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Abstract
Today’s virtual machines (VMs) dynamically optimize an
application as it is executing, often employing optimiza-
tions that are specialized for the current execution profile.
An online phase detector determines when an executing
program is in a stable period of program execution (a
phase) or is in transition. A VM using an online phase
detector can apply specialized optimizations during a
phase or reconsider optimization decisions between
phases. Unfortunately, extant approaches to detecting
phase behavior rely on either offline profiling, hardware
support, or are targeted toward a particular optimization.

In this work, we focus on the enabling technology of on-
line phase detection. More specifically, we contribute (a)
a novel framework for online phase detection, (b) mul-
tiple instantiations of the framework that produce novel
online phase detection algorithms, (c) a novel client- and
machine-independent baseline methodology for evaluat-
ing the accuracy of an online phase detector, (d) a metric
to compare online detectors to this baseline, and (e) a de-
tailed empirical evaluation, using Java applications, of
the accuracy of the numerous phase detectors.

1 Introduction
Dynamic optimization systems [11, 4, 7, 3] perform op-
timization while a program is executing. Such systems
include modern VMs with dynamic compilers [26, 33, 2],
dynamic binary optimizers [4], and reconfigurable hard-
ware [9]. These systems achieve their performance gains
by biasing their optimization strategies to the application’s
current execution behavior. However, such decisions can
degrade performance when the underlying execution be-
havior changes between phases.

An online phase detector determines when an execut-
ing program is in a stable phase or in a transition between
phases. This technology can be used by dynamic opti-
mization systems to perform specializing optimizations
when the behavior is stable or it can reconsider optimiza-
tion decisions when the behavior changes.

Researchers have shown that they can capture, char-
acterize, predict, and visualize program phase behav-

ior [30, 31, 32, 12, 29, 10, 24]. Moreover, existing sys-
tems use phase behavior to guide effective hardware re-
configuration [9, 32, 29], hardware-based value profil-
ing [32], program and system analysis [22, 24], remote
profiling [25], efficient simulation [30], and cycle-close
trace generation [27].

Unfortunately, extant approaches for detection and pre-
diction of phase behavior rely on eitheroffline profil-
ing [18, 29, 13, 27, 24], hardware support [30, 31, 32, 12,
5, 23, 9, 25], or are targeted toward a particular optimiza-
tion (client), e.g., dynamic hardware reconfiguration. Pro-
grams that execute on virtual machines, such as programs
written in the Java programming language, are compiled
dynamically, executed on any hardware for which a VM is
available, and optimized in a variety of different ways. As
a result, it is desirable for a phase detection solution not
to depend on 1) offline profile information, 2) specialized
hardware, 3) architecture-specific metrics, or 4) a specific
optimization client.

Vital to the efficacy of phase-guided optimizations is
the accuracy of online phase detection algorithms [14].
By defining a large class of online phase detectors and
evaluating their accuracy, this paper takes a necessary ini-
tial step in the understanding of online phase detector ac-
curacy for dynamic optimization systems.

To facilitate the design and implementation of online
phase detection algorithms, we define a parameterizable
framework; a phase detector is an instantiation of the
framework. Section 2 describes this framework, its com-
ponents, and parameters. To evaluate the accuracy of
these algorithms, Section 3 defines a new client- and
machine-independent empirical methodology. Sections 4
and 5 employ this methodology to assess the accuracy of
our online phase detectors. Section 6 discusses related
work, and Section 7 draws conclusions and discusses fu-
ture work.

2 Our Framework
This section presents our framework for online phase de-
tection algorithms. Figure 1 presents a component view
of this framework. The input to the framework is a se-
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Figure 1: Illustrated view of phase detection framework

quence of profile elements, i.e., an execution profile. The
first component, asimilarity model, consumes the profile
elements and transforms them into a sequence of similar-
ity values that represents the degree of similarity between
recent profile elements. The model passes the similar-
ity value in an online manner to the second component,
thesimilarity analyzer. The analyzer determines whether
the similarity is sufficient to signify the execution is in
phase,P, or in transition between phases,T . The output
from the framework is a series of states, one per input ele-
ment. From this output, we can identify phase boundaries
at points in the output at which there is aT followed by a
P state or aP followed by aT state.

The detector can include optional features, such as a
level of confidence in the current state, or whether a de-
tected phase is similar to a previously known phase [32].
Unlike an offline phase detector, our online detectors do
not have the complete profile available from which it iden-
tifies phases. Because an online detector executes concur-
rently with the program, it must be efficient in both time
and space. Moreover, because the clients of the frame-
work make decisions based on phase boundaries, the algo-
rithms that the framework instantiates must output phase
boundaries accurately. This paper focuses on this latter
constraint: phase detector accuracy.

The model and analyzer components can be imple-
mented in many ways. For example, the model can differ
in how it consumes, internally represents, and computes
the similarity of the profile. Many extant phase detection
approaches compute similarity using unweighted sets [9]
and weighted sets [17, 16, 30, 31, 32]. A simple analyzer
reports aP state when the similarity value exceeds a pre-
determined fixed threshold [17, 16, 30, 31, 32, 9, 10]. By
varying the implementation and parameterization of these
components, the framework can be used to investigate,
compare, and evaluate both extant and novel algorithms.

In our online phase detectors, a model represents the
most recently consumed profile elements with acurrent
window(CW), and represents the next most recently con-
sumed profile elements with atrailing window (TW). A
similarity value captures the similarity of the elements in
the two windows. A window policy of the model deter-
mines, for example, the CW size, the TW size, and the

number of profile elements consumed at a time, which
we refer to asskipFactor. A significant amount of prior
work [17, 16, 30, 31, 32, 9, 10] sets the size of the CW,
TW, andskipFactorto the same value. We investigate the
efficacy of such a parameterization as part of our analysis.

