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ABSTRACT 
A high-performance implementation of a Java1 Virtual Machine 
(JVM) consists of efficient implementation of Just-In-Time (JIT) 
compilation, exception handling, synchronization mechanism, and 
garbage collection (GC).  These components are tightly coupled to 
achieve high performance. In this paper, we present some static and 
dynamic techniques implemented in the JIT compilation and 
exception handling of the Microprocessor Research Lab Virtual 
Machine (MRL VM), i.e., lazy exceptions, lazy GC mapping, 
dynamic patching, and bounds checking elimination.  Our 
experiments used IA-32 as the hardware platform, but the 
optimizations can be generalized to other architectures. 

1 INTRODUCTION 
A Java compiler compiles Java source code into a verifiably secure 
and architecture-neutral format, called Java bytecodes. A JVM 
interprets the bytecodes at run time. In a high-performance 
implementation of a JVM, a JIT compiler translates Java bytecodes 
into native code at run time.  Since translation is taking place during 
program execution, the compilation time is now part of the 
execution time. Contrast this to the traditional methodology of 
performance measurement, in which compilation time is ignored. 
As such, it is important for the JIT compiler to be conscious of 
compilation time.  Hence, applying expensive optimizations to all 
methods is not always justified because not all of the methods are 
frequently executed.  Lightweight optimizations have been shown to 
be effective and fast in terms of trading code quality for compilation 
speed [1]. The code quality, however, is sub-optimal due to the lack 
of intensive compilation analysis, which is extremely important for 
frequently executed methods. How to trade off code quality vs. 
compilation time is crucial in the design of a JVM. 
The Java language [12] provides exceptions as “a clean way to 
check for errors without cluttering code” [5].  At the point where an 
error is detected, an exception object is created and thrown. An 
exception handler can catch exceptions of a specific type. A stack 
trace containing all frames from the top to the bottom of the stack is 
constructed.  After the object is created, the stack is traversed again 
starting at the active frame (top of the stack) and proceeding until 
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either a compatible exception handler is found or the bottom of the 
stack is reached.  Exception handling is expensive because it 
involves the creation of the exception object, the traversal of the 
stack, and the search for the compatible exception handler.  For 
applications throwing a large number of exceptions, efficient 
exception handling is one of the important factors to achieve high 
performance. 
The rest of the paper is organized as follows. In Section 2, we 
present the infrastructure of the compilation model of the MRL VM. 
In Section 3, we describe the exception model of the MRL VM. In 
Section 4, we discuss some key optimizations implemented in the 
optimizer that try to eliminate the run-time overhead statically. In 
Section 5, we discuss some dynamic techniques that implement 
exceptions efficiently, generate the GC map lazily, and patch native 
code to preserve correctness. In Section 6, we present two 
mechanisms of the compilation model that trigger recompilation. In 
Section 7, we show the measurements of the effectiveness of the 
techniques. Finally, in Section 8, we give conclusions. 
2 COMPILATION MODEL 
The compilation model of the MRL VM implements a dynamic 
recompilation mechanism.  The key to our approach is to adaptively 
and selectively perform simple code translation in a timely fashion 
for cold methods and expensive optimizations solely for hot 
methods. The main goal is to generate optimized code for those 
methods whose previously compiled code is considered non-
optimized due to the lack of run-time value information, profiling 
information or available compilation time.   
Dynamic recompilation happens at run time and we need to make 
sure that the time spent on recompilation is paid off by the 
performance gain obtained from recompilation. Initially, all 
methods are compiled by a fast code generator that produces 
reasonably good code. Minimizing compilation time and gathering 
profiling information are the major concerns at this point, not 
producing the best code quality. As the program executes, the VM 
adaptively identifies hot (frequently executed or loop-intensive) 
methods and performs expensive optimizations to improve code 
quality.  
The structure of dynamic recompilation of the MRL VM is similar 
to the Jalapeño optimizing compiler [7], consisting of three major 
components: a fast code generator (baseline compiler), an 
optimizing compiler, and profiling information (as depicted in 
Figure 1). All methods are compiled to native code by the fast code 
generator when first invoked. Instrumenting code is inserted into the 
native code to collect profiling information. As the code is executed, 
the instrumenting code updates the profiling information.  Later, 
based on the collected profiling data, some methods are identified as 
hot methods and then recompiled by the optimizing compiler, using 
the profiling information to guide optimizations.  The VM registers 
the optimized code so that the subsequent invocations of the 
methods invoke the optimized versions instead of the old 



 
 
 

 
 

(unoptimized) ones. The previously compiled code, if still 
referenced by existing stack frames, will be executed when the 
frames become active.  
Our current dynamic recompilation is not a staged compilation 
model [20][11], which performs most expensive analyses statically 
and postpones some optimizations until run time. In other words, the 
optimized code will not be considered for recompilation even if the 
program behavior changes. With the two compilers in the VM, the 
fast code generator and the optimizing compiler, the VM records the 
information pertaining to who the producer of the native code of a 
method is so as to invoke the right compiler to unwind the stack 
frame as well as report the live references for garbage collection. 

