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Abstract ior [30, 31, 32, 12, 29, 10, 24]. Moreover, existing sys-

Today'’s virtual machines (VMs) dynamically optimize @ems use phase behavior to guide effective hardware re-
application as it is executing, often employing optimizaonfiguration [9, 32, 29], hardware-based value profil-
tions that are specialized for the current execution profilag [32], program and system analysis [22, 24], remote
An online phase detector determines when an executprgfiling [25], efficient simulation [30], and cycle-close
program is in a stable period of program execution (&ace generation [27].
phase) or is in transition. A VM using an online phase Unfortunately, extant approaches for detection and pre-
detector can apply specialized optimizations during diction of phase behavior rely on eitheffline profil-
phase or reconsider optimization decisions betweawy [18, 29, 13, 27, 24], hardware support [30, 31, 32, 12,
phases. Unfortunately, extant approaches to detectifg23, 9, 25], or are targeted toward a particular optimiza-
phase behavior rely on either offline profiling, hardwargéon (client), e.g., dynamic hardware reconfiguration. Pro-
support, or are targeted toward a particular optimizationgrams that execute on virtual machines, such as programs

In this work, we focus on the enabling technology of omxitten in the Java programming language, are compiled
line phase detection. More specifically, we contribute (dynamically, executed on any hardware for which a VM is
a novel framework for online phase detection, (b) mukvailable, and optimized in a variety of different ways. As
tiple instantiations of the framework that produce novel result, it is desirable for a phase detection solution not
online phase detection algorithms, (c) a novel client- and depend on 1) offline profile information, 2) specialized
machine-independent baseline methodology for evaluairdware, 3) architecture-specific metrics, or 4) a specific
ing the accuracy of an online phase detector, (d) a metptimization client.
to compare online detectors to this baseline, and (e) a de-Vital to the efficacy of phase-guided optimizations is
tailed empirical evaluation, using Java applications, ahe accuracy of online phase detection algorithms [14].

the accuracy of the numerous phase detectors. By defining a large class of online phase detectors and
evaluating their accuracy, this paper takes a necessary ini-
1 Introduction tial step in the understanding of online phase detector ac-

) L curacy for dynamic optimization systems.
Dynamic optimization systems [11, 4, 7, 3] perform op- 1 tacilitate the design and implementation of online

timization while a program is executing. Such systemg se getection algorithms, we define a parameterizable
include modern VMs with dynamic compilers [26, 33, 2k amework: a phase detector is an instantiation of the
dynamic binary optimizers [4], and reconfigurable harg mework. Section 2 describes this framework, its com-
ware [9]. These systems achieve their performance g3iifents, and parameters. To evaluate the accuracy of
by biasing their optimization strategies to the applicationgese algorithms, Section 3 defines a new client- and
current execution behavior. However, such decisions GaR chine-independent empirical methodology. Sections 4
degrade performance when the underlying execution Bgyy 5 employ this methodology to assess the accuracy of
havior changes between phases. our online phase detectors. Section 6 discusses related

~ An online phase detector determines when an execifark, and Section 7 draws conclusions and discusses fu-
ing program is in a stable phase or in a transition betweghe work.

phases. This technology can be used by dynamic opti-

mization systems to perform specializing optimizatio

when the behavior is stable or it can reconsider optimigg- Our Framework

tion decisions when the behavior changes. This section presents our framework for online phase de-
Researchers have shown that they can capture, chection algorithms. Figure 1 presents a component view

acterize, predict, and visualize program phase behaft-this framework. The input to the framework is a se-



Online Phase Detector Framework number of profile elements consumed at a time, which
we refer to askipFactor A significant amount of prior
_profile__| Similarity | similarity value S;imi{arity states _work [17, 16, 30, 31, 32, 9, 10] sets the size of the CW,
elements Model e TW, andskipFactorto the same value. We investigate the
efficacy of such a parameterization as part of our analysis.
Figure 1: lllustrated view of phase detection framework Flgure 2 |_Ilustrates t_h_e bas_|c operatl_on ofthe framework
using two different trailing window policies: Constant (a)
and Adaptive (b). Each row illustrates a different point in

quence of profile elements, i.e., an execution profile. TH&€ as reflected in the contents of the TW and CW. Pro-

first Component’ 8|m||ar|ty mode] consumes the prof”eﬁle elements are numbered in the order in which they are
elements and transforms them into a sequence of simig@hsumed. Initially, both the CW and TW are empty (row
ity values that represents the degree of similarity betweh As the program executes, the windows §KipFac-
recent profile elements. The model passes the simil@t profile elements at a timesKipFactorequals 1 in this

ity value in an online manner to the second componef¥ample). Until the windows fill (row B), the detector out-
the similarity analyzer The analyzer determines whethePuts7. Once the windows are full, the model computes
the similarity is sufficient to signify the execution is irfhe similarity between the two windows and the analyzer
phase?, or in transition between phases, The output Produces & or 7 state. Atrow C this computation re-
from the framework is a series of states, one per input efllts in a7 state. The computation at row D results in a
ment. From this output, we can identify phase boundari@@W phase being detected, which continues for a series of
at points in the output at which there igafollowed by a Profile elements in row E.

