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Abstract

Managed runtime environments (MREs) employ
garbage collection (GC) for automatic memory manage-
ment. However, GC induces pressure on the virtual memory
(VM) manager, since it may touch pages that are not related
to the working set of the application. Paging due to GC can
significantly hurt performance, even when the application’s
working set fits into physical memory.

We present a feedback-directed heap resizing mechanism
to avoid GC-induced paging, using information from the
operating system (OS). We avoid costly GCs when there
is physical memory available, and trade off GC for pag-
ing when memory is constrained Our mechanism is simple
and uses allocation stall events during GC alone to trig-
ger heap resizing, without user participation or OS kernel
modification. Our system enables significant performance
improvements when real memory is restricted and similar
to, or better performance than, the current state-of-the-art
MRE, when memory is unconstrained.

1. Introduction

Garbage collection (GC) is a commonly used technique
in managed runtime environments (MREs), in order to en-
able memory safety and improve programmer productivity.
However, because the garbage collector must automatically
determine how and when to scavenge unused memorywhile
the program runs, it introduces execution overhead that can
be significant. Thus, optimization techniques are needed to
achieve the memory safety and productivity benefits of GC
with the minimum possible overhead.

When a garbage collector executes, it must scan the ob-
jects that have been allocated by a program to determine
which ones are unreachable and can be reclaimed. A large
body of research has focused on the performance character-
istics associated with different algorithms, and methodolo-
gies for implementing GC (e.g. [10, 15, 24, 8, 2, 30, 18, 19,

29, 6, 23]). In our work, we instead focus on the interac-
tion between the garbage collector and the virtual memory
system as a potential opportunity for optimization. We ob-
serve that given current processor and memory speeds, the
cost of paging to disk is significantly higher than that of ex-
ecuting the reclamation algorithm itself, since data must be
copied between physical memory and a high-latency disk.
Moreover, GC commonly implies maximal use of available
virtual memory for the heap, and so GC activity can induce
pagingeven when the working set of the application fits into
real memory.

Our work explores a new optimization method that uses
explicit interactions between the garbage collector and the
operating system (OS) virtual memory implementation to
avoid GC-induced paging. In particular, our approach is to
trigger a collection within the MRE and to perform heap re-
sizing, immediately prior to paging activity that results from
a combination of memory pressure and GC activity. We
identify “allocation-stall” events in the Linux virtual mem-
ory system as an effective harbinger of the onset of GC-
induced paging. Our work indicates that substantial perfor-
mance benefits are achievable by querying the Linux kernel
virtual memory data structures to determine when alloca-
tion stalls occur (which we do through a dynamically load-
able kernel module, thereby avoiding the need to patch and
recompile the kernel).

Note that it is also possible to avoid GC-induced pag-
ing by sizing the application heap statically [28] via MRE
command-line parameters. However, the user must have in-
timate knowledge of the heap behavior of the application,
know the amount of available physical memory in the sys-
tem, and understand how the OS manages and shares virtual
pages. Further, the amount of physical memory available
to an application changes dynamically as other applications
executing on the system compete for memory pages. Us-
ing a static approach, competing applications or user error
in heap size selection may result in unnecessary paging as
the amount of available physical memory fluctuates. Thus,
to be generally effective, we propose an automatically and
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Figure 1. The performance of the SpecJBB2000 benchmark with (squares) and without (diamonds)
memory pressure. For the former, we induce memory pressure b y and locking 700MB out of 1GB
of physical memory. The ungraceful degradation in performa nce when the benchmark experiences
memory pressure is typical of other programs and is caused pr imarily by paging in the Linux virtual
memory system that is induced by GC in the MRE (JikesRVM).

dynamically adaptive technique.
Figure 1 illustrates the effect of GC-induced paging

for an example program. The data consists of execu-
tion time in seconds (y-axis) versus a heap size (x-axis)
specified by the user on the command line. We execute
the SpecJBB2000 [25] benchmark on a dedicated system
and mlock 700MB out of 896MB of physical memory on
the target execution platform to induce memory pressure.
We compare the observed performance to execution when
no memory pressure is induced. The curve marked with
squares shows that when the heap size is set to more than
80MB, program execution performance degrades sharply as
the garbage collector induces paging. The curve marked
with diamonds, however, shows that execution performance
is relatively constant when there is no memory pressure and
thus, no paging. The curve clearly exposes the non-linear,
and ungraceful performance degradation under memory
pressure as a consequence of paging induced by GC.

This GC-induced paging problem has been addressed in
prior work by sizing the application heap during program to
improve execution performance [4, 11, 13, 33, 34]. How-
ever, these approaches require extensive modification to the
OS or programs, use complex mechanisms for GC-paging
avoidance, are not reproducible or portable without exten-
sive manpower, or introduce a new garbage collector which
is virtual memory aware (e.g. [17]).

In this paper, we present a novel and simple feedback-

based system relying on virtual memory event statistics
(maintained by the OS) to guide the MRE heap sizing pol-
icy. We delay GC when memory is available by growing
the heap and shrink the heap to trigger GC and to reduce the
virtual space used by the GC, when memory is constrained.
Our system detects the latter through a light-weight feed-
back mechanism which distinguishes between the different
states of MRE execution (application execution and GC ac-
tivities): the MRE samples OS eventsonly at the end of a
GC, minimizing performance impact. Further, the OS event
that we monitor is theallocation stall, which indicates that
no additional free pages are available and that the OSmust
swap out pages to disk for the current process (the GC in
the MRE)to allocate physical memory.