Figure 2 shows some of the relevant internal structure of the MRL 
VM. Associated with each method is a data structure called 
METHOD, which consists of name and descriptor of the method, 
pointer to an exception table, pointer to default native code, and a 
linked list of JIT information.  Prior to recompilation, the default 
native code points to the unoptimized native code. As soon as the 
method is recompiled, the default native code is updated to point to 
the optimized code. Since multiple JIT compilers can exist at the 
same time, the VM maintains a linked list of JIT_INFO structures 
containing specific information for the method generated by the JIT 
compilers. The information is mainly for the purpose of handling 
exceptions, unwinding stack frames, enumerating the root set for 
GC, and collecting profile data. For example, the JIT_INFO on the 
right of Figure 2 is for the fast code generator, consisting of 
“Native” pointing to the unoptimized native code, and “Method 
info” pointing to GC mapping and profile data representation. 

2.1 Fast code generator 
Methods are initially translated into native code by the fast code 
generator. This approach has been shown to be fast and 
effective [1]. The main goal here is to produce native code quickly 
while maintaining reasonable code quality. It takes two passes over 
the bytecodes with linear time complexity: The first pass collects 
information such as basic block boundaries and the depth of the 

Java operand stack. The second pass uses the lazy code selection 
approach to generate efficient native code and performs some 
lightweight optimizations (e.g., bounds checking and common 
subexpression elimination). Instrumenting code is inserted to gather 
profiling information as well as to trigger recompilation.  

2.2 Fast code generator versus interpreter 
One possible implementation of dynamic recompilation is to replace 
the fast code generator with an interpreter. Namely, methods are 
interpreted until they are identified as hot [25][21]. The reason that 
we choose fast code generation instead of interpretation is twofold:  

• The interpreting approach reduces the compilation time 
dramatically at the price of performance degradation.  The 
performance gap between interpreting bytecodes and running native 
code can easily reach orders of magnitude. With such a huge 
performance gap, it is crucial for the JVM to compile hot methods at 
the right point because lazy compilation incurs a huge performance 
loss due to interpreting, and eager compilation may end up 
compiling a lot of cold methods.  The window of the right moment 
to trigger compilation could be so narrow that it is easily missed. 
Once the window is missed, the penalty is high. However, the 
performance gap between the fast code generator and the optimizing 
compiler is relatively small, around 30%, for computation intensive 
applications. Therefore, the window for triggering recompilation is 
wider than the interpreting approach, allowing more flexibility in 
terms of determining when to recompile. Besides, because the 
compilation time of the fast code generator is small, saving a small 
amount of compilation time is not worth a huge performance loss. 

• Applications running in debugging mode [24] require support 
from the JIT compilers to inspect the state of the execution of a 
program (e.g., printing or setting values of variables) and to control 
the execution (e.g., setting a breakpoint). That is, the compilers need 
to provide the addresses of variables and the native code offsets of 
bytecode locations. Providing this information in an optimizing 
compiler can be complicated because global optimizations and 
instruction scheduling can cause endangered or nonresident 
variables [2][3]. Always interpreting the program during debugging 
may not be acceptable to the users because of slow execution time. 
Another alternative is for the JVM to dynamically fall back to the 
interpreting mode on demand for a method compiled by the 
optimizing compiler when users want to debug the method. This 
transition process is called deoptimization, which is similar to [15].  
The drawback of this approach is that the transition from native 
code to the interpreter can complicate the design of the JVM 
because the compiler needs to record the information for 
deoptimization. The fast code generator does not have the 
drawbacks of the two previous approaches because the fast code 
generator does not do any aggressive optimizations that could cause 
inconsistent run-time values. 

2.3 Profiling data 
There are two kinds of locations where the fast code generator 
instruments code: method entry points and back edges.  The former 
tells if a method is call intensive.  The latter indicates if a method is 
loop intensive.  When the optimizing compiler is invoked to 
recompile a method, the profiling information associated with the 
method is retrieved to guide optimization decisions such as inlining 
policies and code layout decisions.  How the optimizer makes these 
decisions based on the profiling information is discussed in Section 
4. 
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2.4 Optimizing Compiler 
Global optimizations are highly effective in improving the code 
quality.  However, they are expensive in terms of compilation time. 
We are willing to afford more time to apply global optimization to a 
method only if the method is identified as hot. The optimizing 
compiler takes a conventional compilation approach that builds an 
intermediate representation (IR) and performs global optimizations 
based on the IR.  

The structure of the optimizing compiler is depicted in Figure 3.  
There are several major phases. The profile information is used to 
guide optimization decisions such as inlining policy, where to apply 
expensive optimizations, and the code layout in code emission. The 
prepass phase is similar to the one described in [1], which traverses 
the bytecodes and collects information such as Java operand stack 
depth and basic block boundaries.  The IR construction phase then 
uses the information to build the control flow graph and IR 
instruction sequence for each basic block.  Local common 
subexpression elimination across extended basic blocks is done 
during construction. The inlining phase iterates over each instruction 
to identify which call sites are inlining candidates. The control flow 
graph and IR are constructed for the inlined call sites and then 
merged (grafted) into the caller’s, combined with exception tables. 
The global optimization phase performs copy propagation, constant 
folding, dead code elimination [4], bounds checking elimination and 
limited loop invariant code motion. With only 7 registers in IA-
32 [16], registers are considered precious resources.  Thus, we avoid 
optimizations that are expensive and more likely to increase register 
pressure, such as code motion and partial redundancy elimination, 
because it is hard to justify that the optimizations can provide 
substantial performance speedup.   
The conceptual backend of the optimizing compiler starts from the 
code expansion phase. It expands (lowers) some IR instructions 
because there is no direct one-to-one mapping from the IR 
instructions to native instructions.  For instance, a 64-bit (long) 
add instruction is done via two 32-bit instructions, one add and 
one adc (add with carry).  64-bit shift and division instructions are 
expanded into run-time calls. For the ease of detecting common 
subexpressions in the IR construction phase, those instructions are 
not expanded originally. Expansion facilitates gathering the GC map 
(liveness of references) because our GC support requires a one-to-
one mapping relationship between IR and native instructions [22].  
Global register allocation assigns physical registers and generates 
spill code.  The GC support phase computes the GC map at every 
instruction to make every instruction GC-safe. Simple compression 
techniques are used to reduce the size of the GC map. The code 
emission phase iterates over the instructions and emits native code 
and the compressed bit stream of the GC map. 