Figure 2 illustrates the basic operation of the framework
using two different trailing window policies: Constant (a)
and Adaptive (b). Each row illustrates a different point in
time as reflected in the contents of the TW and CW. Pro-
file elements are numbered in the order in which they are
consumed. Initially, both the CW and TW are empty (row
A). As the program executes, the windows fillskipFac-
tor profile elements at a time (skipFactorequals 1 in this
example). Until the windows fill (row B), the detector out-
putsT . Once the windows are full, the model computes
the similarity between the two windows and the analyzer
produces aP or T state. At row C this computation re-
sults in aT state. The computation at row D results in a
new phase being detected, which continues for a series of
profile elements in row E.

When the phase ends at row F, we see the difference
between the two policies. With the Constant TW, the TW
size remains the same (length five in this example). The
Adaptive TW policy grows the TW to include all elements
in the phase. When the phase ends, the algorithm flushes
the TW and initializes the CW with the lastskipFactor
profile elements. Row G illustrates the CW after it con-
sumes the next profile element.

Figure 3 presents a high-level description of our frame-
work’s internal process. A detection client invokes
processProfile with the most recentskipFactorpro-
file elements. The model consumes the new profile ele-
ments, updates the CW and TW, and computes a similar-
ity value for the updated windows. The analyzer uses this
value to determine the new state,P or T . If the output
state begins a new phase, the model can optionally anchor
the TW at the start of the phase. While in phase, the ana-
lyzer tracks the statistics of the phase. If the output state
ends a phase, the model clears the CW and TW and the
analyzer can optionally reset any phase-specific statistics.
Finally, the framework returns the output state to the de-
tector client.

Our abstract representation of an input allows a wide
variety of inputs, such as the methods invoked, ba-
sic blocks, branches, addresses loaded, or instructions
executed to be considered. This work considers dy-
namic branch traces. Prior work has shown that such
control-flow based profiles can effectively summarize
both control- and data-centric execution as well as micro-
architectural behavior [32, 20].

In practice, the profile elements may form a hierarchy



x18 x19

x9 x10 x11 x12 x13 x14 x15 x16 x17 x18  

x1 x2 x3 x4 x5 x6  x7 x8 x9 x10 

x2 x3 x4 x5 x6  x7 x8 x9 x10 x11

…

…

TW CW

Detector
Output

(A)

(B) T…T

(D) P

(E) P…P

(F) T

(G) T

(C) T

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13  x14 x15 x16 x17 x18  

x18 x19

TW CW

x1 x2 x3 x4 x5 x6  x7 x8 x9 x10 

x2 x3 x4 x5 x6  x7 x8 x9 x10 x11

…

…

(a) (b)

Figure 2: Example of the basic operation of the framework using the Constant TW policy (a) and the Adaptive TW
policy (b). Both policies use askipFactorof 1.

class PhaseDetector {
Model model;
Analyzer analyzer;
PhaseState state, newState; // initialize to T

public PhaseState processProfile(profileElements) {
model.updateWindows(profileElements);
similarityValue = model.computeSimilarity();
newState = analyzer.processValue(similarityValue);
if (state.isTrans() && newState.isPhase()){

// start phase
model.anchorTrailingWindow();
analyzer.resetStats();

} else if (state.isPhase() && newState.isTrans()) {
// end phase
model.clearWindows();

} else if (state.isPhase()) { // in phase
analyzer.updateStats(similarityValue);

}
state = newState;
return state;

}
}

Figure 3: Online Phase Detection Framework

of phases [19], such as what one might expect from a
nested-loop structure. Ideally, an online phase detector
will find this hierarchy so that the detector’s client can ex-
ploit it. However, because extant online clients currently
do not make use of this phase hierarchy, we present phase
detectors that produce flat (not nested) phase structures.

Three orthogonal design choices must be made to in-
stantiate the framework into a concrete online phase de-
tection algorithm. The choices are the window policy, the
model policy, and the analyzer policy.

Window Policy The window policy specifies theskip-
Factor, window sizes, and how to manage the TW. The
value of skipFactor impacts both the overhead of the
algorithm and its sensitivity to changes in the profile.
A smaller skipFactor results in more frequent similar-

ity computations. These comparisons may increase over-
head, but result in a more accurate detector.

The size of the CW impacts the granularity at which the
algorithm detects phases. A phase that is smaller than the
CW may not be detected.

The window policy also dictates the behavior of the
TW. Many previous methodologies partition a profile into
fixed intervals and then compute the similarity between
intervals. In addition to modeling this approach online,
i.e., TW size = CW size and computing the similarity be-
tween adjacent intervals, we also consider a novel adap-
tive alternative (that we describe above) for which the TW
grows to accommodate the current phase once the algo-
rithm detects that the program is in phase. Because a
TW contains a representation of profile elements, such as
a set that contains only unique, but not necessarily all,
elements, we expect the size of the Adaptive TW to be
manageable. As we describe for the example in Figure 2,
when a phase ends, the model empties the TW and resets
it to its original size.

Model Policy The manner in which a phase detection
algorithm models the similarity of profile elements im-
pacts both the accuracy and efficiency of a phase detec-
tor [10, 32]. We investigate both unweighted set (also
called working set) models and weighted set models.

For the unweighted set model, we consider asymmetric
weighting, which computes the percentage of elements in
the CW that are also in the TW. This model is biased to-
ward the elements in the CW – which may be effective
in combination with the Adaptive TW policy that we de-
scribe above. For example, if all elements in the CW are
present in the TW, regardless of their frequency, a simi-
larity value of 1.0 results. Likewise, if the CW contains



{a, b} and the TW contains{a, c}, a score of 0.5 results
regardless of how oftena appears in the two windows.