By coupling state-awareness and observation of alloca-
tion stall events, we can accurately identify when the MRE
should resize the heap: Allocation stalls provide a clean sig-
nal that is highly correlated with the paging induced by GC
activity. Prior work [17, 34, 32, 33] on heap sizing employs
page fault and page out events in different ways to detect
GC-induced paging. We show, through an analysis of the
Linux virtual memory management subsystem implemen-
tation that detection based on allocation stalls is more accu-
rate for our system.

We implement the necessary OS profiling and feedback-
driven heap resizing optimization mechanism using the
commonly available Linux kernel version 2.6.16.9 [1] and



the Jikes Research Virtual Machine (JikesRVM) [5] from
IBM’s T. J. Watson Research Center. Our system is avail-
able as a dynamically loaded module for Linux and a
JikesRVM patch that is GC-independent [21]. Our em-
pirical results indicate that our system avoids GC-induced
paging to enable significant performance gains when phys-
ical memory is limited, yet achieves similar (or better) per-
formance levels to the best-performing JikesRVM garbage
collector when memory is unconstrained. Moreover, our
system is significantly simpler than those reported in pre-
vious work: there is no additional burden on the program-
mer, no OS kernel modifications, and no need for a new GC
implementation. Our system also avoids poor performance
due to the specification of an inappropriate heap size on the
command-line by a JikesRVM user.

In summary, we make the following contributions:

• We define a novel and simple, feedback-driven MRE
heap sizing algorithm that uses explicit interactions be-
tween the MRE and the OS virtual memory subsystem
to avoid GC-induced paging.

• We describe a light-weight sampling mechanism (and
its implementation as an Linux kernel module), that
captures virtual memory events and associates them
with a particular state of execution: program execution
or GC.

• We present empirical evidence of the correlation be-
tween allocation stalls in the memory manager dur-
ing GC and impending performance degradation due
to paging.

• We implement our system using the popular Linux
OS and JikesRVM MRE and make its implemenation
freely available [21]. We also empirically evaluate our
implementation using a number of community bench-
marks. Our extensions are simple and easy-to-use and
do not require modification to, and thus potential in-
stablity of, the Linux kernel and JikesRVM garbage
collectors.

We next provide an overview of paging events in the
Linux virtual memory system, and describe the specific
garbage collector and MRE (JikesRVM) that we investigate
in this study. Section 3 describes our virtual memory man-
ager profiling and the feedback mechanism we use for dy-
namic heap sizing. We then present our empirical results,
related work, and conclusions.

2. Background

We first review the functionality implemented by
the Linux virtual memory manager subsystem, and the

JikesRVM GC system that we employ for this work. Al-
though, we focus on these specific technologies, our de-
scription is generally representative of Linux/Unix virtual
memory behavior and popular generational garbage collec-
tion systems.

2.1. Overview of Linux
Virtual Memory Management

In the Linux v2.6 kernel, the virtual memory manager
(VM) manages a fixed number of physical pages available
to applications. As demand for physical memory changes,
the VM reclaims currently used pages. To do so, victim
pages are identified by scanning the active and inactive lists
that are populated with pages that have and have not been
recently accessed, respectively. Kernel functions perform
the following tasks while the lists are scanned: find pages
that can be reclaimed immediately, move pages between the
active and inactive list, and write modified (dirty) pages to
disk. The latter is termed apage out. When a page that is not
in memory is referenced by a process, apage faultoccurs
and the VM copies the page from disk to main memory.
The latency associated with the transfer of a previously used
page either to disk (when a dirty page is written), or from
disk (when a page fault needs to be satisfied) is typically5 or
more orders of magnitude larger than processor or memory
operations [17].

The VM is invoked to begin reclaiming pages in the fol-
lowing two ways. First, when the number of free pages is
low (below a configuration-set threshold), the kernel awak-
ens a dedicated process, calledkswapd , that starts free-
ing pages in the background. Second, when the number of
free pages drops below a specified absolute minimum level,
the virtual memory subsystem does not allow the allocation
to progress. Instead, when a process attempts to allocate
a page, the kernel logically pauses the allocation process,
calls the functions that are normally called bykswapd ,
and then resumes the allocation call path. Such an event is
termed anallocation stall, as the process of page allocation
is stalled while thekswapd kernel code reclaims pages.

Prior work [17, 34, 32, 33] makes use of page outs and
major page faults as indicators that garbage-collector in-
duced paging will occur. We discuss the choice of which
event type to use as a trigger for our algorithm in Sec-
tion 3.1.

2.2. JikesRVM and Generational/Mark-
Sweep Collection

The MRE infrastructure used for this study is the widely
used Jikes Research Virtual Machine (JikesRVM) from
IBM T. J. Watson Research Center [5], and the modular
Memory Management Toolkit (MMTk) [9]. We employ the



Generational/Mark-Sweep collector(GenMS) for this study.
GenMS is a widely accepted and highly effective genera-
tional GC, and is arguably the best-performing of the avail-
able JikesRVM GC systems. Generational collectors di-
vide the heap into multiple, independently collected, re-
gions based on the well-known generational hypothesis that
most objects die young. GenMS divides the heap into a
nurseryfor young objects, and amature, or old, generation
for objects that have survived one or more nursery collec-
tions. Full heap collections involve collecting the nursery
as well as the mature generation.

The boundary between the nursery and the mature space
varies dynamically (using an Appel-style nursery [6]). Ini-
tially, before any garbage collection has been triggered, the
mature generation is empty and the nursery occupies half
the heap. The second half is thecopy reserveand is nec-
essary to handle worst-case liveness behavior during the
next collection. The system triggers a nursery collection
when the nursery is full, which is anen massepromotion
of live objects to the mature generation, which causes the
mature space to grow. The system resizes the nursery (ac-
tive space) to occupy half of the space remaining. A full
heap garbage collection involves promotion of live nurs-
ery objects, followed by collection of the mature genera-
tion. GenMS performs this mature space collection using
mark-sweep (MS) [23].