3 EXCEPTION MODEL 
Consider the following simple, if a bit silly, Java application. 
class sum { 
 public static void main(String args[]) { 
  sum i = new sum(); 
  i.printSumOfInts(args); 
 } 
 
 public void printSumOfInts(String strArr[]) { 
  try { 
   int result = sumOfIntsAsStrings(strArr); 
   System.out.println("The sum is " + result); 
  } catch(NumberFormatException e) { 
   System.out.println("Error!"); 
  } 
 } 
 
 public synchronized int 
 sumOfIntsAsStrings(String strArr[]) { 
  int sum = 0; 
  for(int i = 0; i < strArr.length; i++) 
   sum += Integer.parseInt(strArr[i]); 
  return sum; 
 } 
} 

This program interprets command line arguments as integer 
numbers and prints their sum.  The exception mechanism is used to 
handle arguments that are not valid integers.  If such an argument is 
found, an error message is printed.  For illustrative purposes, we 
have made this program more complicated than necessary.  For 
instance we have declared one of the methods as synchronized, even 
though there is no need for synchronization in this simple, single-
threaded program. 
In this example the code of the library method Integer.parseInt 
(not shown) creates and throws the NumberFormatException 
when its argument is not a valid integer number.  The exception is 
caught by the handler declared in printSumOfInts and the error 
condition is handled there. Two points are worth noting: 
Method sumOfIntsAsStrings is declared as synchronized. 
That means that a monitor associated with the this object is 
entered when the method is entered and the monitor must be 
released when we exit the method.  If the exception is thrown, the 
VM must make sure that the monitor is released as part of the 
exception throwing process. 
An exception object contains a stack trace that can be printed at any 
point, even after some of the stack frames referred to in the trace 
cease to exist.  In our example we could add the following method 
invocation to the exception handler: 
        e.printStackTrace(); 

which might produce the output: 
java.lang.NumberFormatException: badnumber 
        at java.lang.Integer.parseInt 
        at sum.sumOfIntsAsStrings 
        at sum.printSumOfInts 
        at sum.main 

if the string “badnumber” were entered as a command line argument 
to our application.  The exact format of the stack trace output is 
implementation-dependent (Section 20.22.6 of the Java Language 
Specification [12]).   
The JVM specification ([19], Section 2.16.1) categorizes exceptions 
in three groups depending on the cause of the exception: 
An abnormal execution condition was synchronously detected by 
the Java VM. 
A throw statement was executed 
An asynchronous exception occurred. 
This classification is important in our work, because exceptions in 
the second category are more difficult to analyze and the description 
of lazy throwing of those exceptions is a major part of our paper.  
For the purpose of this paper, we call those exceptions user 
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exceptions, because they may be created and thrown from user code.  
By contrast, we will refer to exceptions in the other two groups as 
VM exceptions, because they are detected and thrown by the JVM. 

3.1 Interaction Between the Core VM and 
the JIT 

The MRL VM has a well-defined interface between the core VM 
and the JIT compiler. There are two parts to the interface: compile- 
and run-time.  The compile-time interface is used by the VM to 
invoke the compiler for a specific method and by the compiler to get 
information needed to compile the method and to inform the VM 
what the exception table for the compiled method is.  Our VM uses 
an exception table similar to the one defined by the JVM 
specification.  However, the exception table created by the JIT 
compiler is expressed in terms of the generated native code and the 
JIT can add new entries to handle some optimizations (see Section 
4.3) and delete some entries as the result of other optimizations. 
The run-time part of the interface (the JIT runtime) is used by the 
VM to ask the JIT compiler to perform JIT-dependent tasks: stack 
unwinding, enumeration of the root set for garbage collection, etc. 

3.2 Unwinding Process 
At the moment of throwing the exception in our example there are 
four frames on the stack.  At the bottom of the stack is the 
sum.main method.  Then methods printSumOfInts, 
sumOfIntsAsStrings and Integer.parseInt were invoked.  
The active frame corresponds to method Integer.parseInt.  At 
this point in the execution an exception of type 
NumberFormatException is thrown.  In general any of the 
methods on the call stack may have registered a handler compatible 
with the NumberFormatException type.  In our example there is 
only one such handler, declared in printSumOfInts. 
A simple VM implementation would create an exception object of 
type NumberFormatException as soon as the appropriate 
condition is detected.  As part of the exception object creation, a 
constructor of the object would be invoked.  The constructor would 
create the stack trace and store it in the exception object.  A stack 
trace is constructed in a non-destructive stack traversal.  The stack 
trace contains all frames from the top to the bottom of the stack.  
After the object is created, the stack would be traversed in a 
destructive way starting at the active frame (top of the stack) and 
proceeding until either a compatible exception handler is found or 
the bottom of the stack is reached. 
The difference between non-destructive and destructive unwinding 
is that in the latter case as we unwind to the previous frame, we 
release various VM resources.  After we destructively unwind from 
a frame, the execution can no longer resume in that context.  
Resources released by the VM during the destructive unwind 
include Java monitors (for synchronized methods) and internal VM 
data structures.  In our example, the destructive unwind exits the 
monitor associated with the execution of the synchronized method 
sumOfIntsAsStrings. 
The unwinding process starts with a context of a thread and 
determines the context of the caller.  If the active frame belongs to a 
Java method compiled by the compiler, the VM calls the compiler 
runtime to perform the unwind.  This arrangement allows great 
flexibility in the frame layout used by a JIT compiler, because the 
frame is a “black box” to the VM and a new JIT compiler can be 
plugged into the core VM without any modifications to the VM. 
If the active frame does not belong to a Java method compiled by 
the JIT compilers, the VM uses its internal data structures to find the 

