.
rK is computed as the sum of K−1 cluster probabilities (πk),
K · d coordinate parameters for all the cluster centers, and
d·(d+1)

2 parameters for a symmetric cluster covariance matrix:

rK = (K − 1) +K · d+
d(d+ 1)

2

Similarly, we compute the AIC score for a model with K
clusters as:

AICK = l(X|µ̂, Σ̂)− rK
Note that because these techniques require estimates of the
covariance matrix for each cluster, there must be a minimum
number of data points per cluster for this estimate to be
meaningful. As a result, CENTAURUS discards (does not score
or consider in the scoring average) any clustering result
which has one or more clusters with fewer elements than this
minimum. This minimum threshold is user configurable with
a default setting of 10 data points in the current system.
B. Implementation

The CENTAURUS implementation consists of a user-facing
web service and distributed cloud-enabled backend. Users
upload their datasets to the web service Frontend as files in a
simple format: as comma-separated values (CSV files). Users
can then modify the following CENTAURUS parameters:
• n exp: The number of experiments (N ) per K to run.

The default is 3 with a minimum of 1 and maximum of
100.

• max k: Maximum number of clusters to fit to the data.
CENTAURUS runs a set of experiments for clusters of size
1 through max k. The default is 10 with a minimum of
1 and maximum of 15.

• n init: Number of times to initialize the k-means clus-
tering (M ). The default is 10 with a minimum of 1 and
maximum of 100.

• covars: The type(s) of covariance matrix to use for the
analysis. All options – Full-Tied, Full-Untied, Diagonal-
Tied, Diagonal-Untied, Spherical-Tied, and Spherical-
Untied – are selected by default.

• scale: Scale the data so that each dimension has zero
mean and unit standard deviation. This option is selected
by default.

CENTAURUS considers each parameterization that the user
chooses (including the default) as a “job”. Each job consists

of multiple tasks (experiment runs) that CENTAURUS deploys.
Users can also use the service to check the status of a job
or to view the report for a job (when completed). The status
page provides an overview of all the tasks for a job showing a
progress bar for the percentage of tasks completed and a table
showing task parameters and outcomes.

CENTAURUS uses the report page to provide its recommen-
dation. The recommendation consists of the number of clusters
and k-means variant that produces the best BIC score. This
page also shows the cluster assignments, spatial plots using
longitude and latitude (if included in the original data set), BIC
and AIC scores plots. Finally, CENTAURUS provides cluster
labels in CSV files that the user can download.

C. System Architecture

The software architecture of CENTAURUS is shown in
Figure 1. We implement CENTAURUS using Python v3.4.3
and integrate a number of open source software, packages,
and cloud services. The cloud system is a private cloud that
runs Eucalyptus software v4.4 [21], [22] and integrates virtual
servers with 2 CPUs and 1GB of memory each. CENTAURUS
consists of five primary components:

1) Frontend: We couple the Python Flask [23] (v0.12.1) web
framework with Gunicorn [24] (v19.7.1) web server and
NGINX [25] (v1.4.6) reverse proxy server to provide a
robust application hosting service.

2) Backend Worker: We use Python Celery [26] (v4.0.2), a
distributed computation framework, to perform analysis
computation tasks asynchronously and at scale [27]. We
leverage autoscaling groups in Eucalyptus to automati-
cally grow and shrink the number of workers performing
the computation according to the demand for each job.

3) Backend Queue: We use RabbitMQ [28] (v3.2.4) message
broker to send information about each job from the
Frontend to the Workers. This enables to Frontend to
quickly off-load its work to the Queue where it is sent
systematically to the Workers as and when they become
available.

4) Backend Database: We use MongoDB [29] Community
Edition (v3.4.4) database to store parameters and results
for jobs and tasks.

5) Backend File Store: We use Amazon Simple Storage
System (S3) [30] to store files uploaded by users.

Other packages that CENTAURUS leverages include Numpy
[31] (v1.12.1), Pandas [32] (v0.19.2), SciKit-Learn [33]
(v0.18.1), and SciPy [34] (v0.19.0) for data processing.
CENTAURUS uses Matplotlib [35] (v2.0.1) and Seaborn [36]
(v0.7.1) to provide data visualization and plots.

V. DATASETS

We use both synthetic and real-world datasets to evalu-
ate CENTAURUS empirically. We generate the synthetic data
sets with known clusters (as “ground truth”), which we use
to validate and measure the accuracy of the CENTAURUS
implementation. Using the real-world application data from
precision agriculture, we also compare the results generated



Fig. 1: System architecture for CENTAURUS.