The system we propose and implement herein is inde-
pendent of the GC since we only manipulate the heap sizing
mechanism within JikesRVM/MMTk (which we describe
next). In this paper, we only investigate the performance of
our system when we use GenMS for collection.

Since a nursery collection is significantly less expensive
than a full heap collection (many objects die young and the
collector performs less work for the former), our goal is to
delay full heap collection by growing the heap. However,
a heap which overflows the available physical memory will
necessarily degrade performance due to GC-induced pag-
ing. For a generational heap, the common reference behav-
ior as the heap grows will result in the mature space being
swapped out first, followed by the nursery’s copy reserve
space, and then the nursery’s active space. With the mature
space in swap, each page will be faulted in at least once
during a full heap collection. Major page faults for pages
will be caused by nursery collection when the copy reserve
has been swapped to disk, and by the application allocating
objects when the active space resides on disk.

3. Feedback-driven Heap Sizing

Given the interaction between GC and VM paging, the
goal of our work is to avoid full-heap GCs as much as pos-
sible when physical memory isunconstrained, but to trigger
heap resizing (inducing GC) to avoid paging when mem-

ory becomes scarce. Aggressively heap growth enables the
nursery to grow quickly, and memory management to occur
via inexpensive nursery collections. However, overflowing
physical memory will result in paging and must be detected.
In combination with the high cost of paging relative to GC
(even full heap collections), we must shrink the heap and
keep the heap in memory (i.e. trade-off paging for GC).

A significant body of prior work employs heap sizing
techniques guided by OS events to reduce, or eliminate GC-
induced paging [17, 4, 11, 13, 33, 34]. We detail and con-
trast this work to our own in Section 5. In summary, our
system is unique in the type of feedback used to guide (trig-
ger) resizing, and when our policy is applied. More so, our
solution is very simple and does not require Linux kernel
modification (we contribute a kernel module only – and do
so only for efficiency reasons), application modification, of-
fline profiling, or participation by the user. In addition, we
make only minimal and modular modifications to the MRE
(< 200 lines of code). In the subsections that follow, we
describe the trigger and sample collection mechanisms and
then detail our heap resizing algorithm.

3.1. State-Aware Sampling
and Trigger Selection

We have identified three candidate VM events for indi-
cating when memory pressure will induce paging by the
GC: page outs, page faults, and allocation stalls. All three
values are recorded by the Linux VM using simple coun-
ters, thus the cost of accessing each of them is the same
and low. However, in a set of exploratory experiments us-
ing each method, allocation stalls outperform the other two
choices. Analyzing the Linux virtual memory subsystem
explains our conclusion.

Recall from Section 2 that Linux uses a separatekswapd
process to manage memory asynchronously. Periodically,
kswapdwill initiate page outs in a system that is not experi-
encing serious memory pressure. The VM’s management of
pages without regard for process ownership combined with
the asynchronous nature of paging to disk implies two prob-
lems in using pageouts. First, a GC during which pageouts
occurdoes notimply that heap pages have been swapped
out, nor that the heap is inducing memory pressure. Since
GC will trace all heap pages during a full collection, the
reference information used by the VM to select pages for
eviction will be tainted. As a result, heap pages will be
more likely to remain resident implying that the pageouts
recorded would spurious – from other applications. Sec-
ond, as the act of sending a page to disk is not performed
synchronously, no guarantees exist that observed pageouts
resulted from or even occured during MRE execution.

Then, examining major page faults in the same light re-
veals a similar problem: the source and timing of the cul-



prit responsible are unclear. Major faults, while occuring
synchronously, can be the result of an asynchronous page-
out, one not related to MRE activities. Instead the VM may
choose to evict heap pages in response to any pressure, re-
gardless of the source.

On the other hand, an allocation stallonly occurs when
memory pressure is severe and the kernel must engage in
memory page management immediately. More importantly,
because allocation stalls are serviced in the kernel pro-
cess context of the currently executing application, they un-
ambiguously identify the process responsible for inducing
memory pressure. Following the passive efforts ofkswapd
to shrink active working sets to fit into main memory, an
allocation stall corresponds directly with pages being sent
to disc synchronously. Combined with the observation that
pages are only allocated when the MRE is in a GC phase,
allocation stalls during garbage collection are more strongly
correlated with the heap overflowing real memory.

To confirm this hypothesis, we count the number of GCs
during which one of the three events occurs while running
SPECjbb2005 for a range of heap sizes (40MB-256MB,
with 700MB mlocked): Across the heap sizes small enough
to be memory resident, spurious page faults occurred ev-
ery time, pageouts appeared less frequently, but allocstalls
almost never did. For the remaining heap sizes, an inter-
esting result is evident: the number of garbage collections
which observe a page fault, pageout, or allocation stall sat-
isfy the ration 4:2:1, respectively. That is, for each GC
which induces an allocation stall, there are two measured
pageouts, and four page faults. The ultimate indicator of
allocation stall’s utility at indicating memory pressure is
revealed by inspecting the sequence of event observations
during garbage collection for a single execution (with a
heap that overflows memory): GCs which observe alloc-
stalls precede those with page faults.