P state or &P followed by a7 state. When the phase ends at row F, we see the difference
The detector can include optional features, such a®efween the two policies. With the Constant TW, the TW
level of confidence in the current state, or whether a déze remains the same (length five in this example). The

tected phase is similar to a previously known phase [32jdaptive TW policy grows the TW to include all elements
Unlike an offline phase detector, our online detectors #ibthe phase. When the phase ends, the algorithm flushes
not have the complete profile available from which itideihe TW and initializes the CW with the laskipFactor
tifies phases. Because an online detector executes coniftfile elements. Row G illustrates the CW after it con-
rently with the program, it must be efficient in both tim&umes the next profile element.
and space. Moreover, because the clients of the frameFigure 3 presents a high-level description of our frame-
work make decisions based on phase boundaries, the algork’s internal process. A detection client invokes
rithms that the framework instantiates must output phag@cessProfile with the most recergkipFactorpro-
boundaries accurately. This paper focuses on this lafitg elements. The model consumes the new profile ele-
constraint: phase detector accuracy. ments, updates the CW and TW, and computes a similar-
The model and analyzer components can be impi#:value for the updated windows. The analyzer uses this
mented in many ways. For example, the model can diffélue to determine the new sta®@,or 7. If the output
in how it consumes, internally represents, and compugi#gte begins a new phase, the model can optionally anchor
the similarity of the profile. Many extant phase detectidghe TW at the start of the phase. While in phase, the ana-
approaches compute similarity using unweighted sets [g3er tracks the statistics of the phase. If the output state
and weighted sets [17, 16, 30, 31, 32]. A simple analyz@fds a phase, the model clears the CW and TW and the
reports &P state when the similarity value exceeds a pranalyzer can optionally reset any phase-specific statistics.
determined fixed threshold [17, 16, 30, 31, 32, 9, 10]. Hynally, the framework returns the output state to the de-
varying the implementation and parameterization of thelggtor client.
components, the framework can be used to investigateQur abstract representation of an input allows a wide
compare, and evaluate both extant and novel algorithmeariety of inputs, such as the methods invoked, ba-
In our online phase detectors, a model represents #ig blocks, branches, addresses loaded, or instructions
most recently consumed profile elements witbhusrent executed to be considered. This work considers dy-
window(CW), and represents the next most recently conamic branch traces. Prior work has shown that such
sumed profile elements withtaailing window (TW). A control-flow based profiles can effectively summarize
similarity value captures the similarity of the elements ipoth control- and data-centric execution as well as micro-
the two windows. A window policy of the model deterarchitectural behavior [32, 20].
mines, for example, the CW size, the TW size, and theln practice, the profile elements may form a hierarchy
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Figure 2. Example of the basic operation of the framework using the Constant TW policy (a) and the Adaptive TW
policy (b). Both policies use skipFactorof 1.

lass PhaseDetect . . . .
class PhaseDetector { ity computations. These comparisons may increase over-

Model model; >
Qﬂa'yzsetr tanaltyzter: state: /1 initialize 10 T head, but result in a more accurate detector.
, hew. N Inmahnz: . . . .
asesiale sile, e e 10 The size of the CW impacts the granularity at which the
P”b”cd Plhasgswvtve_ g’oce(sspff_?f”;(Pfof”e?'ementS) { algorithm detects phases. A phase that is smaller than the
moael.up ateWindows protile ements);
similarityValue = model.computeSimilarity(); CW may not be detected.
:e\(/vstatg_? ane(i)lyfg(eg[.processsVaI.uE(;imilggi{tyVaIUE); The window policy also dictates the behavior of the
if (state.isTrans newState.isPhase! . . . . .
Il start phase TW. Many previous methodologies partition a profile into
g“noj;;ea:‘f::;ggg‘(@){v\"“dOWO? fixed intervals and then compute the similarity between
} else if (state.isPhase() && newState.isTrans() { intervals. In addition to modeling this approach online,
ﬁ]’m%’g c’I);a?rf/Sindows()' i.e., TW size = CW size and computing the similarity be-
} else if (state.sPhase()) { // in phase tween adjacent intervals, we also consider a novel adap-
) analyzer.updateStats(similarityValue); tive alternative (that we describe above) for which the TW
state = newState; grows to accommodate the current phase once the algo-
) rewm state; rithm detects that the program is in phase. Because a
} TW contains a representation of profile elements, such as

Figure 3: Online Phase Detection Framework  a set that contains only unique, but not necessarily all,
elements, we expect the size of the Adaptive TW to be
manageable. As we describe for the example in Figure 2,

of phases [19], such as what one might expect fromygen a phase ends, the model empties the TW and resets
nested-loop structure. lIdeally, an online phase detecfqp its original size.

will find this hierarchy so that the detector’s client can ex-

ploit it. However, because extant online clients currently ) ) ) )

do not make use of this phase hierarchy, we present phi{gde! Policy The manner in which a phase detection
detectors that produce flat (not nested) phase structured90rithm models the similarity of profile elements im-

Three orthogonal design choices must be made to pacts both the accuracy and efficiency of a phase detec-

stantiate the framework into a concrete online phase a%f- [10, 32]. We investigate both unweighted set (also

tection algorithm. The choices are the window policy, flled working s_et) models and weighted §et models, .
model policy, and the analyzer policy. For the unweighted set model, we consider asymmetric

weighting, which computes the percentage of elements in

the CW that are also in the TW. This model is biased to-
Window Policy The window policy specifies thekip- ward the elements in the CW — which may be effective
Factor, window sizes, and how to manage the TW. Tha combination with the Adaptive TW policy that we de-
value of skipFactor impacts both the overhead of thescribe above. For example, if all elements in the CW are
algorithm and its sensitivity to changes in the profil@resent in the TW, regardless of their frequency, a simi-
A smaller skipFactor results in more frequent similar-larity value of 1.0 results. Likewise, if the CW contains