For the weighted set model, we consider symmetric
weighting, which treats both sets equally. It first com-
putes the relative weight of each profile element in each
set (TW and CW) independently. The relative weight is
the percentage of a window for which a particular ele-
ment accounts. The model then takes the sum of the min-
imum of the weights for each element in both windows,
producing a number between 0 and 1. For example, as-
sume CW contains{(a, 5), (b, 3), (c, 2)} and the TW con-
tains {(a, 25), (b, 15), (c, 10), (d, 50)}, then a accounts
for 25% of TW (50% of CW);b accounts for 15% of TW
(30% of CW);c accounts for 10% of TW (20% of CW);
and d accounts for 50% of TW (0% of CW). By sum-
ming the minimum of these values across windows TW
and CW, we produce a similarity value of0.5 (= .25 +
.15 + .10).

Analyzer Policy Given a similarity value, the analyzer
determines whether this value represents sufficient simi-
larity to indicate aP state. In addition to exploring a wide
range of fixed thresholds, as other researchers have done,
we explore analyzers that adapt their threshold based on
past similarity values in this phase. Theaverageanalyzer
computes a running average of the similarity values for
the current phase, and uses a threshold that is a delta be-
low this average. For example, if the running average of
the similarity values of the current phase is 0.88 and the
delta parameter is 0.02, the analyzer reports aP state for
values of 0.86 or higher.

3 Evaluating Detection Algorithms
This section presents a new methodology to determine the
accuracy of online phase detectors. Extant methodolo-
gies evaluate accuracy by using a particular phase detec-
tor client, such as a feedback-directed optimization, or by
using an architecture-specific metric, such as variance in
the number of cycles per instruction (CPI). Our methodol-
ogy computes the accuracy of phase detection algorithms
independent of the phase detection client and independent
of any architecture-specific information. The methodol-
ogy consists of two parts: abaseline solution(Section 3.1)
and anaccuracy scoring metric(Section 3.2).

3.1 Baseline Solution

Our baseline solution implements an intuitively “correct”
solution to phase boundary identification for a particular
program’s execution, that can be used to compare online

phase detectors. The baseline solution is not an online de-
tection algorithm. Instead, it employs a global view of a
program’s execution trace and makes multiple passes over
the trace to identify periods of repetition. The baseline so-
lution identifies periods of the execution as in phase and
all other parts as in transition. We use the baseline solu-
tion as an oracle to evaluate online phase detection algo-
rithms.

To identify periods of repetition, we consider two
source constructs: loops and repeated method invocations,
where repeated method invocations are recursive or tem-
porally adjacent sequential invocations. We record the en-
trance and exit of each repetition construct with a unique
identifier.

To determine the duration of a particular period of rep-
etition, we correlate these events with the “time” of the
latest dynamic branch, such as the loop was entered after
the kth branch occurred. From the profile elements and
source constructs, we construct a dynamic call-loop trace
that we use to identify phase boundaries. Our approach
is similar to the ones described by Lau et al. [18] to find
software phase markers, and by Georges et al. [13] to find
method-level phases. Their techniques summarize the ex-
ecution of these repetitive events in a graph that is tied to
the program’s static structure and that is augmented with
dynamic execution-time profile information. In contrast,
our approach tracks individual executions of such events
in a trace that allows us to distinguish different executions
of a loop body as being in phase or not if their execution
lengths differ significantly.

Our baseline solution requires aminimum phase length
(MPL) parameter, which specifies the minimum length
that a period of repetition must be before it will be con-
sidered a phase. A client would specify the MPL to en-
sure that the phases identified have sufficient duration to
amortize the client’s costs. For example, if a client’s
phase-based optimization requires an approximate cost of
100,000 branches, then employing this action for a phase
that is only 50,000 branches long will result in a net loss.
Section 4 shows how the MPL value used in our frame-
work impacts accuracy.

All phases identified by our baseline solution arecom-
plete repetitive instances(CRI’s), i.e., a set of profile el-
ements within an entire loop execution (all iterations) or
within a recursive execution. We consider a recursive ex-
ecution to start upon invocation of a method (which the
program later invokes recursively) for which there is no
other execution instance on the stack. For example, if a
program makes the following method calls without return-
ing: main → foo → bar → foo , then the root of the
recursive execution starts and ends at the invocation and



return, respectively, of thefoo instance called bymain .
Although it is possible for different iterations of a loop or
different recursive executions of a method to have differ-
ent branch behavior, we assume that these differences are
small, and thus, we consider them part of the same phase.

If a CRI is smaller than the client-specified MPL, we at-
tempt to combine the CRI with temporally adjacent CRI’s
with the same static identifier (e.g., method name or loop
number) into a single phase. We do so if the distance
(in terms of number of profile elements) between them
is one. This enables us to combine perfectly nested loops
and temporally adjacent, repeated invocations of the same
method into a single phase.

We view nested loops either as one large phase con-
sisting of the outer loop, or as smaller phases represented
by executions of one or more nested loops. We employ
MPL to decide between these two choices. If the num-
ber of profile elements (dynamic branches in our case) in
an execution of a nested loop is at least MPL and there is
more than one profile element between executions of the
nested loop, we consider this execution of the nested loop
a phase. If the number of profile elements in an execution
of a nested loop is smaller than MPL or there is only one
profile element between executions of the nested loop (as
in a perfect loop nest), this execution of the nested loop is
not viewed as a phase, and we consider the execution of
the next outer loop. We repeat this process until the num-
ber of profiling elements exceeds MPL. When this occurs,
we select the nest as the representative for the phase.