Thus, by sampling the kernel’s allocation stall counter
immediately before and after each garbage collection event,
our system correctly identifies memory pressure caused by
garbage collection activity in a specific process. We term
this sampling process “state-aware” feedback, since the
recording of the operating system’s virtual memory activ-
ity pertains only to the state of the program that is relevant
(in a GC or not).

Notice that neither page outs nor page faults permit this
level of specificity without modification to the Linux ker-
nel’s accounting procedures, potentially destabalizing the
VM. Page outs may occur asynchronously as well as syn-
chronously (i.e. in the current process context in response
to an allocation stall). To use them as effectively, the kernel
would need to differentiate (at a very minimum) between
the two different types of page out events. Page faults, on
the other hand are executed synchronously so that activity
by a specific garbage collector can be identified. However,

a page fault during garbage collection occurs in response to
memory pressure that may or may not have been induced
by the MRE itself. Put another way, a page fault during
garbage collection is a consequence of a page outthat has
already occurred, and may have been caused by the activity
of another process. In contrast, when an allocation stall oc-
curs during garbage collection, it must be the activity of the
garbage collector that is responsible for the memory short-
fall. Thus, allocation stall events provide a more accurate
indication of paging that can be avoided by heap resizing.

3.2. Feedback System Design

The feedback mechanism enables the MRE to interact
with the OS to obtain allocation stall information in a state-
aware manner. The MRE communicated with the OS before
and after each GC (nursery and full), to obtain allocation
stalls. The implementation consists of two parts: a kernel
module, and an interface for the MMTk. The interaction is
enacted through a file in the /proc filesystem provided by
the module. Several characteristics are worth noting. First,
the VM data structures in the kernel are touched only twice
per sample (at start and finish) by code in the module. No
changes are needed in the critical VM subsystem. As a re-
sult, the VM behaves in the standard and tested way – en-
suring that our system does not influence stability. Second,
the module exposes a synchronous single file read-only in-
terface, encapsulating all of the necessary logic. The MRE
portion of the implementation is accomplished using only
low level read calls. As a result, the synchronization pro-
vided by the interface guarantees correct state-aware sample
reporting, and minimizes the need for changes to the sensi-
tive GC subsystem. Third, all the MRE code resides in an
MMTk source tree that is external to the JikesRVM source.
We, thus, provide an uniform MMTk interface that can be
used by other GC-based runtimes that use the MMTk, i.e.,
our implementation is independent of the execution envi-
ronment (Java Virtual Machine).

In our work, we have explored other ways to access in-
formation about memory pressure. In particular, we exam-
ined using kprobes and the information available via exist-
ing /proc entries. Kprobes require the use of a module and
problematic to use in the memory manager path (e.g. prob-
ing that causes a fault that causes probing). While the in-
formation we seek can be obtained via /proc, by embedding
the profiling logic inside of our kernel module we ensure the
correctness of our measurements and avoid the prohibitive
performance impact of having the rest of the system in user
space – influencing the MRE/GC. In essence, our module
extends the functionality of various /proc entries by provid-
ing significantly more efficient state management. Imple-
menting state-aware profiling using existing /proc entries
is possible, but would imply managing state in user space



where the synchronization required to guarantee accurate
measurements may negatively impact performance and sta-
bility. To achieve the performance needed, a kernel module
is necessary to modify the standard /proc functionality.

3.3. Isla Vista Heap Sizing

The HeapGrowthManager is responsible for determining
the heap sizing policy in the MMTk. The existing approach
to resizing is to use the execution time spent in GC to de-
termine the heap sizing ratio, after every full heap collec-
tion. We replace this algorithm with our own, which we call
Isla Vista (IV) Heap Sizing, that resizes the heap according
to the allocation stall activity that is captured by our state-
aware sampling system. IV heap sizing makes a decision
about sizing ateveryGC, i.e., both nursery and full heap
collection, as opposed to only at full heap collection in the
original system.

To implement IV heap sizing, we draw inspiration from
the TCP Reno congestion control [22, 12, 27, 3]. TCP Reno
uses loss events to estimate available bandwidth. The al-
gorithm manages acongestion windowthat determines the
number of packets that can be “in-flight” at one time. When
a loss event occurs, the system halves the window size. Oth-
erwise, it is allowed to grow linearly. The essential property
of this additive increase/multiplicative decreasescheme is
to identify a window size that enables convergence to a fair
allocation scenario [12].

We implement a similar strategy in the IV heap sizing al-
gorithm. We grow the heap linearly when there are no allo-
cation stalls and shrink the heap aggressively and slow the
growth factor for successive heap growth decisions, when
we detect allocation stalls during GC. This process attempts
to converge to a heap size that effectively balances the trade-
off between paging and GC cost.

We refer to the total size (used and unused) of the nursery
and the mature space asheaplimit. IV heap sizing increases
and decreasesheaplimit to grow and shrink the heap, re-
spectively. When the nursery reachesheaplimit, the system
performs a nursery collection. A collection free of alloca-
tion stalls indicates that the system has walked through the
entire nursery area without inducing page outs due to mem-
ory pressure. We record the currentheaplimit (before resiz-
ing) aslastHeaplimit and the size of the reserved space fol-
lowing this collection, in case we need it to shrink the heap
during subsequent collections. The reserved space follow-
ing collection is the size of the live data, i.e., the size of the
mature space. We record this value aslastHeapreserved for
later use. We grow the heap by increasingheaplimit which
we explain below.