{a,b} and the TW containga, c}, a score of 0.5 resultsphase detectors. The baseline solution is not an online de-
regardless of how oftem appears in the two windows. tection algorithm. Instead, it employs a global view of a
For the weighted set model, we consider symmetgicogram’s execution trace and makes multiple passes over
weighting, which treats both sets equally. It first conthe trace to identify periods of repetition. The baseline so-
putes the relative weight of each profile element in ealthion identifies periods of the execution as in phase and
set (TW and CW) independently. The relative weight &l other parts as in transition. We use the baseline solu-
the percentage of a window for which a particular eléion as an oracle to evaluate online phase detection algo-
ment accounts. The model then takes the sum of the miithms.
imum of the weights for each element in both windows, To identify periods of repetition, we consider two
producing a number between 0 and 1. For example, gsurce constructs: loops and repeated method invocations,
sume CW contain$(a, 5), (b, 3), (¢, 2) } and the TW con- where repeated method invocations are recursive or tem-
tains {(a, 25), (b, 15), (c,10), (d,50)}, thena accounts porally adjacent sequential invocations. We record the en-
for 25% of TW (50% of CW); accounts for 15% of TW trance and exit of each repetition construct with a unique
(30% of CW);c accounts for 10% of TW (20% of CW);identifier.
and d accounts for 50% of TW (0% of CW). By sum- To determine the duration of a particular period of rep-
ming the minimum of these values across windows T¥fition, we correlate these events with the “time” of the
and CW, we produce a similarity value 0f5 (= .25 + |atest dynamic branch, such as the loop was entered after
15 +.10). the k** branch occurred. From the profile elements and
source constructs, we construct a dynamic call-loop trace

Analyzer Policy Given a similarity value, the analyzethat we use to identify phase boundaries. Our approach
determines whether this value represents sufficient sid§-Similar to the ones described by Lau et al. [18] to find
larity to indicate &P state. In addition to exploring a wideSoftware phase markers, and by Georges et al. [13] to find
range of fixed thresholds, as other researchers have d&ethod-level phases. Their techniques summarize the ex-
we explore analyzers that adapt their threshold based&#ition of these repetitive events in a graph that is tied to
past similarity values in this phase. Theerageanalyzer the program’s static structure and that is augmented with
computes a running average of the similarity values feynamic executlon—tlme_proﬂle |nformgt|on. In contrast,
the current phase, and uses a threshold that is a deltady-2pproach tracks individual executions of such events
low this average. For example, if the running average @ trace that allows us tp distinguish dlff_erenF executhns
the similarity values of the current phase is 0.88 and tA@ l0op body as being in phase or not if their execution

delta parameter is 0.02, the analyzer reporBstate for |€ngths differ significantly.
values of 0.86 or higher. Our baseline solution requiresw@nimum phase length

(MPL) parameter, which specifies the minimum length

: : : that a period of repetition must be before it will be con-
3 Evaluatmg Detection A|g0l’|tth sidered a phase. A client would specify the MPL to en-
This section presents a new methodology to determine Hige that the phases identified have sufficient duration to
accuracy of online phase detectors. Extant methodoigmortize the client's costs. For example, if a client's
gies evaluate accuracy by using a particular phase defsitase-based optimization requires an approximate cost of
tor client, such as a feedback-directed optimization, or Bp0,000 branches, then employing this action for a phase
using an architecture-specific metric, such as variancetiat is only 50,000 branches long will result in a net loss.
the number of cycles per instruction (CPI). Our methoddection 4 shows how the MPL value used in our frame-
ogy computes the accuracy of phase detection algorithiwsrk impacts accuracy.
independent of the phase detection client and independery phases identified by our baseline solution apen-
of any architecture-specific information. The methododﬂete repetitive instance€RI’s), i.e., a set of profile el-
ogy consists of two parts:keaseline solutiofSection 3.1) ements within an entire loop execution (all iterations) or

and anaccuracy scoring metri¢Section 3.2). within a recursive execution. We consider a recursive ex-
ecution to start upon invocation of a method (which the
3.1 Baseline Solution program later invokes recursively) for which there is no

other execution instance on the stack. For example, if a
Our baseline solution implements an intuitively “correcfdrogram makes the following method calls without return-
solution to phase boundary identification for a particularg: main — foo — bar — foo , then the root of the
program’s execution, that can be used to compare onliegursive execution starts and ends at the invocation and



return, respectively, of thivpo instance called bynain. the detector match those of the baseline solution. We
Although it is possible for different iterations of a loop orefer to this property asorrelation in the spirit of the
different recursive executions of a method to have diffarork by Dhodapkar and Smith [9]. We define correlation
ent branch behavior, we assume that these differenceseargethinPhasetbothlntransition \wherebothinPhase s
small, and thus, we consider them part of the same phake. total number of profile elements for which both

If a CRI is smaller than the client-specified MPL, we athe detector and the baseline solution output Sim-
tempt to combine the CRI with temporally adjacent CRIiarly, bothinTransition is the number of events
with the same static identifier (e.g., method name or lotipat the detector and baseline solution both output
number) into a single phase. We do so if the distant®alEvents is the total number of profile elements.
(in terms of number of profile elements) between theifthis component of the score measures the extent to which
is one. This enables us to combine perfectly nested lodpe decisions of the detector and the baseline solution cor-
and temporally adjacent, repeated invocations of the sarakate.
method into a single phase. The second component of the score measures how of-

We view nested loops either as one large phase cten the detected phase boundaries match those of the
sisting of the outer loop, or as smaller phases represeritageline solution, using two valuesensitivityandfalse
by executions of one or more nested loops. We emplpgsitives Sensitivity quantifies how often the detec-
MPL to decide between these two choices. If the nuier and the baseline solution agree on phase bound-
ber of profile elements (dynamic branches in our case)aries. It is defined astustatchedboundarios = yhere
an execution of a nested loop is at least MPL and therenigmMatchedBoundaries  is the number of detected
more than one profile element between executions of piegase boundaries that match the baseline solution and
nested loop, we consider this execution of the nested logpmBaselineBoundaries is the number of phase
a phase. If the number of profile elements in an executibaundaries identified by the baseline solution. The
of a nested loop is smaller than MPL or there is only orfalse positives value quantifies how often the detector
profile element between executions of the nested loop @entifies a phase boundary that the baseline solution
in a perfect loop nest), this execution of the nested loopdees not. It is defined agiumatchecBoundaries —\yhere
not viewed as a phase, and we consider the executiomgfmUnmatchedBoundaries  is the number of de-
the next outer loop. We repeat this process until the nutacted phases boundaries not identified by the baseline so-
ber of profiling elements exceeds MPL. When this occutgfion andnumDetectedBoundaries is the number
we select the nest as the representative for the phase. of phase boundaries identified by the detector.