(a) Dataset-1 (b) Dataset-2 (c) Dataset-3

Fig. 2: Synthetic datasets shown with ground truth assignment.

by CENTAURUS for management zone determination to the
industry standard and use them to illustrate the CENTAURUS
visualization capabilities.

A. Synthetic Datasets

We first create multiple 2-dimensional synthetic datasets
using multivariate Gaussian distributions. The datasets have
three clusters with 1,000 points per cluster and varying degrees
of inter-dimensional correlation in each cluster. Figure 2 shows
these datasets with their ground truth cluster assignments.

The clusters in Dataset-1 have no correlation and have equal
standard deviations of 0.2 for each dimension. Cluster centers
are set at positions (1, 0), (−1, 0), and (0, 2) as can be seen
in Figure 2a.

In Dataset-2, the cluster centered at (0.25, 0) has two
dimensions that are independent (not correlated) with the
same standard deviations of 0.2. The cluster centered at (1, 1)
has correlation 0.70 between dimensions, while the cluster
centered at (0.5, 1) has correlation 0.97 between dimensions.
When all three clusters are combined the correlation between
the two dimensions is 0.75.

In Dataset-3, the cluster centered at (1, 0) has two inde-
pendent dimensions, while the clusters centered at (0.75, 1.5)
and (0.35,−0.35) have correlations of 0.98 and −0.89 respec-
tively. The correlation of the entire set is 0.2.

B. Application Datasets

The farm data that we use consists of measurement of
electrical conductivity (EC) of soil measured (at 30cm and
90cm depths) using an instrument manufactured by Veris
Technologies Inc. [37]. The surveyor collects EC as well as
the GPS cordinates and elevation data associated with each EC
measurement. The approach produces a data file containing

Variant Dataset-1 Dataset-2 Dataset-3
Full-Untied 0.0% 3.6% 0.1%
Full-Tied 0.0% 37.6% 57.5%
Diagonal-Untied 0.0% 26.2% 26.0%
Diagonal-Tied 0.0% 34.4% 55.2%
Spherical-Untied 0.0% 27.3% 11.2%
Spherical-Tied 0.0% 34.4% 56.6%

TABLE I: Percentage error (out of 3,000 points per dataset)
for the six k-means variants of CENTAURUS for the synthetic
datasets. Values are the percentage of points incorrectly labeled
by the variant (i.e. assigned to the wrong cluster).

five dimensions of data: longitude, latitude, elevation, EC at
30cm depth (EC1), and EC at 90cm depth (EC2).

The EC datasets come from three different farms. Cal
Poly: a 12-acre lemon field at California Polytechnic State
University, San Louis Obispo, California for which we have
3,233 data points. UNL: a 91-acre field at University of
Nebraska, Lincoln, for which we have 5,823 data points.
Sedgwick: a 30-acre field located in the Santa Ynez Valley,
California for which we have 7,920 data points.

VI. RESULTS

To evaluate the efficacy of CENTAURUS, we deploy the
service and run it on the datasets described in Section V
for each of the k-means variants described in Section III.
In this section, we refer to the variants as Full-Untied, Full-
Tied, Diagonal-Untied, Diagonal-Tied, Spherical-Untied, and
Spherical-Tied.

For the results that follow, we parameterize CENTAURUS
with K = 1, . . . , 10 and 100 experiments each with 100 ran-
dom initial cluster center assignments (for a total of 10,000 k-
means algorithm invocations per variant). CENTAURUS stores
the cluster assignments (labels) for each experiment, which is
the result with the largest log-likelihood value across initial
assignments. This CENTAURUS instance only considers clus-
tering results when all clusters have at least 10 points, in its
computation of BIC and AIC. Finally, as described above,
CENTAURUS reports the result with the highest average BIC
score the “best” clustering across every K considered for all
variants.
A. Validation Using Synthetic Data

For the datasets with known clusters (those that we have
generated synthetically) we report classification percentage
error, i.e. the percentage of incorrectly classified points out of
all the points in the dataset (3,000 data points per dataset in
this case). Table I shows these results for each of the synthetic
datasets (Dataset-1, Dataset-2, and Dataset-3) for each of the
six k-means variants.

Note that Dataset-1 was generated using a GMM where all
dimensions are independent of each other and are identically
distributed. Thus the “perfect” classification results (0% error)
generated by the Full and Diagonal methods indicate that
they correctly disregard any observed sample variance or
covariance.