When a GC experiences an allocation stall, we shrink
the heap and the growth factor. To shrink the heap, we set
heaplimit to be lastHeaplimit minus lastHeapreserved,

i.e., the size of the previous nursery. We do this so that,
in the worst case (i.e. when all of the previous nursery was
live and promoted to the mature space), we cut the nursery
size in half. In all cases, the new nursery size is between
1/2 and 1 times the previous nursery. We essentially “fit”
the mature space into the number of pages used by the last
successful nursery traversal (for which there were no allo-
cation stalls during collection). We never shrink the heap
below lastHeapreserved in the case where multiple shrink
events are initiated successively (due to increasing memory
pressure).

When we grow the heap, we increaseheaplimit by an
additive factor. We compute this factor, calledstep, as
stepbase×ratiogrow, wherestepbase is originally the max-
imum heap size specified by the user (to impose an upper
bound on growth to start with) minusheaplimit. ratiogrow

is a value between 0 and 1; we use the value0.02 in this
paper. When we shrink the heap, we also shrinkstepbase

to slow subsequent growth events. In this case, we update
stepbase to be stepbase - stepbase × ratioshrink, where
ratioshrink is a value between 0 and 1; we use the value
0.75 for ratioshrink.

We have selected values forratiogrow andratioshrink

based on our experience with Java benchmarks and their
memory behavior, e.g., the frequency of their collections.
We setratiogrow to be small so that we maximize the heap
within a small number of collections. We setratioshrink

to be closer to 1 (than say 0.5) so that we perform shrink-
ing often enough to improve performance without being too
aggressive.

On experimenting with various values forstepbase, we
found that our system is effective when this value ranges
from 0.02 to 0.05. Varyingstepbase within this range does
not significantly impact performance. We found that on set-
ting stepbase to a value outside this range, JikesRVM ex-
perienced failures, most likely due to a bug in the baseline
(unmodified) system itself. Consequently, we were unable
to directly measure the impact of settingstepbase to an ar-
bitrary value. However, the values that we have selected are
very effective for all of the benchmarks we have considered.

4. Results

In this section, we present an empirical evaluation of our
system. We first describe our experimental methodology
and then present our results.

4.1. Experimental Methodology

Our implementation of Isla Vista heap sizing is a kernel
module for the vanilla Linux kernel v2.6.16.9 and source
module for JikesRVM/MMTk from the CVS head dated
7/19/06. To capture the detailed timing and event count-



Table 1. Benchmark Descriptions.
Benchmark Description Mlocked Size Input

hsqldb JDBC-like in-memory benchmark, executing a number of 700 -s default
transactions against a model of a banking application

pmd Analyzes a set of Java classes for 640 -s default
a range of source code problems

bloat Performs a number of optimizations 640 -s default
and analysis on Java bytecode files

Db SPECJvm98 database access program 736 -s 100
Javac SPECJvm98 Java to bytecode compiler 736 -s 100

SPECjbb2000 Transaction processing application (we execute a fixed 700 -t 250000 -w 1
number of transactions)

ing information necessary to fully analyze IV, we have im-
plemented a separate profiling utility, independent of our
state-aware heap sizing system, that enables collection of
low level OS events. This profiler requires modification to
the kernel (and thus recompilation) for instrumentation of
the fault path of the kernel, and to enable our precise mea-
surements of the overhead due to different types of faults;
some of which we include in this paper. Note that IV it-
self does not require modification to the kernel – we imple-
ment the feedback mechanism (state-aware sampling) using
a dynamically loadable kernel module. To avoid introduc-
ing spurious overhead, we collect results using a separate
profiling process (which interacts with JikesRVM) whose
entire memory allocation is locked (using mlock) prior to
execution. We lock 300MB of memory for the collection of
profile data in all of our experiments. Moreover, we use this
profiling process to induce memory pressure artificially by
increasing the amount of memory it locks.

For all of our constrained memory experiments, we in-
duce memory pressure in this way (similar to that used
in [17]) so that we may make repeated empirical experi-
ments in a timely manner. The systems we have at our dis-
posal have sufficient memory so that for the benchmarks
to encounter memory pressure “naturally”, we would need
to run problem instances with execution times that would
preclude the repeated execution of each instance that is
necessary for statistical rigor. Due to the balancing done
by the Linux memory manager between various memory
pools (file buffers, slab allocation, process mapped mem-
ory), computing the exact amount of memory available to
processes at any point in time is difficult. For expediency,
we report the amount of physical memory available and the
amount of memory we have intentionally mlocked to pre-
clude it from being committed during virtual memory ac-
tivity by our test system.

We perform our experiments using the benchmarks

and inputs described in Table 1. They are from the
SPECjvm98 [26], SPECjbb2000 [25] (using a fixed number
of warehouses), and Dacapo [14, 16] suites. We selected the
benchmarks from these suites that exhibit some measurable
paging behavior within our experimental setting. Detailed
statistics for these benchmarks are available in [16]. In col-
umn three of the table, we indicated the amount of memory
that we mlock for each program (which ranges from 640MB
to 736MB). This value is the total mlock value including the
300MB that we employ for result collection.

We generate our results using a 3.2GHz Pentium Xeon
machine (16KB L1 cache and 1MB L2 cache) with 896MB
of addressable memory (HIGHMEM is disabled in the ker-
nel) and 5GB of swap. Unless otherwise stated, all of the
values that we present are the average of 10 runs – we in-
clude the range of one standard deviation above and below
this value in the graphs. We follow [17] and run each bench-
mark twice. We use the optimizing compiler during the first
run after which, we disable it and perform a full heap col-
lection. We then collect our performance results using the
second run during which no re-compilation is performed.
We then execute this process for each benchmark 10 times
and report the average across these 10 runs with error bars
that represent one standard deviation on either side of the
average.