To validate this approach, we collected branch cover-Phase boundaries identified by the detector and base-
age data (percent of branches that are considered patingfsolution match when the following constraints are sat-
some “phase”) in the baseline solutions. Our empiricgfied. First, the start of the detected phase must occur at,
study shows that MPL-based selection enables more conafter, the start and before the end of the identified phase
trol over phase size than specifying a loop nest level. Forthe baseline solution. Second, the end of the detected
example, using only outer loops to identify phases resuftdase must occur at, or after, the end of the current phase
in a very small number of large, coarse-grained phasud before the start of the next phase in the baseline solu-
that cannot be readily subdivided. tion. Third, the closest detected boundary to an identified

Each baseline solution identifies the stafedr 7) of boundary in the baseline solution that satisfies the first two
each profile element, from which we can extract the phag@nstraints matches the identified boundary.
boundaries that represent the actual repeated execution §forrelation, sensitivity, and false posi-
the program. We use the extracted phase boundarie§@s are combined into a single weighted
compare and evaluate online phase detection algorithign,  called score ,  which we define as

We quantify this comparison using the accuracy scoring Serrelation  ('Sensitivity  (1-FalsePositives) )

metric that we describe in the next subsection. We weigh Correlation and matching (Sensitivity and
FalsePositives) equally and split the matching weight
3.2 Accuracy Scoring Metric evenly between Sensitivity and FalsePositives. Thus,
Correlation accounts for 50%, Sensitivity accounts for
To compare the efficacy of a phase detection algoriti26%, and FalsePositives accounts for 25% of the score.
against the baseline solution, we introduce a novel ac-Scores fall into the range [0, 1] with higher scores
curacy scoring metric that has two components. Tbignifying more accurate detectors. Achieving a perfect
first assesses how well the states identifiedof 7)) by score in the correlation component, and thus, in the over-




Table 1: Benchzn?rk Characteristics
a

Dynamic Loop Method Recursion
Benchmark Branches Executions Invocations Roots
_201_compress 62,808,794 3,980,731 2,407,272 0
_202_jess 15,525,021 140,268 1,558,571 5,984
_205_raytrace 5,801,454 82,556 337,133 6,811
_209_db 3,374,648 317,397 13,621 0
_213_javac 2,770,921 200,121 995,992 10,786
_222_mpegaudio | 37,099,265 1,906,483 2,831,987 0
_228_jack 5,926,061 593,135 514,923 4,471
Jlex 2,779,996 146,716 199 868 16
(b)
MPL=1k MPL=5k MPL=10k MPL=25k MPL=50k MPL=100k
Benchmark # Phases I:(:aI:e # Phases ;::alsne # Phases I:::alsne # Phases Pnfralsne # Phases I:::aI:e # Phases F‘:{:alsne
_201_compress 46 33.88 20 34.83 20 34.83 20 34.83 20 34.83 6 99.67
_202_jess 3250 91.44 1092 63.43 473 46.32 134 47.64 88 44.04 30 41.79
_205_raytrace 1448 88.34 198 55.80 84 71.38 41 63.08 25 52.75 17 43.37
_209_db 1152 88.84 303 92.25 147 89.43 51 83.66 13 93.82 5 97.26
_213_javac 665 49.60 149 45.49 76 56.69 29 50.11 15 66.21 9 55.29
_222_mpegaudiq 7594 46.70 1968 28.12 894 52.85 894 98.13 22 3.20 2 99.75
_228_jack 1778 53.31 324 48.85 100 43.74 30 36.20 18 29.02 4 13.64
Jlex 102 97.10 53 94.74 49 94.40 39 88.61 32 78.76 2 92.85

all score, would require reporting a change in phase stasdl-loop trace by instrumenting loop and method entries
as soon as it occurred in the baseline solution. This mayd exits (both normal and exceptional). We record the
be impossible for an online detector. For example, in ounique loop or method identifier and the offset in the pro-
framework the windows must be full for the algorithm tdile trace at that point. This allows us to correlate baseline
make an evaluation (compare similarity) and to deteciaad detected phase boundaries.

state change. As a result, the algorithms will always de-We evaluate our phase detection algorithms using eight
tect a phase after it has started. The degree to whichJawa benchmarks, seven from the SPECjvm98 [34] bench-
algorithm is late depends on the window size and is meark suite, and JLex [6] (a lexical analyzer generator for

flected in the correlation portion of the score. Java). We currently consider single-threaded applications
only, though the framework can be extended to handle
4 Analysis multi-threaded applications. We use input size 10 for the

) . o . ~ SPEC benchmarks and the default input for JLex. We op-
This section presents the empirical evaluation of instagnize all application and library methods upon first invo-
tiations of the framework described in Section 2. Aftfation and extend the optimizing compiler of Jikes RVM
briefly describing our methodology, we present a detailgglagd branch, method, and loop tracing instrumentation.

analysis of different dimensions of the framework. Table 1(a) lists each benchmark and its dynamic exe-
cution characteristics. Column 2 gives the number of dy-
4.1 Empirical Methodology namic branches in a trace. Column 3 gives the number

of loops executed. Column 4 gives the number of method

Our profile is a conditional branch trace of Java progranisyocations; and column 5 is the number of method in-
which we obtained by modifying Jikes RVM [15, 1] tovocations that are the root of recursion. Bathop Ex-
produce a profile element for each branch executed. Eaduitionsand Recursion Rootsepresent the frequency of
profile element represents a unique location in the sounmele structures that can give rise to repetition of program
code as an integer value that encodes a uniqgue methodd€havior. Although loop executions dominate, we must
a bytecode offset in the method where the branch is klso consider recursion when identifying phases.
cated, and a bit that represents whether the branch waBor our baseline solutions, we consider the following
taken. Our framework, however, is not Java or Jikes RVMPL values: 1000, 5000, 10000, 25000, 50000, and
specific; it consumes profile elements generated by ar§0000 (henceforth abbreviated to 1K, 5K, 10K, 25K,
toolset for profile extraction, e.g., we can also generd6K, 100K). Table 1(b) provides information about the
such profiles using the Phoenix instrumentation and cophases found by the baseline solution for different MPL
pilation framework [28] from Microsoft Research. values. For a given MPL value, the column to the left