To validate this approach, we collected branch cover-
age data (percent of branches that are considered part of
some “phase”) in the baseline solutions. Our empirical
study shows that MPL-based selection enables more con-
trol over phase size than specifying a loop nest level. For
example, using only outer loops to identify phases results
in a very small number of large, coarse-grained phases
that cannot be readily subdivided.

Each baseline solution identifies the state (P or T ) of
each profile element, from which we can extract the phase
boundaries that represent the actual repeated execution of
the program. We use the extracted phase boundaries to
compare and evaluate online phase detection algorithms.
We quantify this comparison using the accuracy scoring
metric that we describe in the next subsection.

3.2 Accuracy Scoring Metric

To compare the efficacy of a phase detection algorithm
against the baseline solution, we introduce a novel ac-
curacy scoring metric that has two components. The
first assesses how well the states identified (P or T ) by

the detector match those of the baseline solution. We
refer to this property ascorrelation in the spirit of the
work by Dhodapkar and Smith [9]. We define correlation
as bothInPhase+bothInTransition

totalEvents
, wherebothInPhase is

the total number of profile elements for which both
the detector and the baseline solution outputP. Sim-
ilarly, bothInTransition is the number of events
that the detector and baseline solution both outputT .
totalEvents is the total number of profile elements.
This component of the score measures the extent to which
the decisions of the detector and the baseline solution cor-
relate.

The second component of the score measures how of-
ten the detected phase boundaries match those of the
baseline solution, using two values:sensitivityand false
positives. Sensitivity quantifies how often the detec-
tor and the baseline solution agree on phase bound-
aries. It is defined as numMatchedBoundaries

numBaselineBoundaries
, where

numMatchedBoundaries is the number of detected
phase boundaries that match the baseline solution and
numBaselineBoundaries is the number of phase
boundaries identified by the baseline solution. The
false positives value quantifies how often the detector
identifies a phase boundary that the baseline solution
does not. It is defined asnumUnmatchedBoundaries

numDetectedBoundaries
, where

numUnmatchedBoundaries is the number of de-
tected phases boundaries not identified by the baseline so-
lution andnumDetectedBoundaries is the number
of phase boundaries identified by the detector.

Phase boundaries identified by the detector and base-
line solution match when the following constraints are sat-
isfied. First, the start of the detected phase must occur at,
or after, the start and before the end of the identified phase
in the baseline solution. Second, the end of the detected
phase must occur at, or after, the end of the current phase
and before the start of the next phase in the baseline solu-
tion. Third, the closest detected boundary to an identified
boundary in the baseline solution that satisfies the first two
constraints matches the identified boundary.

Correlation, sensitivity, and false posi-
tives are combined into a single weighted
sum, called score , which we define as

Correlation
2 +

(
Sensitivity

4 + (1−FalsePositives)
4

)
.

We weigh Correlation and matching (Sensitivity and
FalsePositives) equally and split the matching weight
evenly between Sensitivity and FalsePositives. Thus,
Correlation accounts for 50%, Sensitivity accounts for
25%, and FalsePositives accounts for 25% of the score.

Scores fall into the range [0, 1] with higher scores
signifying more accurate detectors. Achieving a perfect
score in the correlation component, and thus, in the over-



Table 1: Benchmark Characteristics
(a)

_201_compress 62,808,794 3,980,731 2,407,272 0
_202_jess 15,525,021 140,268 1,558,571 5,984
_205_raytrace 5,801,454 82,556 337,133 6,811
_209_db 3,374,648 317,397 13,621 0
_213_javac 2,770,921 200,121 995,992 10,786
_222_mpegaudio 37,099,265 1,906,483 2,831,987 0
_228_jack 5,926,061 593,135 514,923 4,471
Jlex 2,779,996 146,716 199,868 16

  Loop 
Executions

  Method 
Invocations

Recursion 
Roots

Dynamic 
Branches

Benchmark

(b)

_201_compress 46 33.88 20 34.83 20 34.83 20 34.83 20 34.83 6 99.67
_202_jess 3250 91.44 1092 63.43 473 46.32 134 47.64 88 44.04 30 41.79
_205_raytrace 1448 88.34 198 55.80 84 71.38 41 63.08 25 52.75 17 43.37
_209_db 1152 88.84 303 92.25 147 89.43 51 83.66 13 93.82 5 97.26
_213_javac 665 49.60 149 45.49 76 56.69 29 50.11 15 66.21 9 55.29
_222_mpegaudio 7594 46.70 1968 28.12 894 52.85 894 98.13 22 3.20 2 99.75
_228_jack 1778 53.31 324 48.85 100 43.74 30 36.20 18 29.02 4 13.64
Jlex 102 97.10 53 94.74 49 94.40 39 88.61 32 78.76 2 92.85

MPL=100k

# Phases
% in 

Phase

MPL=25k

# Phases
% in 

Phase

MPL=50k

# Phases
% in 

Phase

MPL=1k MPL=5k MPL=10k
Benchmark

# Phases
% in 

Phase
# Phases

% in 
Phase

# Phases
% in 

Phase

all score, would require reporting a change in phase state
as soon as it occurred in the baseline solution. This may
be impossible for an online detector. For example, in our
framework the windows must be full for the algorithm to
make an evaluation (compare similarity) and to detect a
state change. As a result, the algorithms will always de-
tect a phase after it has started. The degree to which an
algorithm is late depends on the window size and is re-
flected in the correlation portion of the score.