caller’s context.  This condition always occurs for native methods.  
The VM is responsible for maintaining a sufficient state to make this 
possible even though we assume no cooperation from the native 
code other than following a native interface like the Java Native 
Interface (JNI). 
The traversal of the stack is implemented as a loop starting with the 
context of the frame on the top of the stack and ending at the bottom 
of the stack in the case of the non-destructive unwind or at the frame 
with the correct handler for the destructive unwind.  The most 
important operations are the method lookup and frame unwind 
functions. 
The method lookup function takes the instruction pointer (IP) as an 
argument and returns a pointer to JIT_INFO, a structure 
representing the method and the JIT compiler used to generate this 
code.  JIT_INFO is described in Section 2 and visualized in Figure 
2.  In our VM every Java method is compiled to a contiguous area 
of memory.  Given that assumption we organize our lookup table as 
a sorted array of IP ranges (start_IP..end_IP).  The method lookup 
performs a binary search of the table. 
The frame unwind uses the information generated by the JIT 
compiler at compile time to unwind the stack frame to the frame 
belonging to the caller.  The unwind process must restore the values 
of the IP, stack pointer (SP) and callee-saved registers.  Note that a 
Java method may have been recompiled and in that case it is 
possible that at the same time there exist frames corresponding to 
the same method compiled by different compilers.  Therefore the 
stack traversal loop must use the appropriate compiler to unwind 
every frame.  This is possible because the JIT_INFO returned by the 
method lookup represents the method and the compiler used to 
compile it. 
The MRL VM uses the value of the IP register to determine if there 
are handlers registered for this value of the IP and if so whether the 
thrown exception is an instance of the catch type recorded in the 
exception table. 

4 STATIC OPTMIZATIONS 
In this section, we discuss some key optimizations implemented in 
the optimizer that try to eliminate the run-time overhead statically.  

4.1 Class initialization 
The JVM Specification ( [19], Section 5.5) requires that a class is 
initialized at its first active use. The JIT compiler needs to make sure 
that the class is initialized before a non-constant field declared in the 
class is used or assigned. We take a simple approach to eliminate 
checks for class initialization. When building the IR for 
getstatic and putstatic bytecodes, we call a helper routine 
provided by the MRL VM to query if the class of the field has been 
initialized. If the class is not yet initialized at the current compile 
time, at run time right before the getstatic and putstatic, 
we check if a class is initialized.  If the check fails, that field access 
is the first active use and the class is initialized. 

4.2 Checkcast 
A cast conversion must check at run time if the cast cannot be 
proven correct at compile time ([12], Section 5.5). The compiler 
generates a run-time helper call for checkcast. There are two 
methods we use to reduce the run-time overhead for checkcast. 
First, we use local common subexpression elimination to determine 
whether the helper call is necessary.  As we build the IR for a 
checkcast bytecode that casts an object x of class A to the 
resolved type B, we check whether  “x instanceof B” is 
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available at this point. In our implementation, we propagate the 
availability of an instanceof only if the instanceof is used 
as a control-flow condition. The availability of the instanceof is 
then propagated along the path on which the result of the 
instanceof is true. Second, we partially inline the commonly 
executed path of the helper call so as to eliminate the run-time call 
overhead along the path. 

4.3 Bounds checking  
The Java language specifies that all array accesses are checked at 
run time ([12], Section 10.4); an attempt to use an index that is out 
of bounds causes ArrayIndexOutOfBounds Exception 
exception to be thrown.  The compiler can eliminate bounds 
checking code if it can prove that the index is always within the 
correct range. If the compiler cannot prove that, the array reference 
must include bounds checking code (one unsigned compare and one 
branch).  Bounds checking code can be very expensive for 
computation-intensive applications that heavily involve arrays.  
The optimizing compiler performs analysis to figure out the range 
that an array might access within a loop. If the range is known, the 
compiler creates a cloned loop and eliminates the bounds checking 
code for the array accesses by inserting code outside the loop to 
check if both the lower and the upper limits are within the correct 
range (as depicted in Figure 4 (b)). If either one of the limit checks 
fails, the original loop with bounds checking code is executed 
because the array accesses might cause ArrayIndex-
OutOfBoundsException to be thrown. For simplicity, we use 
the notation @(j,arry,label) to indicate the bounds checking 
code which contains two instructions: “cmp arry.length,j” 
comparing the index variable j against the length of array arry, 
and “jbe label” branching to the label if j is greater than or 
equal to the length of arry. Comparing j against arry’s low limit 
(zero) is unnecessary because the code sequence also branches to 
the label when j is negative (below zero). The compiler performs 
code hoisting for the newly cloned loop to move invariant code out 
of the loop (e.g., load of a[i]). 
The code inserted in BB1 of Figure 4 might throw exceptions, 
possibly causing exceptions to be thrown out of order. The Java 
language requires precise exceptions: all effects of the statements 
executed and expressions evaluated before the point from which the 
exception is thrown must appear to have taken place ([12], Section 
11.3.1). To ensure not to violate the requirement of precise 
exceptions, the compiler does not hoist code that can cause any side 
effects, e.g., array store or putfield. Thus, the compiler does not 
need to recover the old values of arrays, fields, and variables once 
an exception happens in BB1. Moreover, an exception handler, 
whose handler routine is the original loop, is created to catch any 
exception that might happen within BB1. Once the exception 
handler catches any exception, the transfer of control takes place 
(indicated by dotted arrows in Figure 4 (b)) and the original loop is 
then executed.  During the execution of the original loop, exceptions 
are thrown in the right order. 
Let us consider an example. Assume that j/k throws 
ArithmeticException (division by 0) during the first 
iteration of the loop. That is, the execution of the original loop 
throws ArithmeticException. Also assume that 
“@(i,a,L0)” in BB1 throws NullPointerException. 
Once the exception handler catches NullPointerException, 
the original loop is executed. During the execution of the original 
loop, j/k throws ArithmeticException. As such, the 
precise exception is preserved. 