We derived baseline solution phase structures fromigts the number of phases fourt Phasesand the col-



Table 2: Window size comparison. (a) shows average percent improvement in best score across all framework pa-
rameters when we use a CW size smaller or equal to the MPL as compared to a CW larger than MPL for three TW
policies: Adaptive, Constant, and Fixed Interval. (b) is the average of best scores across all benchmarks when the size
of CW is smaller than, equal to, and half of MPL.

(a)
Adaptive TW Constant TW Fixed Interval
Benchmark Smaller Equal Smaller Equal Smaller Equal
_201_compress 28.54 19.96 33.21 22.45 42.71 26.34
_202_jess 13.75 9.31 5.98 5.23 -2.88 -7.91
_205_raytrace -6.25 -1.25 -0.56 5.26 -2.30 -2.30
_209_db 20.18 10.24 20.21 9.19 13.36 6.35
_213_javac 19.76 15.73 21.78 19.71 25.59 15.14
222 _mpegaudio 12.70 22.61 9.25 17.98 28.86 21.44
228 jack 22.55 17.25 24.80 20.77 22.25 18.50
Jlex 13.75 9.31 8.93 10.09 3.30 1.72
Average 15.62 12.90 15.45 13.83 16.36 9.91
(b)
Smaller Equal 1/2 MPL
Adaptive TW 0.652 0.637 0.664
Constant TW 0.648 0.639 0.664
Fixed Interval 0.601 0.570 0.610

umn to the right shows the percentage of profile elementions of parameterizations possibé&ipFactor curent
(dynamic branches in this case) that are in ph&dn window size, trailing window policy, model policy, and
Phasg. The number of phases found varies significantBnalyzer policy), we generated over 10,000 different algo-
across benchmarks and across MPL values. For examptms, which we then compared against our baseline so-
with an MPL value of 1IKcompress has only 46 phaseslutions. We computed a score for each detector using our
whereasmpegaudio has 7,594. However, with an MPLaccuracy scoring metric from Section 3.2. In the subsec-
value of 100Kmpegaudio has only two phases. tions that follow, we summarize and analyze this data in a

The table illustrates the trend that as MPL values imaay that indicates the general trends in accuracy. In par-
crease the number of phases decreases. This is expeti@dar, we use the data to investigate the various frame-
since as the MPL value increases, our baseline solutiwark parameters discussed in Section 2.
identifies larger loops (and recursive chains) as phases.

Counter to intuition, the percentage of profile elements2  Window Policy
in phase does not correlate with the MPL value. This is
an artifact of how the baseline solution selects which lod}e first evaluate the impact of the current window (CW)
in a loop nest to identify as a phase (Section 3.1). Wigize on detector accuracy. Intuitively, CW size should be
a small MPL Va|ue, an inner |00p may be Consideredrglated to the MPL parameter that is used by the baseline
phase while the containing loop is not. When the MPL g®lution to find the actual phases in a program.
increased, the nested loop may no longer be bigger thafror our phase detection algorithms, we considered CW
the new MPL value, but the containing loop will be larggizes of 500, 1K, 5K, 10K, 25K, 50K, and 100K. We com-
enough to be a phase. When the containing loop becorpgted scores for each CW size and MPL value combina-
a phase, all the profile elements of the inner loop and cdi®n, across all other parameters that we considered: skip
taining loop are now part of the phase, and thus, incredgetor, TW size, and model and analyzer policies. We then
the percentage in phase value compared to just the prof#&acted the best score across all combinations and eval-
elements from the inner loop. uated, for each benchmark, the average when the CW size

However, the percentage in phase value can also W&s smaller, equal to, and larger than the MPL value. Ta-
crease when the MPL value is increased. For exampk€ 2(a) shows the results. We present three sets of data
consider a simple loop that has sufficient profile elemerigirs of columns) for each benchmark. The first set is
to satisfy the MPL value, and thus, is identified as a phagéta for detectors that use the Adaptive TW policy and a
However, if the number of profile elements is not enougiip factor of 11 The second set is data for the Constant
for alarger MPL value, none of these profile elements will

1The other Adaptive TW policy parameters that we used for this data

be consider in phase with this Iarger MPL value. set and those that follow include an anchor policy of RN (rightmost noisy

We used our _framewo_rk to inSt_antiate a |a_rge numbe_i) and the sliding window resizing policy. We define and support these
of phase detection algorithms. Given the various combiwices empirically in Section 5.