We first show the impact memory pressure has on appli-
cation execution for our benchmarks. We then show the per-
formance improvement enabled by our heap sizing mecha-
nism and compare it to performance under no memory pres-
sure. Finally, we compare the performance of IV to the
baseline system with no memory pressure.

4.2. Evaluation

We begin by measuring the effect of memory pressure on
the performance. In Figure 2, we present degradation versus
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Figure 2. Execution time of the benchmarks under memory pres sure, normalized to their execution
time under no memory pressure. We induce memory pressure art ificially as we describe in Sec-
tion 4.1. Paging imposes performance degradations that ran ge from a few percentage points to 38X.

maximum heap size as specified by the “-Xmx” command-
line parameter to JikesRVM. Each data point is the execu-
tion time of the particular benchmark under memory pres-
sure, divided by the corresponding execution time of that
benchmark under no memory pressure. The worst-case
degradation due to memory pressure ranges from a factor
of 1.5 to a factor of38 across benchmarks. The data in
this graph shows both that the performance degradation due
to memory pressure is significant across a range of user-
specified maximum heap sizes, and that it is highly bench-
mark specific.

We hypothesize that the degradation shown in these ob-
servations under memory pressure is due to paging, and also
that the cost of paging is significantly higher than that of
GC. We have verified that this is the case by comparing pag-
ing and GC overhead under these scenarios. We summarize
this data later in this section. However, if this hypothesisis
true, then our methodology which avoids page faults at the
expense of additional collections should show substantial
performance improvement under memory pressure.

Figure 3 shows these results. The graphs show for bench-
mark and a range of specified maximum heap sizes, the exe-
cution time in seconds for the baseline (Base) system which
uses the default JikesRVM heap sizing algorithm and for IV
heap sizing. For both scenarios (Base and IV), we present
results for when we induce memory pressure (MemPres-
sure) and when we do not (NoPressure).

For all benchmarks and heap sizes, IV significantly out-
performs the baseline heap growth manager when under the
same memory pressure. On average, performance IV im-
proves performance over the baseline by factors ranging
from 2 to 10. Moreover, IV performance in the presence
of memory pressure is similar to the baseline system’s per-
formance without memory pressure (Base-NoPressure). IV
execution under memory pressure is always within a fac-
tor of 2 of the baseline system without memory pressure,
with several cases being only slightly slower. Finally, with-
out memory pressure, IV in some cases achieves better per-
formance than the baseline. This improvement is a con-
sequence of the ability of our heap growth mechanism to
reach a larger heap size, faster, i.e. more aggressively, in
the absence of memory pressure.

The memory pressure data also exhibits some interesting
performance characteristics and anomalies. Most notable
(and perhaps counter-intuitive), is the similar shapes in the
curves. Each benchmark exhibits a similar performance tra-
jectory (although at different heap sizes): performance is
efficient and stable for small heap sizes, it then degrades
quickly (due to a combination of paging and GC) and then
“plateaus” at a very low performance level. This behavior
emphasizes the importance and potential of the intelligent
heap sizing of IV to avoid ungraceful degradation and the
poor-performance of the plateau.

Other performance characteristics under memory pres-
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Figure 3. Performance versus maximum heap size. The graphs s how, for each benchmark, the exe-
cution time in seconds when for the baseline (Base) system wh ich uses the default JikesRVM heap
sizing algorithm, and for Isla Vista heap sizing. For both (B ase and IV), we present results for when
we induce memory pressure (MemPressure) and when we do not (N oPressure). In all cases, IV
enables performance behavior similar to that when under no m emory pressure, a dramatic improve-
ment over the baseline system.



sure that we observe in this data are benchmark-specific or
similar across certain benchmarks. With 640MB locked,
pmd and bloat begin to experience performance degradation
at different heap sizes (128MB and 80MB, respectively).
With 736MB locked, db and javac also behave differently
with db suffering degradations early on, for heaps as small
as 40MB; javac starts experiencing degradation at around
56MB. With 700MB locked, the performance of hsqldb and
SPECjbb2000 starts to degrade around the same heap size,
72MB. However, there is a marked difference in the impact
the next increment in heap size: SPECjbb2000 jumps dra-
matically while hsqldb degrades more gracefully. hsqldb
and javac having a large spike followed by a lower smooth
plateau as the heap sizes increase. For both these programs,
there are no full heap collections triggered when the heap
size reaches the “plateau” region. Consequently, there is a
sudden drop in execution times.

We next present more detailed analysis of the perfor-
mance of IV versus the baseline. Table 2 presents GC and
page faults metrics. The table shows, for each benchmark
and system configuration (IV or Base), the count of and
time spent in nursery collections, the count and time spent
in full heap collections, and the count and time for major
page faults. In all cases, we present time in seconds.

The data shows how IV heap sizing trades off GC for VM
paging. IV incurs more GCs compared to the baseline sys-
tem, and induces significantly less paging compared to the
baseline. For example, if we consider SpecJBB2000, the
data shows that IV heap sizing performs 283 nursery, and
21 major collections, compared to 51 nursery, and 26 major
collections for the baseline system. This amounts to 227 ex-
tra garbage collections (nursery and full) in case of IV heap
sizing. Yet, we induce 0 page faults; the baseline spends al-
most 13 seconds page faulting. The fraction of GCs that are
overhead in case of IV heap sizing can be computed as the
total number of extra GCs for IV divided by the total num-
ber of GCs for IV. In this example (SpecJBB), this fraction
is 0.75 (227/304). This fraction multiplied by the total time
per GC for IV (nursery + full heap, i.e. 2.010 + 2.306),
gives us the extra GC time that we add, i.e. 0.75 * 4.316,
or 3.24 seconds in this example. That is, in this example,
we trade 3.24 seconds spent in extra garbage collection for
almost 13 seconds saved by not incurring page faults.