4.3.1 Policy 
Cloning loops can easily cause a code explosion so the policy of 
applying bounds checking elimination is based on three parameters: 
code size, amount of bound checking code that can be potentially 
eliminated, and profiling information. The optimizing compiler only 
considers the innermost loops as the scopes for bounds checking 
elimination. For a given innermost loop, if the ratio of the total 
number of instructions and the number of candidates is below a 
certain threshold (which is set to 30 based on our empirical results), 
this optimization is turned off because eliminating all bounds 
checking code can only lead to a small percent speedup.  The 
optimizing compiler computes the average trip count of the loop 
using the profiling information. If the trip count is not greater than 3, 
the optimization is turned off as well because the performance gain 
is small. 

4.4 INLINING 
Inlining is a common and well-adopted technique used in compilers 
to reduce the overhead of method invocations.  Inlining enlarges the 
compilation scope, exposes more optimization opportunities and 
eliminates the run-time overhead of creating a stack frame and 
passing arguments and return values.  Method calls in Java are 
virtual (dynamically dispatched) unless their bytecodes are declared 
as static, final or special.  Virtual method calls cannot be easily 
eliminated because the compiler generally has no idea which callee 
will be invoked.  
Before discussing the approaches of inlining a virtual method, we 
need to describe the object layout, which has a direct influence on 
how the method is inlined.  Figure 5 depicts the object layout used 
in most implementations of object-oriented languages, e.g., C++ and 
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Java.  x is a reference pointing to an object. The first field of the 
object points to the vtable (virtual method table). For each virtual 
method of the object, there is a dedicated entry in the vtable, 
pointing to the native code of the method.  To get the address of a 
virtual method foo, we need to dereference the pointer twice (two 
memory accesses). The first one gets the vtable (t = [x]).  
The second one gets the address of foo ([t+64]). 
As the virtual method gets inlined, the JIT compiler generates a run-
time test to verify if the inlined callee is the right instance to be 
invoked. The normal method invocation code sequence is executed 
if the verification fails. The run-time test is usually implemented in 
two ways [9]: one tests the vtable (discussed in Section 4.4.1) 
and the other checks the actual target address of the method 
invocation (discussed in Section 4.4.2). An inline cache approach 

[13] is not taken into account here because the generated stubs 
introduce one extra dereference, and a sequence of testing for 
polymorphic call sites may cause high run-time overhead. That 
approach is more applicable to languages that have high overhead 
for method invocation, such as SELF. In  Section 5.1, we describe 
enhancements that further improve the inlining accuracy and the 
code sequence for the conditional test. 

4.4.1 Checking vtable  
The first approach compares the object’s vtable with the 
vtable of the class of the inlined method. The code sequence of 
this approach is shown in below. If the test succeeds, it is safe to 
execute the inlined code because the inlined method is the one that 
will be dynamically dispatched at run time. If the test fails, the 
regular dispatching code sequence is executed to invoke the virtual 
method call. 

mov  eax, DWORD PTR [eax] // get vtable 
cmp  eax, 0bc3508h  
jnz  _default_invocation  
// inlined callee 
. . . 
_default_invocation:  
// normal invocation code 
. . . 

The benefit of this approach is that only one memory access ([x]) 
is involved to determine if either the inlined A’s foo or the regular 
call sequence should be executed.  The original call overhead is 
reduced to one memory access, one comparison and one branch. 
But the drawback is that checking vtable is conservative. 
Consider the code x.foo(). Presumably, x can be either class A 
or B where A is a superclass of B and A’s foo is not overridden by 
B. If x’s dynamic type is always of class B but its static type is set to 
A, the checking always fails because class A and B have distinct 
vtables.  The code shown above always executes the non-inlined 

path instead of the inlined path even though A’s foo is invoked 
every time.   

4.4.2 Checking target address 
The second approach inserts code to compare the actual method 
address that x.foo() is invoking with the address of A’s foo (as 
shown below).   
mov  eax, DWORD PTR [eax] // get vtable   
mov  ecx, DWORD PTR [eax+64] // target addr 
cmp  ecx, [BE762Ch]    
jnz  _default_invocation 
// inlined callee 
. . . 
_default_invocation:  
// normal invocation code 
. . . 