TW policy and a skip factor of 1. The final s&tixed In- 1, DFixed Intervals (skipFactor = CW size, Constant TW)
terval, is data for a Constant TW policy with a skip factor, D e T oo = 1)
equal to the CW size. This last policy is the one mosf,
commonly used by extant approaches to phase detectiggl
in which theskipFactor TW size, and CW size are all the
same value [17, 16, 30, 31, 32, 9, 10, 21, 8]. @ T ] ] ] ] ] ] i
Each pair of columns under each policy is the percéﬁf 1]
improvement in score when we use a CW that is smalléf T] ] ] ] ] ] ] B
than (first column) or equal to (second column) the baseé3 T ] ] ] ] ] ] u
line’s MPL, over using a CW size that is larger than the:2 — — — — — — =
MPL. We cannot compare this data across sets (Adaptive, |
Constant, and Fixed Interval), because each columnis rgk || ‘ ‘ ‘ ‘ ‘ ‘
ative to the base case of that set, i.e., the score when CW  *¥ * 10K 25K 30K 100K 200K

. . Minimum Phase Length (MPL)
size is larger than the MPL value. We compare these con- _ ) . ° )
figurations using other data in the next subsection. ~ F19ure 4: Evaluation of skip factor and Fixed versus

The data shows that, on average, the highest aCéﬁi_aptive windowing. The data is the average of best
racy occurs with detectors that employ a CW size that%%/c\)/ref5 across all benchmarks, models, and analyzers. The
smaller than the MPL value. Although using a CW siz size is less than 1/2 the MPL.
that is equal to the MPL value also enables higher accu-
racy than using one that is larger, the improvement is not_ o _
as great as for a CW size smaller than the MPL. One reafigure 4 compares the three TW policies. The x-axis
son for this is that the detectors employ two windows, theMPL and the y-axis is the average of best scores across

size of which totals at least twice the CW: this total size &l configurations and benchmarks. A higher score is bet-

similar to MPL. ter. We consider two values of skip factor: one and CW
Table 2(b) shows the average of best scores acrossS4f: 1he former enables high responsiveness by the de-

benchmarks and MPL values, for each TW policy (Adaﬂ)@Ctor to detect fine-grain changes in phase behavior. We

tive, Constant, and Fixed Interval). We show data for&y2luate the accuracy enabled by two different skipFactor

CW size that is smaller than an MPL value (column él)alues by comparing the Fixed Interval baskipFactor

for a CW size that is equal to an MPL value (column 3J; CW size) against the remaining two (skipFactor = 1).

and for a CW size that is 1/2 the MPL value or smallgi"® data shows that on average, the approach commonly

(column 4). used in existing systemsKipFactor= CW size) is sig-
The scores that result from using a CW size small 'p‘icantly less accurate than both the Constant TW and

than MPL are similar to those for a CW of 1/2 the MPL. dap_ti\{e ™w polic_ies wherskipFactoris one. Thus, the
If the CW is 1/2 MPL or smaller, then the size of TW anffMaNNY evaluations use a skipFactor = 1.
CW together is at least MPL; thus, the detector is ableWhen we compare Constant TW and Adaptive TW, the
to accurately identify the same phases as our baselineresults are less clear. In general, our experiments show
lution (for that MPL value). The data also shows thatthat for small MPLs, Constant TW does somewhat better
CW smaller than MPL in some cases outperforms a Civan the Adaptive TW. However, this is not the case for
of 1/2 the MPL. The reason for this is that the particwall benchmarks when we consider them individually. For
lar CW size that produces the best score for the smalamger MPLs, Adaptive TW is consistently more accurate
CW case varies across benchmarks. There is no singlaen a Constant TW. We added MPL 200K to this data set
CW size smaller than 1/2 MPL that outperforms a CW &b evaluate whether the trend continues, and it does. For
1/2 MPL across all benchmarks on average. We therefdezger MPLs, some of the shorter running benchmarks ex-
use 1/2 the MPL as our CW size for the remainder of tiébited a very small number (1 or 2) of very large phases,
paper in an effort to focus our analysis of the remaininghich were not useful or fair to include in a comparison
dimensions of our algorithms. (all detectors achieve very high scores since there are so
We next evaluate the impact of skip factor on detecttew phases to match against).

accuracy for the three TW policies (Adaptive, Constant, The remainder of the paper presents results for MPL

and Fixed Interval) and consider all other parameteriz\?‘,jﬂueS of size 1K. 10K. 50K. and 100K. We continue to

t'%ns 3: tT)e rrtwdel and analt);]zer pollc;_es. V,:_/e again Coffeiude data for both Constant TW and the Adaptive TW
sider the best score across these configurations. policies in our subsequent comparisons.




1.0

all MPLs and trailing window policies. As a result, we

W7 Weighted Model . . .

0o | AllRenchmarks 5 Unweighied Nodel cpnsldgr only the unwelghted modpl for our analysis of
OO weighted Model wio _201compress | gjmjlgrity analyzers in the next section.

0.8 4 Without _201_compress B Unweighted Model w/o _201_compress

Constant Adaptive

0.7

4.4 Analyzer Policy

0.6 q
Figure 6 shows a comparison between two categories of

analyzers: Threshold and Average, each with different pa-
rameters. The figure contains two subgraphs. The left
graph (a) presents the data for the Constant TW policy
and the right graph (b) presents the data for the Adaptive
TW policy. In each graph, the x-axis presents MPL values
and the y-axis presents the average of best scores across
MPL all benchmarks. For each MPL, there are ten bars. Within

_ the ten bars, the first four bars, which are darker, represent
Figure 5: The average of best score across all benchmafs Threshold analyzers with values of 0.5, 0.6, 0.7, and

for two models. There are two sets of bars per MPL grogpg: and the last six bars represent the Average analyzers
for the Constant TW and Adaptive TW policies. For eaGhith values 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4.

policy, weighted and unweighted model scores are shownrpe data presents mixed results. Neither the Threshold
with and without the compress benchmark. nor the Average analyzers are clear winners for all MPL
values and all benchmarks. However, if one were to pick
a particular analyzer, certain values seem to be a better
choice for a specific trailing window policy. In particular,

0.5 1

Score

0.4 4

0.3 4

0.2 4

0.14

0.0

4.3 Model Policy

if the Threshold analyzer is chosen, a threshold value of

Egg;}: c;r)ez,::erisbeendtSinageirgg;rlgé\l/v(;?gg:ﬁggZ?:j ?J?\t\),vv:i:?\tt b wins in three out of four of the MPL values for the
X gnstant TW policy, whereas the threshold value of 0.8

The x-axis shows MPL values and the y-axis shows t

wins in three out of four of the MPL values for the Adap-
average of best score across all benchmarks. For eﬁ\\clzh

MPL, there are two groups, each with four bars. THive TW policy. If the Average analyzer is chosen, there

first group is for the Constant TW policy and the second not a clear trend for the Constant TW policy; however,

) : . I a value of 0.05 wins for three out of four of the MPL val-
group is for the Adaptive TW policy. Within each group, es for the Adaptive TW policy. A more comprehensive

there are two pairs of bars. In each pair, the left bar is {He> 'or . .
weighted model results and the right bar is the unweightaerdaIySIS of the data is required to better understand these

trends.

model results.