In Table 3, we examine the performance of IV relative to
the Baseline in greater detail. The table is organized as three
columns, each of which is subdivided to show two cases
(80MB and 240MB specified maximum heap size). Each of
the three columns illustrates the performance of IV as com-
pared to the Baseline under the relevant set of memory pres-
sure conditions. Each value is a ratio of execution times,
baseline divided by IV. In the first major column, we show
the ratio of the baseline execution time to the execution time
of IV under memory pressure. If the maximum heap size

specified is large enough to allow IV to expand the heap
sufficiently, (e.g. the 240 MB case) then IV outperforms
the baseline across benchmarks in the presence of memory
pressure. Notice that for pmd and SPECjbb2000 there is a
slight performance degradation relative to baseline. (Note
that this degradation is not visible in Figure 3 since it repre-
sents approximately0.5% of the maximum value shown on
the graph).

In the second major column, we show the ratio of base-
line times to IV times, when the baseline experiences no
memory pressure, but IV does. Values in this column de-
tail how close IV is able to come to completely alleviating
the performance degradation introduced by memory pres-
sure entirely (i.e. how close IV can come to the case for
the baseline with no memory pressure). Here the results are
mixed. For several benchmarks and maximum heap size
combinations, IV is able to closely approximate pressure-
less execution (achieving90% or better). For a few bench-
marks, however, while it improves performance (as shown
in Figure 3) the percentage improvement does not achieve
the same speed as the baseline without memory pressure.

In the third major column, we compare IV to the baseline
when neither experiences memory pressure. In this case,
undersizing the maximum allowable heap causes IV to suf-
fer relative to the baseline due to additional collections it in-
duces. However, again when the maximum heap size allows
IV sufficient flexibility, it achieves similar performance to
the baseline.

The data in this table suggests that by specifying a large
maximum heap size (e.g. 240MB) and then allowing IV to
dynamically size the heap it will achieve the same or better
performance to the baseline in both with and without mem-
ory pressure. When no pressure exists, IV will match or
outperform the Baseline (with the exception of pmd). When
pressure exists, using IV to size the heap will always im-
prove performance.

5. Related Work

Much prior work has investigated the interaction be-
tween operating system virtual memory (VM) paging be-
havior and garbage collection (GC) in an MRE. We identify
the work most related to our own and articulate the differ-
ences here.

The works most similar to our own are the bookmarking
garbage collector [17] and specialized VM support within
Linux for GC runtimes in a system called CRAMM [32].
In [17], the authors propose a new garbage collector, called
the Bookmarking Collector (BC), and extensions to the
Linux kernel which enable interaction between the MRE
and OS to guide heap sizing decisions. BC maintains a
pool of free pages and grows the heap until there are none
left. BC records summary information (called bookmarks)



Table 2. The tradeoff between more garbage collections and p aging with memory pressure.
Benchmark Heap Sizing Nursery GC Full Heap GC Major Faults

Count Time (sec) Count Time (sec) Count Time (sec)
IV 256 3.025 30 4.053 2753 1.378

bloat Base 106 33.175 96 48.267 61515 101.745
IV 14 0.054 0 0.000 84 0.984

db Base 18 0.271 10 4.832 2920 4.613
IV 107 0.523 2 0.273 123 0.203

hsqldb Base 106 8.497 26 12.652 14537 17.624
IV 33 0.420 1 0.172 56 0.000

javac Base 29 10.405 0 0.000 4304 5.208
IV 352 3.261 27 3.463 237 0.000

pmd Base 127 42.831 60 30.277 33405 46.840
IV 283 2.010 21 2.306 0 0.000

SPECjbb2000 Base 51 6.296 26 12.733 10059 12.983

Table 3. Performance comparison of IV and the baseline under different scenarios.
Base-MemPressure / Base-NoPressure / Base-NoPressure /

Benchmark IV MemPressure IV MemPressure IV NoPressure
80MB 240MB 80MB 240MB 80MB 240MB

hsqldb 2.107 3.837 0.713 0.410 0.850 1.142
pmd 0.869 6.484 0.812 0.671 0.822 0.966
bloat 2.167 10.986 0.916 0.335 1.146 1.051
db 1.430 1.446 0.984 0.969 1.000 1.078
javac 11.566 3.744 0.999 0.818 0.882 1.000
SPECjbb2000 0.889 1.714 0.882 0.876 1.023 1.036

about evicted pages to avoid paging during GC, i.e., to per-
form GC only in available physical memory. In addition,
BC guides eviction decisions that are made by the oper-
ating system, i.e., the collector is tightly coupled with the
underlying OS implementation.

The authors of [33, 32] extend the Linux VM man-
ager to reduce page faults caused by GC for garbage-
collected MREs – independent of the GC itself. The sys-
tem, CRAMM, computes working-set size information on a
per-process basis and couples the information with minor
page fault events which CRAMM induces via intelligent
page write-protection. CRAMM uses the data to param-
eterize an analytical model to guide heap sizing decisions
made by the OS. For each process that uses GC, CRAMM
sets (and adjusts) the heap to be as large as possible without
inducing page faults.