4 Analysis
This section presents the empirical evaluation of instan-
tiations of the framework described in Section 2. After
briefly describing our methodology, we present a detailed
analysis of different dimensions of the framework.

4.1 Empirical Methodology

Our profile is a conditional branch trace of Java programs,
which we obtained by modifying Jikes RVM [15, 1] to
produce a profile element for each branch executed. Each
profile element represents a unique location in the source
code as an integer value that encodes a unique method ID,
a bytecode offset in the method where the branch is lo-
cated, and a bit that represents whether the branch was
taken. Our framework, however, is not Java or Jikes RVM
specific; it consumes profile elements generated by any
toolset for profile extraction, e.g., we can also generate
such profiles using the Phoenix instrumentation and com-
pilation framework [28] from Microsoft Research.

We derived baseline solution phase structures from a

call-loop trace by instrumenting loop and method entries
and exits (both normal and exceptional). We record the
unique loop or method identifier and the offset in the pro-
file trace at that point. This allows us to correlate baseline
and detected phase boundaries.

We evaluate our phase detection algorithms using eight
Java benchmarks, seven from the SPECjvm98 [34] bench-
mark suite, and JLex [6] (a lexical analyzer generator for
Java). We currently consider single-threaded applications
only, though the framework can be extended to handle
multi-threaded applications. We use input size 10 for the
SPEC benchmarks and the default input for JLex. We op-
timize all application and library methods upon first invo-
cation and extend the optimizing compiler of Jikes RVM
to add branch, method, and loop tracing instrumentation.

Table 1(a) lists each benchmark and its dynamic exe-
cution characteristics. Column 2 gives the number of dy-
namic branches in a trace. Column 3 gives the number
of loops executed. Column 4 gives the number of method
invocations; and column 5 is the number of method in-
vocations that are the root of recursion. BothLoop Ex-
ecutionsandRecursion Rootsrepresent the frequency of
code structures that can give rise to repetition of program
behavior. Although loop executions dominate, we must
also consider recursion when identifying phases.

For our baseline solutions, we consider the following
MPL values: 1000, 5000, 10000, 25000, 50000, and
100000 (henceforth abbreviated to 1K, 5K, 10K, 25K,
50K, 100K). Table 1(b) provides information about the
phases found by the baseline solution for different MPL
values. For a given MPL value, the column to the left
lists the number of phases found (# Phases) and the col-



Table 2: Window size comparison. (a) shows average percent improvement in best score across all framework pa-
rameters when we use a CW size smaller or equal to the MPL as compared to a CW larger than MPL for three TW
policies: Adaptive, Constant, and Fixed Interval. (b) is the average of best scores across all benchmarks when the size
of CW is smaller than, equal to, and half of MPL.

(a)
 
Benchmark Smaller Equal Smaller Equal Smaller Equal
_201_compress 28.54 19.96 33.21 22.45 42.71 26.34
_202_jess 13.75 9.31 5.98 5.23 -2.88 -7.91
_205_raytrace -6.25 -1.25 -0.56 5.26 -2.30 -2.30
_209_db 20.18 10.24 20.21 9.19 13.36 6.35
_213_javac 19.76 15.73 21.78 19.71 25.59 15.14
_222_mpegaudio 12.70 22.61 9.25 17.98 28.86 21.44
_228_jack 22.55 17.25 24.80 20.77 22.25 18.50
Jlex 13.75 9.31 8.93 10.09 3.30 1.72
Average 15.62 12.90 15.45 13.83 16.36 9.91

         Adaptive TW          Constant TW          Fixed Interval

(b)
Smaller Equal 1/2 MPL

Adaptive TW 0.652 0.637 0.664
Constant TW 0.648 0.639 0.664
Fixed Interval 0.601 0.570 0.610

umn to the right shows the percentage of profile elements
(dynamic branches in this case) that are in phase (% in
Phase). The number of phases found varies significantly
across benchmarks and across MPL values. For example,
with an MPL value of 1K,compress has only 46 phases
whereasmpegaudio has 7,594. However, with an MPL
value of 100K,mpegaudio has only two phases.

The table illustrates the trend that as MPL values in-
crease the number of phases decreases. This is expected,
since as the MPL value increases, our baseline solution
identifies larger loops (and recursive chains) as phases.

Counter to intuition, the percentage of profile elements
in phase does not correlate with the MPL value. This is
an artifact of how the baseline solution selects which loop
in a loop nest to identify as a phase (Section 3.1). With
a small MPL value, an inner loop may be considered a
phase while the containing loop is not. When the MPL is
increased, the nested loop may no longer be bigger than
the new MPL value, but the containing loop will be large
enough to be a phase. When the containing loop becomes
a phase, all the profile elements of the inner loop and con-
taining loop are now part of the phase, and thus, increase
the percentage in phase value compared to just the profile
elements from the inner loop.

However, the percentage in phase value can also de-
crease when the MPL value is increased. For example,
consider a simple loop that has sufficient profile elements
to satisfy the MPL value, and thus, is identified as a phase.
However, if the number of profile elements is not enough
for a larger MPL value, none of these profile elements will
be consider in phase with this larger MPL value.

We used our framework to instantiate a large number
of phase detection algorithms. Given the various combi-

nations of parameterizations possible (skipFactor, curent
window size, trailing window policy, model policy, and
analyzer policy), we generated over 10,000 different algo-
rithms, which we then compared against our baseline so-
lutions. We computed a score for each detector using our
accuracy scoring metric from Section 3.2. In the subsec-
tions that follow, we summarize and analyze this data in a
way that indicates the general trends in accuracy. In par-
ticular, we use the data to investigate the various frame-
work parameters discussed in Section 2.