The results for Full-Untied with Dataset-2 and Dataset-3 il-
lustrate CENTAURUS ’s ability to correct for cross-dimensional



correlation. The generating GMM in both cases is untied (i.e.
each cluster has a distinct covariance matrix). Also, unlike in
Dataset-1 where there are three distinct clusters with separated
centers, we purposefully placed the cluster centers of Dataset-2
and Dataset-3 near each other and generated distributions that
overlap. Doing so poses challenges for k-means clustering and
all variants misclassified some points.
B. Real Datasets

We have used CENTAURUS to analyze the farm EC datasets
collected from the Cal Poly, UNL, and Sedgwick locations.
These datasets consist of five features: longitude, latitude,
EC1, EC2, and elevation. For reasons of brevity, we present an
analysis of the data only from Cal Poly as it is representative
of all of our experiments.

The left-hand side of Figure 3 shows CENTAURUS’s vi-
sualization of the label assignments generated for the six
variants, with the best one shown in bold. The longitude and
latitude dimensions are used for plotting as the x-axis and y-
axis, respectively, by default when included in the uploaded
dataset. The clustering for these results is based on the EC2
and elevation dimensions.

The right-hand side of Figure 3 graphs the corresponding
BIC/AIC scores for the Cal Poly clusters in the six graphs
shown on the left. In these graphs, the x-axis is the number of
clusters (K) and the y-axis is BIC and AIC score. The values
are the average score across the 100 experiments. Error bars
indicate the 95% confidence interval for BIC and AIC values
over all repeated runs as determined by the Python Seaborn
package. Higher scores indicate a better model fit. Missing
values are due to experiments that result in clusters with fewer
than 10 points across all 100 experiments. CENTAURUS omits
these experiments in its computation of BIC and AIC score
since there are too few values in one or more clusters to com-
pute covariance in a manner that is trustworthy statistically.
C. Visualization Customization

In addition to reporting a recommendation (a data clustering
that results in the best BIC score), CENTAURUS enables users
to customize the clustering computation and their visualization
of results. For example, a user of CENTAURUS can select any
two plotting dimensions to visualize the cluster assignments.
The graphs shown above use longitude and latitude dimensions
as the plotting dimensions. Figure 4 shows the same clustering
assignment as Figure 3, potted using dimensions EC2 and
elevation. This visualization shows the clustering that the k-
means variants “saw” when they clustered the data.

Figure 4 illustrates both the challenges to developing a fully
automated EC mapping technique based on clustering, and the
utility of CENTAURUS as a decision support tool. For the Full-
Untied case, the best BIC score shows two clusters separated
by what appears to be a hard linear boundary. Comparing this
case to the Full-Tied case (where there is a single cluster) one
either sees two centroids or not. Thus while a novice with
no domain experience may have no choice but to trust the
BIC score as identifying the best clustering, a more informed
user can use these visualizations to support domain-specific

knowledge. In this case, for example, soil samples taken from
the field as well as records detailing the history of how the
field has been used over time point to the validity of the two-
cluster mapping.

D. Comparison with MZA

We next compare CENTAURUS against MZA for the syn-
thetic datasets. We use the number that both FPI and NCE
scores report for MZA as the optimal number of clusters. We
then use the respective cluster assignment (labels) to compute
the error rates. Figure 5 shows the best assignments produced
by CENTAURUS and MZA and Table II shows the percentage
of incorrectly classified points (out of 3,000 points) in each
dataset, for the same assignments.

For MZA, the best assignment is achieved by Mahalanobis
distance and for CENTAURUS the best assignment is achieved
by Full-Untied. MZA clusters the Dataset-1 correctly and
reports K = 3 as the ideal number of clusters (as does
CENTAURUS).

For Dataset-2, MZA correctly identifies K = 3 but has a
higher error rate of 13.8% than CENTAURUS’ 3.6%. A possible
reason for this is that MZA only considers a single initial
assignment of cluster centers, which in this case converges
to a local minimum that is different from the global mini-
mum. CENTAURUS avoids this kind of error by performing
several runs (10,000 in this case, specified by n exp× n init)
of k-means algorithm before suggesting the optimal cluster
assignment.

Dataset-3 consists of clusters with correlation across fea-
tures. CENTAURUS provides better results than MZA for this
dataset, achieving a percentage error of only 0.1% compared to
MZA’s 11.6%. A possible reason for this is that MZA employs
a global covariance matrix and does not consider Tied and
Untied options as CENTAURUS does, which results in better
label assignments.

Another limitation of MZA is that it uses a free variable,
called the fuzziness parameter, and multiple scoring tech-
niques. It is challenging (especially for novices) to determine
how to set the fuzziness value even though the results are
highly sensitive to this value. For the results in this section, we
chose the default fuzziness parameter of m = 1.3 as suggested
by the author [10].