This approach is more precise. However, the checking needs at least 
2 memory accesses ([x] and [t+64]). In Just-In-Time 
compilation, a method is compiled right before its first execution.  If 
A’s foo is not yet compiled, we have no idea what the actual 
address of A’s foo is.  The compiler then has to allocate memory 
space in which we fill the address of A’s foo as soon as A’s foo is 
compiled.  In such a circumstance, the test requires 3 memory 
accesses. 
The optimizing compiler uses the first approach, testing vtable, 
because it requires only one memory access.  However, we need to 
deal with the conservatism of the approach. We have implemented 
two mechanisms to alleviate the issue: type propagation and 
dynamic patching that is discussed in Section 5.1. 
In [13], type feedback is used to improve the accuracy of inlining 
predictions. In the MRL VM, we do not record a type profile for 
every call site. Instead, we propagate type information during copy 
propagation to track the actual class type of the object of the 
invoked method. Consider code x.foo(). If type propagation 
proves that the actual type of x is class B instead of class A, where A 
is a superclass of B, and the class hierarchy analysis [8] proves that 
there is no class in between A and B that overrides foo, then we 
generate the test for comparing x’s vtable against B’s. 

4.4.3 Policy 
The inlining policy is based on the code size and profiling 
information.  If the execution frequency of a method entry is below 
a certain threshold, the method is then not inlined because it is 
regarded as a cold method. To avoid code explosion, we do not 
inline a method with a bytecode size of more than 25 bytes.   
Inlining is performed in a recursive fashion.  The compiler traverses 
the IR and determines which call sites need to be inlined.  Then the 

Figure 5.   Object layout 
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compiler builds the control flow graphs (CFG) and IR for those 
inlined methods. Before grafting the newly created CFGs into the 
caller’s, the compiler repeats the same inlining process for the 
inlined methods. To avoid inlining along a deep call chain, inlining 
stops when the accumulated inlined bytecode size along the call 
chain exceeds 40 bytes. 

5 DYNAMIC OPTIMIZATIONS 
In this section, we discuss some techniques applied at run time to 
deal with patching native code, reducing the GC map size, caching 
the stack frames, and avoiding creating exception objects. 

5.1 Dynamic inline patching 
Often, a method is not overridden from the time the JIT compiler 
inlines the method until the end of the program execution. The 
method is always the right instance of invocation if the class 
hierarchy does not change over time. We would like to generate 
code based on the assumption that the inlined method will probably 
never be overridden throughout the program execution. 
Nevertheless, Java allows classes to be dynamically loaded at run 
time, which is known as dynamic class loading. In other words, the 
class hierarchy may change.  Dynamic patching is a technique that 
patches the native code to preserve the correctness of the program 
once the assumptions made by the compiler are invalidated. 
The optimizing compiler produces the inlining code sequence as 
shown in Section 4.4.1. Right before code emission, the compiler 
replaces the cmp with a jmp, directly to the inlined code (as 
illustrated in Figure 5), if the inlined method is not yet overridden at 
that time. The overhead of the conditional test, one cmp and one 
jnz, is reduced to one direct jump instruction. A patch entry is 
created for the cmp just replaced. The patch is composed of the 
method handle of the inlined method (callee), the code offset and 
length of the IA-32 cmp instruction, and the byte array for storing 
the cmp.  Since the instruction length of the cmp is longer than the 
jmp, nops are filled in for the remaining bytes after the 
replacement. The compiler then invokes an API call, 
method_set_inline_ assumption(caller,callee), 
to notify the VM that the caller has inlined the callee with the 
overridden optimization enabled. An overridden_rec is 
created as part of caller’s method_info, containing all patches of 
the caller as well as the total number of the patches. A callback, 
method_was_ overridden(caller,callee), provided 
by the optimizing compiler, allows the VM to notify the compiler 
that  the callee has been overridden and therefore fixing the 
caller’s code is required. 
method_was_overridden retrieves the caller’s 
overridden_rec and performs fixing for all the patches whose 
method handle matches callee’s. The code patching must be 
thread-safe because other threads may be executing the instruction 
that we are about to patch, i.e., the direct jump instruction. The code 
sequence the compiler uses to make code patching thread-safe is 
divided into three steps (shown in Figure 6): First, the direct jump 
instruction is substituted by a spinning jump (jump to itself). We use 
the xchg, instead of mov, instruction that exchanges two operands 
to write the spinning jump because mov is not an atomic operation. 
If a memory operand is referenced in xchg, the processor’s locking 
protocol is automatically implemented for the duration of the 
exchange operation [16]. The locking protocol ensures writing 
0xFEEB (two bytes) has exclusive use of any shared memory—the 
operation is atomic. Other threads that happen to be executing the 
instruction will spin waiting for the completion of the patching. 
Second, the original cmp except the first two bytes are restored. 

Finally, the first two bytes of the cmp are written atomically using 
xchg. 