4.2 Window Policy

We first evaluate the impact of the current window (CW)
size on detector accuracy. Intuitively, CW size should be
related to the MPL parameter that is used by the baseline
solution to find the actual phases in a program.

For our phase detection algorithms, we considered CW
sizes of 500, 1K, 5K, 10K, 25K, 50K, and 100K. We com-
puted scores for each CW size and MPL value combina-
tion, across all other parameters that we considered: skip
factor, TW size, and model and analyzer policies. We then
extracted the best score across all combinations and eval-
uated, for each benchmark, the average when the CW size
was smaller, equal to, and larger than the MPL value. Ta-
ble 2(a) shows the results. We present three sets of data
(pairs of columns) for each benchmark. The first set is
data for detectors that use the Adaptive TW policy and a
skip factor of 1.1 The second set is data for the Constant

1The other Adaptive TW policy parameters that we used for this data
set and those that follow include an anchor policy of RN (rightmost noisy
+ 1) and the sliding window resizing policy. We define and support these
choices empirically in Section 5.



TW policy and a skip factor of 1. The final set,Fixed In-
terval, is data for a Constant TW policy with a skip factor
equal to the CW size. This last policy is the one most
commonly used by extant approaches to phase detection,
in which theskipFactor, TW size, and CW size are all the
same value [17, 16, 30, 31, 32, 9, 10, 21, 8].

Each pair of columns under each policy is the percent
improvement in score when we use a CW that is smaller
than (first column) or equal to (second column) the base-
line’s MPL, over using a CW size that is larger than the
MPL. We cannot compare this data across sets (Adaptive,
Constant, and Fixed Interval), because each column is rel-
ative to the base case of that set, i.e., the score when CW
size is larger than the MPL value. We compare these con-
figurations using other data in the next subsection.

The data shows that, on average, the highest accu-
racy occurs with detectors that employ a CW size that is
smaller than the MPL value. Although using a CW size
that is equal to the MPL value also enables higher accu-
racy than using one that is larger, the improvement is not
as great as for a CW size smaller than the MPL. One rea-
son for this is that the detectors employ two windows, the
size of which totals at least twice the CW; this total size is
similar to MPL.

Table 2(b) shows the average of best scores across all
benchmarks and MPL values, for each TW policy (Adap-
tive, Constant, and Fixed Interval). We show data for a
CW size that is smaller than an MPL value (column 2)
for a CW size that is equal to an MPL value (column 3),
and for a CW size that is 1/2 the MPL value or smaller
(column 4).

The scores that result from using a CW size smaller
than MPL are similar to those for a CW of 1/2 the MPL.
If the CW is 1/2 MPL or smaller, then the size of TW and
CW together is at least MPL; thus, the detector is able
to accurately identify the same phases as our baseline so-
lution (for that MPL value). The data also shows that a
CW smaller than MPL in some cases outperforms a CW
of 1/2 the MPL. The reason for this is that the particu-
lar CW size that produces the best score for the smaller
CW case varies across benchmarks. There is no single
CW size smaller than 1/2 MPL that outperforms a CW of
1/2 MPL across all benchmarks on average. We therefore,
use 1/2 the MPL as our CW size for the remainder of the
paper in an effort to focus our analysis of the remaining
dimensions of our algorithms.

We next evaluate the impact of skip factor on detector
accuracy for the three TW policies (Adaptive, Constant,
and Fixed Interval) and consider all other parameteriza-
tions of the model and analyzer policies. We again con-
sider the best score across these configurations.
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Figure 4: Evaluation of skip factor and Fixed versus
Adaptive windowing. The data is the average of best
scores across all benchmarks, models, and analyzers. The
CW size is less than 1/2 the MPL.

Figure 4 compares the three TW policies. The x-axis
is MPL and the y-axis is the average of best scores across
all configurations and benchmarks. A higher score is bet-
ter. We consider two values of skip factor: one and CW
size. The former enables high responsiveness by the de-
tector to detect fine-grain changes in phase behavior. We
evaluate the accuracy enabled by two different skipFactor
values by comparing the Fixed Interval bars (skipFactor
= CW size) against the remaining two (skipFactor = 1).
The data shows that on average, the approach commonly
used in existing systems (skipFactor= CW size) is sig-
nificantly less accurate than both the Constant TW and
Adaptive TW policies whenskipFactoris one. Thus, the
remaining evaluations use a skipFactor = 1.

When we compare Constant TW and Adaptive TW, the
results are less clear. In general, our experiments show
that for small MPLs, Constant TW does somewhat better
than the Adaptive TW. However, this is not the case for
all benchmarks when we consider them individually. For
larger MPLs, Adaptive TW is consistently more accurate
than a Constant TW. We added MPL 200K to this data set
to evaluate whether the trend continues, and it does. For
larger MPLs, some of the shorter running benchmarks ex-
hibited a very small number (1 or 2) of very large phases,
which were not useful or fair to include in a comparison
(all detectors achieve very high scores since there are so
few phases to match against).

The remainder of the paper presents results for MPL
values of size 1K, 10K, 50K, and 100K. We continue to
include data for both Constant TW and the Adaptive TW
policies in our subsequent comparisons.
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4.3 Model Policy

Figures 5 presents an empirical comparison between two
models described in Section 2: weighted and unweighted.
The x-axis shows MPL values and the y-axis shows the
average of best score across all benchmarks. For each
MPL, there are two groups, each with four bars. The
first group is for the Constant TW policy and the second
group is for the Adaptive TW policy. Within each group,
there are two pairs of bars. In each pair, the left bar is the
weighted model results and the right bar is the unweighted
model results.