The first pair of bars in each group shows the average of .. .
best score across all benchmarks. These results showéat Additional AnaIyS|s
the unweighted model is more accurate than the weighteis section analyzes other parameters of our phase detec-
model in all but the 50K MPL case. When we consideion framework. The first parameter specifies how win-
the individual benchmark data, however, unweighted d®w resizing and anchoring is performed when an algo-
significantly more accurate in a majority of cases for aithm using the Adaptive TW policy detects the start of
benchmarks except one201.compress (compress herea phase. This parameter impacts the detection of phase-
after). For this benchmark, the detectors that employ t&irt boundaries, and therefore, can produce a more accu-
weighted model are almost 50% better in many cases (wge representation of the phase. It is also important for
omit this data due to space constraints). an Adaptive TW policy because it serves as a signature of

To show the average accuracy of detectors without cdhe entire phase.
sidering the compress benchmark, we include a secon@efore discussing this parameter fully, we discuss other
pair of bars in each group of four in the graph. This paaroperties that can also impact the accurate identification
shows the average of best scores for detectors that @frphase start boundaries. First, as mentioned in Section 3,
ploy the weighted and unweighted models, respectivelyy online algorithm will have a delay in profile elements
on average across all of our benchmarks, except compréssore it can detect the beginning of a phase. Second,
From this data, we can conclude that, in general, the yphase boundaries may not always align with skipFactor
weighted model is more accurate than weighted model f@lues. Third, phases often exhibit startup periods where



1K 10K MPL 50K 100K 1K 10K MPL 50K 100K
Analyzer Values: Threshold .5, .6, .7, .8, Average .01, .05, .1, .2, .3, .4 Analyzer Values: Threshold .5, .6, .7, .8, Average .01, .05, .1, .2, .3, .4
(a) Constant TW (b) Adaptive TW

Figure 6: The average of best scores across all benchmarks for the Constant TW (a) and the Adaptive TW (b). Each
chart is grouped into four sets of bars, one for each MPL value. Each MPL category has ten analyzers corresponding
to (from left to right) the four Threshold analyzers (darker bars) with increasing threshold (0.5, 0.6, 0.7, 0.8) and the
six Average analyzers (lighter bars) with increasing deltas (0.01, 0.05, 0.1, 0.2, 0.3, 0.4).

the behavior is less stable (but is not considered a transi- Anchor
tion) than the steady state of a phase [25]. w ™ cw

| x1 x2 xv3 x4 x5 x6|x7x8 x9 x10 x11 x12 |x13

The anchor point is the position in the TW at which a
new phase starts. We explore two options to determine x x2|x3 x4 X5 x6|x7x8 x9 x10 x11 x12 |x13
where to place the anchor point. The first option places
the anchor point one element to the right of the rightmdBy sliding, we reduce the size of the CW; however, we
noisy element in the window (RN). Noisy elements a@ontinue to compare the two windows for similarity while
those that are in the TW and not in the CW. The secottte CW fills in this case. This enables the TW to hold as
option places the anchor point at the leftmost non-noisyuch of the phase as possible (our original goal with the
element (LNN). Both techniques attempt to eliminate itrailing window policy). By moving the TW, we shrink its
stability during the start of a phase to enable more acaize as opposed to the CW.
rate detection off” or P states thereafter. RN is more Figyre 7 evaluates these two policies across bench-

aggressive at doing so. For example, if the TW contaifsyrks for each of the MPLs (x-axis). Graph (a) shows
elements,, b, and,c and the CW containg, a, andc, then  percent improvement in score for Sliding over Moving of
bis a noisy element. The RN policy selects the position gfe T\ (we use the RN anchoring strategy here). Graph
cin the TW and the LNN policy selects the positionaf (1) shows the percent improvement in score due to the use
in the TW, as the start of the phase. Both policies attenj#tRN over LNN to select an anchor point (for the Slid-
to eliminate profile elements that are part of the Warm-iiy resizing policy). On average, Sliding is more accurate
period [25] of the phase that may not be as stable as {hgn Moving and as such, is a better resizing policy. It
steady state of the phase. also seems intuitively correct for an Adaptive TW to in-
Once we identify the starting position of the new phasg/ude most of the recently detected phase before evaluat-
we have two options for window resizing. We cslide N9 subsequent profile elements. In addition, RN is more
the TW right, so that the left boundary of the Tw i@ccurate than LNN, on average. We use the Sliding and
at the anchor point, thus reducing the size of the c\RN policies for the results in the previous sections and

Anchor below.
w P ow Our last set of results compares the best scores for the
| 1 X2 % x4 x5 X6|x7 <8 X0 x10 x11 x12 |X13 Adaptive and Constant TW policies using a modified tech-
nique for finding the beginning of a phase. As discussed
x1 X2|X3 x4 x5 x6 X7 x8 x9 |X1° x11x12 |"13 previously, an online algorithm detects a phase after some

initial part of the phase has been seen. However, once a
Alternatively, we can move the left boundary of phase is detected, such an algorithm can identify where
the TW to the right and leave the CW unaffectedhe phase began using the anchoring policy discussed
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Figure 7: Percent improvement in score for Slide over Move resizing, using the RN anchoring strategy (a). Percent
improvement in score for RN over LNN anchoring, using the Sliding resizing policy, (b).