5.2 Lazy GC map 
The JIT compilers generate a GC map for each method, allowing 
the compilers to unwind stack frames for exceptions and compute 
the root set of live references for garbage collection. The root set 
consists of all objects pointed to by global pointers or by pointers in 
the active stack frames. Typically only a small number of methods 
are active when GC happens, which means the GC maps for the rest 
of the methods are superfluous.  
We would like to take a lazy approach that generates the GC map on 
the fly. Because computing the GC map requires recompiling 
methods, the approach of lazy GC map generation is solely 
applicable to the fast code generator.  Instead of generating ordinary 
method info, the fast code generator produces small method info 
that comprises a profile data pointer, a GC data pointer set to null 
initially, and a bit vector for class initialization. Whenever a 
nonexistent GC map is needed, the method is recompiled to 
compute the GC map and set the GC data pointer (as depicted in 
Figure 7).  
The class initialization bit vector deserves additional explanation.  
As described in Section 4.1, the fast code generator also eliminates 
class initialization calls, whenever the VM indicates that the class 
has already been initialized at JIT compilation time.  Therefore, the 
actual code that the fast code generator produces is not stateless—it 
depends on which class initializers have been executed at the time 
the method is compiled.  This state is required for recomputing the 
GC map, and thus the class initialization bit vector is saved in the 
method_info when the method is first compiled.  

5.3 Caching Of The Unwinding Process 
We speed up the stack traversal by using caches to eliminate 
duplication of work for the same frame.  This optimization relies on 
the fact that often a set of frames remains on the stack long enough 
to be traversed by the exception code for multiple exception 
dispatches.  We use two caches, one to improve the method lookup 
and another to improve the unwind itself. 
The method lookup cache is a direct mapped cache indexed by a 
hash value computed from the IP value.  If the IP value in the cache 
matches the current value, the result is returned immediately, 
otherwise the binary search is performed (see Section 3.2) and the 
cache entry is updated before the result is returned.  In our VM we 

 Byte *code = method_get_code_block_addr(caller); 
 Byte *first_byte_addr = code + patch->code_offset; 
 
 // step 1: write a spinning inst 
 __asm { 
    mov eax, first_byte_addr 
    mov cx, 0xFEEB    // spinning 
    xchg word ptr [eax], cx 
 } 
 
 // step 2: restore cmp inst except  
 // the first two bytes 
 for (int j = 2; j < patch->length; j++) 
    code[patch->offset + j] = patch->orig_code[j]; 
 
 // step 3: restore the first two bytes 
 Byte *first_orig_addr = (Byte *)patch->orig_code; 
 __asm { 
    mov eax, first_byte_addr 
    mov edx, first_orig_addr 
    mov cx, word ptr [edx] 
    xchg word ptr [eax], cx 
 } 
  Figure 6. Code patching 
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use a cache of 512 entries.  This size is larger than needed for the 
benchmarks discussed in this paper, but is chosen for the benefit of 
larger applications. 
The unwind cache is maintained by the JIT compiler.  In our 
implementation, the core VM does not know the layout of stack 
frames corresponding to methods compiled by a compiler.  The 
compiler is responsible for creating appropriate information to make 
the unwind process possible.  A pointer to the appropriate unwind 
data structure is stored in the JIT_INFO structure from Figure 2. 
Our design requires that a JIT compiler provides a run-time function 
that, given a register context and a pointer to the unwind data 
created at compile time, must update the context to the caller’s 
context. That involves recovering the values of the stack pointer 
(SP), IP and callee-saved registers.  The stack unwind function must 
be designed so that two, possibly conflicting, goals are met: 
The unwind data structures should be as small as possible.  In our 
earlier paper [22] we describe how to minimize the size of the GC 
information.  The same data structures hold information needed for 
GC and other stack unwinds, because there is much overlap 
between the root set enumeration and stack unwind functions. 
The process of the unwinding should be as fast as possible.  In 
addition to implementing efficient compression schemes, we speed 
up the unwinding by using a cache in the compiler [22].  The 
unwind cache enables faster unwinds of frames corresponding to 
cached IP values. 

5.4 Lazy Exceptions 
We have noted that some Java applications use exceptions to change 
the control flow only.  In those applications the exception object’s 
type is used to determine which handler catches the exception, but 
the content of the exception object is never accessed.  In those cases 
creating the stack trace is unnecessary and we can save a substantial 
amount of work by never creating the exception object itself. 
Let’s revisit the code example in Section 3. The exception object is 
not used in the handler in printSumOfInts.  Compiler analysis 
can trivially detect that the object is dead at the entry of the handler.  
Since the exception object is never used in this example, it would be 

possible to avoid its creation.  The problem is that the exception is 
thrown in a different method and at the time of the throw it is not 
known which handler will catch the exception and consequently it is 
not known whether it is necessary to create the object.  Therefore, to 
the best of our knowledge, all Java VM implementations 
conservatively create all exception objects.  Our technique of lazy 
exception throwing eliminates the need for creation of the exception 
object in certain, common cases.  

Existing Java Virtual Machines create exceptions eagerly, i.e., as 
soon as an exceptional situation is observed, and the exception 
object is created and initialized.  In the next step the VM searches 
the stack for the right handler.  Our approach is to create exceptions 
lazily, i.e., initially assume that the exception object is not required, 
search for the handler and when one is found, consult data structures 
provided by the JIT compiler to determine if the exception object is 
live at the entry to the handler.  If the compiler can prove that the 
exception object is dead, the object is never created.  If, on the other 
hand, the exception object is live, we have to create the exception 
object.  The difficulty is that the exception object must be initialized 
as if it were created in the context where the exception was thrown.  
The VM has however destructively unwound a (possibly empty) 
subset of the top stack frames.  See Section 5.4.3 for a more 
complete discussion of the correctness issues. 
Lazy exception throwing is relatively easy for exceptions thrown by 
the VM itself.  Those predefined run-time exceptions are required 
by the JVM semantics [19].  Examples include 
ArrayIndexOutOfBoundsException and NullPointer-

Exception.  The operation of the exception object creation and 
throwing is completely performed by the VM and therefore the 
order of the operations is not visible to the application.  This simpler 
case is described in Section 5.4.1.  Our design is more aggressive 
and attempts lazy exception throwing even for exceptions created by 
user code.  This requires a more complete support in the compiler 
and is discussed in Sections 5.4.2 and 5.4.3. The lazy exception 
mechanism is implemented only in the optimizing compiler because 
analyses that ensure that the mechanism does not violate the 
semantics of Java are based upon IR. 