The first pair of bars in each group shows the average of
best score across all benchmarks. These results show that
the unweighted model is more accurate than the weighted
model in all but the 50K MPL case. When we consider
the individual benchmark data, however, unweighted is
significantly more accurate in a majority of cases for all
benchmarks except one:201 compress (compress here-
after). For this benchmark, the detectors that employ the
weighted model are almost 50% better in many cases (we
omit this data due to space constraints).

To show the average accuracy of detectors without con-
sidering the compress benchmark, we include a second
pair of bars in each group of four in the graph. This pair
shows the average of best scores for detectors that em-
ploy the weighted and unweighted models, respectively,
on average across all of our benchmarks, except compress.
From this data, we can conclude that, in general, the un-
weighted model is more accurate than weighted model for

all MPLs and trailing window policies. As a result, we
consider only the unweighted model for our analysis of
similarity analyzers in the next section.

4.4 Analyzer Policy

Figure 6 shows a comparison between two categories of
analyzers: Threshold and Average, each with different pa-
rameters. The figure contains two subgraphs. The left
graph (a) presents the data for the Constant TW policy
and the right graph (b) presents the data for the Adaptive
TW policy. In each graph, the x-axis presents MPL values
and the y-axis presents the average of best scores across
all benchmarks. For each MPL, there are ten bars. Within
the ten bars, the first four bars, which are darker, represent
the Threshold analyzers with values of 0.5, 0.6, 0.7, and
0.8; and the last six bars represent the Average analyzers
with values 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4.

The data presents mixed results. Neither the Threshold
nor the Average analyzers are clear winners for all MPL
values and all benchmarks. However, if one were to pick
a particular analyzer, certain values seem to be a better
choice for a specific trailing window policy. In particular,
if the Threshold analyzer is chosen, a threshold value of
0.6 wins in three out of four of the MPL values for the
Constant TW policy, whereas the threshold value of 0.8
wins in three out of four of the MPL values for the Adap-
tive TW policy. If the Average analyzer is chosen, there
is not a clear trend for the Constant TW policy; however,
a value of 0.05 wins for three out of four of the MPL val-
ues for the Adaptive TW policy. A more comprehensive
analysis of the data is required to better understand these
trends.

5 Additional Analysis
This section analyzes other parameters of our phase detec-
tion framework. The first parameter specifies how win-
dow resizing and anchoring is performed when an algo-
rithm using the Adaptive TW policy detects the start of
a phase. This parameter impacts the detection of phase-
start boundaries, and therefore, can produce a more accu-
rate representation of the phase. It is also important for
an Adaptive TW policy because it serves as a signature of
the entire phase.

Before discussing this parameter fully, we discuss other
properties that can also impact the accurate identification
of phase start boundaries. First, as mentioned in Section 3,
an online algorithm will have a delay in profile elements
before it can detect the beginning of a phase. Second,
phase boundaries may not always align with skipFactor
values. Third, phases often exhibit startup periods where
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the behavior is less stable (but is not considered a transi-
tion) than the steady state of a phase [25].

The anchor point is the position in the TW at which a
new phase starts. We explore two options to determine
where to place the anchor point. The first option places
the anchor point one element to the right of the rightmost
noisy element in the window (RN). Noisy elements are
those that are in the TW and not in the CW. The second
option places the anchor point at the leftmost non-noisy
element (LNN). Both techniques attempt to eliminate in-
stability during the start of a phase to enable more accu-
rate detection ofT or P states thereafter. RN is more
aggressive at doing so. For example, if the TW contains
elementsa, b, and,c and the CW containsa, a, andc, then
b is a noisy element. The RN policy selects the position of
c in the TW and the LNN policy selects the position ofa
in the TW, as the start of the phase. Both policies attempt
to eliminate profile elements that are part of the warm-up
period [25] of the phase that may not be as stable as the
steady state of the phase.

Once we identify the starting position of the new phase,
we have two options for window resizing. We canslide
the TW right, so that the left boundary of the TW is
at the anchor point, thus reducing the size of the CW:

x1 x2 x3 x4 x5 x6 x7 x8 x9  x10 x11 x12   x13 

Anchor
point

x1 x2 x3 x4 x5 x6 x7 x8 x9  x10 x11 x12   x13

CWTW

Alternatively, we can move the left boundary of
the TW to the right and leave the CW unaffected:

x1 x2 x3 x4 x5 x6 x7 x8 x9  x10 x11 x12   x13 

Anchor
point

x1 x2 x3 x4 x5 x6 x7 x8 x9  x10 x11 x12   x13

TW CW

By sliding, we reduce the size of the CW; however, we
continue to compare the two windows for similarity while
the CW fills in this case. This enables the TW to hold as
much of the phase as possible (our original goal with the
trailing window policy). By moving the TW, we shrink its
size as opposed to the CW.

Figure 7 evaluates these two policies across bench-
marks for each of the MPLs (x-axis). Graph (a) shows
percent improvement in score for Sliding over Moving of
the TW (we use the RN anchoring strategy here). Graph
(b) shows the percent improvement in score due to the use
of RN over LNN to select an anchor point (for the Slid-
ing resizing policy). On average, Sliding is more accurate
than Moving and as such, is a better resizing policy. It
also seems intuitively correct for an Adaptive TW to in-
clude most of the recently detected phase before evaluat-
ing subsequent profile elements. In addition, RN is more
accurate than LNN, on average. We use the Sliding and
RN policies for the results in the previous sections and
below.