1.0 - O Constant TW

0.0 ® Adaptive TW phase begins by computing and evaluating the similarity

0.8 between two windows of profile elements. Moreover, our

0.7 algorithms are online; they detect phases while they oc-
206 1 cur. Our algorithms do not distinguish phases for future
§°-5 ] use (i.e., identify temporally disjoint, repeating phases),

0.4 1 although we are investigating such extensions. In addi-

0.3 7 tion, we introduce a baseline solution and scoring metric

0-2 1 that enable us to compare the phase boundaries detected

Z: ] by any detection algorithm against the natural, dynamic,

' 1K 10k sok 100Kk 200Kk repetition of program structures.

MPL Dhodapkar and Smith [9] study online phase detection

Figure 8: Average of best scores across all benchmarihsthe context of multi-configuration hardware (e.g., re-

models, and analyzers for the Constant and Adpative TWiqrable instruction caches). The authors describe al-
policies using the anchoring policy for detecting the b‘E]'orithms for detecting changes in working sets, identify-

ginning of a phase. ing recurring working sets, and estimating the number of
elements in a working set. They employ an unweighted

above. This information can be used to accurately identﬁ?t mod_el, a fixed Wi_ndow size a0o, O_OO instr_uctions,
phase signatures [18, 29] and their repetition online. Fig2d askipFactorthat is equal to the window size. They
ure 8 compare these new phase boundaries against tffisgie their similarity threshold value empirically to be
of the baseline solution. The results indicate that for evefy’ ©© remove most noise and to detect only significant
MPL, the Adaptive TW policy is significantly more accuPNase changes. The authors report that their experiments

rate than the Constant TW policy, showing promise for iladicate that detection of phase changes is relatively in-
use in online detection of recurring phases sensitive to the threshold value. The algorithm in [9] can

be viewed as one instantiation of our framework. We use
our framework to investigate the efficacy of this detection
6 Related Work algorithm and to compare it to a wide range of other al-
The framework and algorithms that we describe hereorithms that employ alternative parameterizations of the
enable detection of phase behavior. This is in contr&smilarity and threshold components. Our results indicate
to the majority of related work that focuses on predictidhat askipFactorthat is equal to the window size is signif-
of future phase behavior [32, 12, 25, 23, 29, 13, 18] aishintly less accurate tharskipFactorof one. In addition,
on characterization of periods of program execution intee show that an adaptive windowing strategy is more ac-
phases after they execute or as part of a prior run of igrate than a fixed one for large MPLs (Section 4.2) and
program [19, 29, 13, 32]. Our algorithms execute concuier capturing phase boundaries (Section 5).
rently with the program and detect phase behavior after d_u et al. [21] employ online phase detection to drive



data cache prefetching in a dynamic binary optimizatiaus algorithms using this methodology. Our conclusions
system. Specifically, they compare the average PC ade that the current window size should be smaller than
dress from the most recent 4K samples to a range of vidle desired minimum phase length and that a skip factor
ues, which is created from the average and standard de¥il has better accuracy than the standard practice of set-
ation of the previous seven 4K samples of the PC addrdssy the skip factor to the current window size. We also
If the new average is sufficiently outside this interval fdind that an adaptive trailing window policy can be more
two consecutive 4K sample windows, a phase has endacturate than a constant trailing window policy. Finally,
This algorithm can also be modeled in our frameworkur results for models tend to favor the unweighted model,
where the model computes the averages of the 4K satthough the results for analyzers are mixed.
ples, and the analyzer does the interval bound test. Dag addition to investigating further other algorithms for
et al. [8] build on this work by advocating a local phasphase detection, we plan to explore three primary direc-
detection for events in each region of the program. Thisns in future work. First, we will extend our frame-
work uses Pearson’s co-efficient of correlation betwegmrk to instantiate algorithms that detect phases that re-
the current set of samples and the target set for the regipgat themselves. Such an enhancement would allow a
They compare this value to a fixed threshold. dynamic optimization system to record the efficacy of a
Phase prediction systems must first observe and ch@rase-based optimization at the end of the phase and de-
acterize program behavior prior to forecasting the rectermine whether to employ the same optimization when
rence of future phases. These prior works perform theke phase reoccurs. Second, we plan to investigate and
tasks during an initial run of the program [29, 18, 24, 3hptimize the overhead of accurate phase detection. There
and wait until an interval of execution completes before three sources of overhead in a phase-aware optimiza-
reporting whether the interval is in phase [32, 17, 16]. Otion system: profile collection, phase detection, and phase
baseline solution is similar to these extant approachesonsumption and use by the client. Finally, we plan to
that it exploits a global view of the execution trace. Ounvestigate phase-aware dynamic optimizations and how
baseline solution, however, is novel in that it providesthey are impacted by phase detector accuracy and over-
methodology for comparing and evaluating phase detéead. As part of this research, we will identify how to set
tion algorithms. It captures all common, source-levehe MPL for a particular client and whether it is effective
looping constructs that execute and combines them imtoadapt the MPL over time.
phases according to the minimum phase length provided
by an optimization client (phase profile consumer).
In addition, we use our framework to evaluate the e'fA—‘CknOWIedgmemS
ficacy of delaying detection until interval completion byVe thank Matt Arnold, Brad Calder, Jeremy Lau, Mar-
using askipFactor equal to the window size (Subsectin Hirzel, Laureen Treacy, and the anonymous review-
tion 4.2). We show that by using skipFactor of one, ers for feedback on this work. This research was funded
detection algorithms are more sensitive and responsivertgart by NSF grant Nos. ST-HEC-0444412, ITR/CCF-
changes within an interval and are thus more accuratéd205712, and CNF-0423336, and by DARPA contract No.
capturing the phase behavior of the program. These RBCH30390004.
sults confirm the findings of Lau et al. [19], who show
that fixed-size interval boundaries can miss phases due
to misalignment. In this prior work, the authors empIoReferences
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