Our work has the same goal: to eliminate VM paging
overhead due to GC. Like CRAMM, we improve perfor-
mance using, and independent of, existing garbage collec-
tors. However, we are distinct in that we provide a sys-
tem design which is effective, yetvery simple, easy to use
and reimplement. IV is designed to preserve the integrity
of the fundamental components of the OS and MRE (VM
and GC algorithms), avoiding potential destabalization. In

doing so, we avoid modifying the kernel at all and intro-
duce only minor changes to the MMTk. Prior systems are
highly complex in requiring expert ability to install, a new
GC ( [17]) that is tightly coupled with the OS VM system,
or significant modifications to fundamental kernel subsys-
tems (memory manager) and, thus, recompilation of the ker-
nel boot image. Despite the simplicity of our design, IV
offers dramatic performance improvements when the sys-
tem MRE experiences memory pressure and introduces lit-
tle overhead when there is no memory pressure.

Zhang et al in [34] use program phase behavior to guide
heap sizing. The authors identify the phases of execution
exhibited in each program offline and modify the program
prior to execution to mark phase boundaries. They explic-
itly check the number of page faults during garbage col-
lection and the current heap size after a fixed number of
phases execute. If the number of page faults during these
intervals exceeds a certain threshold, the system explicitly
invokes a GC. After a GC, the heap is sized by perform-
ing a binary search over a range of heap sizes using a fixed
step size. The authors define their step arbitrarily to be 10
and their page fault threshold empirically to be 10. On the
other hand, IV uses only on-line feedback from the OS af-
ter GC to guide heap sizing and requires no modification to



the program. Moreover, we find that allocation stall events
are better predictors of GC paging behavior than page faults
for our system. We are currently investigating whether ad-
ditional information about program phases can help guide
heap sizing decisions.

Xian et al [31] observe that some commercial virtual ma-
chines like the Hotspot VM do not take into account phys-
ical memory availability when resizing the heap. The heap
size often grows larger than the physical memory, which
causes performance degradation due to a large number of
page faults. They modify the existing heap sizing mech-
anism in Hotspot to grow the heap by a one percentage
value during collection when the heap size is 75% of avail-
able physical memory, and by another percentage when it
is over 75%. They experiment with different percentage
values and observe that they achieve the best performance
when the heap expands by 10% until it is 75% of the phys-
ical memory, and by 5% afterward. More importantly, their
observations show that the best thresholds are application-
specific and that conservative heap growth can significantly
degrade performance. The authors of this work do not con-
sider shrinking the heap. We exploit these observations in
our system to use online feedback and to aggressively grow
the heap when we predict that paging will not occur (no al-
location stalls during GC). However, we employ allocation
stalls to guide resizing. Moreover, we find shrinking the
heap is vital for enabling high performance when memory
becomes constrained.

Alonso et al [4] uses coarse-grained information from
the Linux VM manager via the UNIX utilityvmstat to
guide decisions to shrink the heap when the memory pres-
sure is high. The authors do not perform heap expan-
sion. Brecht et al [11] resize the heap using rules based
on application-specific, static memory sizes. Their system
allocates memory (according to this static size) to the ap-
plication upon invocation. Cooper et al [13] use a user
specified parameter, called the memory use target, to size
the heap for an Appel-style GC. They attempt to adjust the
heap to make full use of the available memory, if it matches
the user specified target. Other resizing techniques are per-
formed in some commercial Java virtual machines, such as
JRocket and HotSpot [7, 20]. These JVMs resize their heap
using command line and other statically defined parame-
ters. The primary limitations of these approaches are their
inability to adapt to changes in program behavior and mem-
ory availability and the significant burden they place on the
programmer to identify the “right” heap size for every hard-
ware/OS/application combination. We preclude program-
mer participation and enable high performance automati-
cally and simply by dynamically adjusting the heap size in
the MRE according to paging behavior that we predict using
allocation stall events from the OS.

6. Conclusions and Future Work

Using allocation stall event statistics recorded in the
Linux virtual memory subsystem as a trigger, Isla Vista dy-
namically resizes the JikesRVM/MMTk heap to avoid GC-
induced paging. Coupled with a linear-growth and expo-
nential reduction resizing algorithm (in the spirit of TCP
Reno), IV offers dramatic performance improvements over
the unmodified GenMS collector when memory pressure or
user misconfiguration causes paging during garbage collec-
tion. More so, when adverse conditions do not occur, IV
adds relatively small overhead for some benchmarks, and
improves performance for others.

IV achieves these results while requiring relatively few
non-intrusive modifications to the standard, publicly avail-
able JikesRVM and Linux releases. Our system retrieves
feedback via a dynamically loadable kernel module, thereby
preserving the integrity of the critical memory management
subsystem in the kernel and avoiding inconvenient kernel
patching followed by recompilation. The changes necessary
to JikesRVM are confined to a single additional module that
interacts with the kernel module to adjust the heaplimit.

As part of our future work, we plan to investigate how IV
reacts to dynamically changing external memory pressure,
due to other applications that might be competing with the
virtual machine for resources.

In addition, we plan to investigate how IV’s performance
gains compare to previously reported systems, which re-
quire substantial modification to the kernel, the garbage col-
lector, or both. Such a comparison will detail the execution
“cost” of using a non-intrusive approach (with the concomi-
tant benefit of being able to rely on stable, often-tested ker-
nel software) versus a highly specialized approach that re-
quires extensive re-engineering of the system. In this work,
we focus solely on the empirical investigation of the per-
formance gains that are possible using a non-intrusive ap-
proach versus the unmodified standards: we find that such
gains are substantial.

More generally, we plan to evaluate our heap sizing
mechanism for other collectors and virtual machines. We
are also interested in the use of our technique for other oper-
ating systems and architectures. Note that we do not require
any specific information about the GC to be used, such as
the size of the nursery. We believe that our mechanism can
be used with a wide variety of collectors, generational and
non-generational.
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