Our last set of results compares the best scores for the
Adaptive and Constant TW policies using a modified tech-
nique for finding the beginning of a phase. As discussed
previously, an online algorithm detects a phase after some
initial part of the phase has been seen. However, once a
phase is detected, such an algorithm can identify where
the phase began using the anchoring policy discussed
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above. This information can be used to accurately identify
phase signatures [18, 29] and their repetition online. Fig-
ure 8 compare these new phase boundaries against those
of the baseline solution. The results indicate that for every
MPL, the Adaptive TW policy is significantly more accu-
rate than the Constant TW policy, showing promise for its
use in online detection of recurring phases.

6 Related Work
The framework and algorithms that we describe herein

enable detection of phase behavior. This is in contrast
to the majority of related work that focuses on prediction
of future phase behavior [32, 12, 25, 23, 29, 13, 18] and
on characterization of periods of program execution into
phases after they execute or as part of a prior run of the
program [19, 29, 13, 32]. Our algorithms execute concur-
rently with the program and detect phase behavior after a

phase begins by computing and evaluating the similarity
between two windows of profile elements. Moreover, our
algorithms are online; they detect phases while they oc-
cur. Our algorithms do not distinguish phases for future
use (i.e., identify temporally disjoint, repeating phases),
although we are investigating such extensions. In addi-
tion, we introduce a baseline solution and scoring metric
that enable us to compare the phase boundaries detected
by any detection algorithm against the natural, dynamic,
repetition of program structures.

Dhodapkar and Smith [9] study online phase detection
in the context of multi-configuration hardware (e.g., re-
configurable instruction caches). The authors describe al-
gorithms for detecting changes in working sets, identify-
ing recurring working sets, and estimating the number of
elements in a working set. They employ an unweighted
set model, a fixed window size of100, 000 instructions,
and askipFactorthat is equal to the window size. They
define their similarity threshold value empirically to be
0.5 to remove most noise and to detect only significant
phase changes. The authors report that their experiments
indicate that detection of phase changes is relatively in-
sensitive to the threshold value. The algorithm in [9] can
be viewed as one instantiation of our framework. We use
our framework to investigate the efficacy of this detection
algorithm and to compare it to a wide range of other al-
gorithms that employ alternative parameterizations of the
similarity and threshold components. Our results indicate
that askipFactorthat is equal to the window size is signif-
icantly less accurate than askipFactorof one. In addition,
we show that an adaptive windowing strategy is more ac-
curate than a fixed one for large MPLs (Section 4.2) and
for capturing phase boundaries (Section 5).

Lu et al. [21] employ online phase detection to drive



data cache prefetching in a dynamic binary optimization
system. Specifically, they compare the average PC ad-
dress from the most recent 4K samples to a range of val-
ues, which is created from the average and standard devi-
ation of the previous seven 4K samples of the PC address.
If the new average is sufficiently outside this interval for
two consecutive 4K sample windows, a phase has ended.
This algorithm can also be modeled in our framework,
where the model computes the averages of the 4K sam-
ples, and the analyzer does the interval bound test. Das
et al. [8] build on this work by advocating a local phase
detection for events in each region of the program. This
work uses Pearson’s co-efficient of correlation between
the current set of samples and the target set for the region.
They compare this value to a fixed threshold.

Phase prediction systems must first observe and char-
acterize program behavior prior to forecasting the recur-
rence of future phases. These prior works perform these
tasks during an initial run of the program [29, 18, 24, 31]
and wait until an interval of execution completes before
reporting whether the interval is in phase [32, 17, 16]. Our
baseline solution is similar to these extant approaches in
that it exploits a global view of the execution trace. Our
baseline solution, however, is novel in that it provides a
methodology for comparing and evaluating phase detec-
tion algorithms. It captures all common, source-level,
looping constructs that execute and combines them into
phases according to the minimum phase length provided
by an optimization client (phase profile consumer).

In addition, we use our framework to evaluate the ef-
ficacy of delaying detection until interval completion by
using askipFactor equal to the window size (Subsec-
tion 4.2). We show that by using askipFactorof one,
detection algorithms are more sensitive and responsive to
changes within an interval and are thus more accurate in
capturing the phase behavior of the program. These re-
sults confirm the findings of Lau et al. [19], who show
that fixed-size interval boundaries can miss phases due
to misalignment. In this prior work, the authors employ
variable-length intervals to guide selection of program
simulation points. However, their technique requires a
prior run of the program; i.e., unlike our system, it is not
online.

7 Conclusions and Future Work
This paper presents a novel framework for developing
a wide range of online phase detection algorithms. We
also describe a novel client- and machine-independent
methodology for evaluating the accuracy of these algo-
rithms, and perform a detailed empirical study of numer-

ous algorithms using this methodology. Our conclusions
are that the current window size should be smaller than
the desired minimum phase length and that a skip factor
of 1 has better accuracy than the standard practice of set-
ting the skip factor to the current window size. We also
find that an adaptive trailing window policy can be more
accurate than a constant trailing window policy. Finally,
our results for models tend to favor the unweighted model,
although the results for analyzers are mixed.

In addition to investigating further other algorithms for
phase detection, we plan to explore three primary direc-
tions in future work. First, we will extend our frame-
work to instantiate algorithms that detect phases that re-
peat themselves. Such an enhancement would allow a
dynamic optimization system to record the efficacy of a
phase-based optimization at the end of the phase and de-
termine whether to employ the same optimization when
the phase reoccurs. Second, we plan to investigate and
optimize the overhead of accurate phase detection. There
are three sources of overhead in a phase-aware optimiza-
tion system: profile collection, phase detection, and phase
consumption and use by the client. Finally, we plan to
investigate phase-aware dynamic optimizations and how
they are impacted by phase detector accuracy and over-
head. As part of this research, we will identify how to set
the MPL for a particular client and whether it is effective
to adapt the MPL over time.
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