Furthermore, for the farm datasets, the MZA scoring metrics
(NCE and FPI) do not aways agree, providing conflicting
recommendation and forcing the user to choose the best
clustering. In combination, these limitations make MZA hard
to use as a recommendation service for growers who lack
the data science background necessary to interpret its results.
CENTAURUS addresses these limitations by providing high
enough number of k-means runs, no free parameters, and more
sophisticated ways of computing the covariance matrix in each
iteration of its clustering algorithm. It uses a unique scoring
method to decide what is a single best clustering that will
be presented to a novice user while it provides the diagnostic
capabilities that are needed for more advanced users.

Finally, we visually compare the cluster maps that MZA



Fig. 3: CENTAURUS clustering results for all six variants (left six graphs) of EC2 and elevation dimensions from the Cal
Poly farm data, plotted using longitude and latitude. The best performing number of clusters (K) for each variant is shown
above each graph and the best out of the six is shown in bold. The right six graphs show the BIC and AIC scores for the
corresponding clusterings.

Fig. 4: CENTAURUS clustering results for Cal Poly EC2 and
elevation data plotted using EC2 and elevation dimensions.

(a) CEN.: Dataset-1 (b) CEN.: Dataset-2 (c) CEN.: Dataset-3

(d) MZA: Dataset-1 (e) MZA: Dataset-2 (f) MZA: Dataset-3

Fig. 5: CENTAURUS vs. MZA clustering recommendations for
the synthetic datasets.

generates with those generated by CENTAURUS. Figure 6
shows the MZA clustering of EC2 and elevation using lon-
gitude and latitude as the plotting dimensions, Mahalanobis
distance, and a fuzziness exponent of 1.3.

Dataset-1 Dataset-2 Dataset-3
CENTAURUS 0.0% 3.6% 0.1%
MZA 0.0% 13.8% 11.6%

TABLE II: Percentage error (out of 3,000 data points per
dataset) for CENTAURUS and MZA on the synthetic datasets
for the clustering results in Figure 5.

Fig. 6: Clustering assignment for Cal Poly dataset produced
by MZA based on EC2 and elevation.

For this data set, MZA indicates three clusters using both
FPI and NEC. Curiously, even though the resulting MZA
mapping used Mahalanobis distance, it appears (visually) to
be quite similar to the Diagonal-Tied and Spherical-Tied
CENTAURUS mappings (both which also indicate three clusters
based on BIC score) shown in Figure 3. MZA appears to
choose a clustering of the Cal Poly data that corresponds to
a lower BIC score than the one identified as being “best” by
CENTAURUS (Full-Untied in Figure 3). Using k-means as a
reference, MZA parameterized with a fuzziness exponent of
1.3 appears to “see” the Cal Poly data as having no meaningful
covariance between EC2 and elevation in each cluster.

Note that the BIC scores for the Full-Untied clustering incur
the highest “penalties” in the computation of a BIC score



among the six k-means variants. Recall that the formulation
of BIC used by CENTAURUS (cf Section IV) attempts to avoid
overfitting by subtracting rK ∗ log(n) from the maximum log-
likelihood estimate for a given clustering. For the Full-Tied
case, rK must account for the d2−d

2 off-diagonal covariance
estimates where in the Diagonal and Spherical cases, it does
not (i.e. the “penalty” for estimated parameters is lower).
Thus if the visual comparison is accurate, CENTAURUS finds
a clustering (Full-Untied) that has a better BIC than MZA
even with the additional penalty for the needed covariance esti-
mates. Since both are making a fundamental GMM assumption
about the data, CENTAURUS appears (based on information
criteria) to find a better clustering. It may be that with a
different fuzziness exponent MZA and CENTAURUS converge
on a “best” clustering but we have yet to determine whether
this convergence does, indeed, occur and, if it does, the best
method for finding the fuzziness exponent that results in a
consistent clustering between the two approaches.

VII. CONCLUSION

With this work, we present CENTAURUS, a scalable, easy
to use, cloud service for clustering multivariate and cor-
related data. CENTAURUS simplifies selection of k-means
clustering variants, provides a recommendation of the best
variant, and enables users to visualize their results in multiple
ways. CENTAURUS leverages cloud resources and services
to automatically deploy, scale, and score k-means clustering
jobs. We empirically evaluate CENTAURUS using synthetically
generated and real datasets and compare it to the popular MZA
clustering tool. Our results show that CENTAURUS provides
better results than MZA and precludes many of its limitations.

In future work, we plan to extend CENTAURUS with other
data analysis methods (DBSCAN, Spectral Clustering, GMM,
etc.) and metrics for model evaluation and selection (Silhou-
ette Score, Rand Index, Mutual Information, etc.). We also
intend to incorporate other publicly available datasets (e.g.,
SSURGO) to improve clustering methods when applicable.
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