5.4.1 VM Exceptions 
The implementation of lazy VM exceptions is relatively 
straightforward.  When the VM detects an abnormal condition, it 
first performs a destructive unwind to find an appropriate handler 
and then queries its data structures whether the exception object is 
live at the entry of the handler.  If the object is live then the object is 
created exactly the same way it would have been created in a 
standard VM implementation.  If, on the other hand, the exception 
object is dead at the handler entry, its creation is skipped altogether.  
Since VM exceptions in our implementation have no side effects, 
the semantics of the application are not changed.  Also, the 
constructors of our VM exceptions never throw exceptions 
themselves, so the extra difficulty described in Section 5.4.3.3 does 
not apply here. 

5.4.2 User Exceptions 
User exceptions are typically created with the following sequence of 
bytecodes: 
new <UserException> 
dup 
[optionally push constructor arguments] 
invokespecial <UserException (...)> 
athrow 

Of course, in principle, these instructions do not have to be 
contiguous and they may span multiple basic blocks or even 
methods.  In practice however, the complete instruction sequence is 
usually in the same basic block and its analysis is possible in an 
optimizing compiler. 
We could handle user exceptions the same way we handle VM 
exceptions if we knew that not executing the constructor or 
executing it in a different context would not change the semantics of 
the program.   
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5.4.3 Side effects 
Side effects may cause problems that violate semantics of the 
program.  We have the obvious set of operations that we consider to 
have side effects: stores to fields and array elements, and invoke 
operations that have not been inlined.  Because of the reasons 
discussed in Section 5.4.3.3, we also do not allow synchronization 
operations and operations that may cause exceptions.   
Using the lazy exception mechanism in javac requires complete side 
effect analysis, so we use it as a good illustration for our paper.  That 
example is described below. The same techniques eliminate the 
creation of exception objects in many other applications and we 
believe that our implementation is as powerful as necessary and 
feasible given the restriction on how expensive compile time 
analysis can be in a JIT compiler. 
We will use javac, a Java compiler, as an example of an application 
that benefits from lazy exception creation and in which all 
exceptions thrown in a normal run are user exceptions.  Javac is a 
relevant benchmark because: 
Javac is part of the SPEC JVM Client98 benchmark suite (also 
referred to as SPEC JVM98 [22]) and therefore performance of this 
benchmark is of interest to designers of Java VMs.   
Javac is a realistic Java application.  It performs a relevant 
computation and is in use by many programmers worldwide 
(although note that versions of javac distributed with newer editions 
of Sun Microsystems’ JDK have likely been improved and 
expanded compared to the version included in SPEC JVM98). 
Here is the specific sequence of instructions from that application.  
For brevity, we omit package names, but note that all non-standard 
classes are declared in the spec.benchmarks._213_javac 
package.  This code fragment comes from the 
Identifier.Resolve(Environment, Identifier) method. 
new <ClassNotFound> 
dup 
aload_2    // push a constructor 
argument 
invokespecial <ClassNotFound(Identifier)> 
athrow 

This example follows the generic pattern presented earlier for user 
exceptions.  The essence of the optimization is to delay the creation 
of the object of class ClassNotFound until the VM finds the right 
handler and determines that the exception object is indeed live in the 
handler.  In many applications, exceptions are used for abnormal 
control flow, but the exception object is not used for anything other 
than selecting the right handler.  In those applications, the compiler 
can often detect that the exception object is dead in the handler.  
This situation happens in javac.  For the workload included in SPEC 
JVM98, javac throws 22,372 exceptions and all of those exceptions 
result in transferring control to handlers in which the exception 
object is dead.   
It is difficult to transform this code pattern into a lazy exception 
throw, because the constructor of the exception may have side 
effects.  Of course, a constructor with side effects cannot be 
eliminated, so we use lazy exceptions only if the compiler can prove 
that there are no side effects in the constructor. 
Note that while in our implementation the arguments to the 
constructor are always evaluated, it would be possible for the VM to 
be even more aggressive and lazily evaluate arguments to the 
constructor.  That would require additional compiler analysis for the 
side effects of the argument evaluation.  In practice, it does not seem 
to be necessary, because in the applications we looked at, there are 
either no arguments to the constructor or (as in the above example) 

arguments are already evaluated and are stored in local variables or 
on the Java stack. 
To decide if a constructor is side effect free, the compiler must 
analyze the constructor and recursively all the invoked methods. A 
constructor always invokes a constructor of the super class, which in 
turn invokes the constructor of its super class.  Since 
ClassNotFound is a subclass of Exception, constructors of 
ClassNotFound, Exception, Throwable, and Object are 
invoked.  Two other methods, Identifier.toString() and 
Throwable.fillInStackTrace() are also invoked.  A detailed 
discussion of the more troublesome of those methods follows. 

5.4.3.1 Field updates 
Our notion of side effects is standard but we relax it in one way.  For 
the purposes of our analysis, we consider a sequence of instructions 
to have no side effects even if there are stores to fields of the object 
that is considered as a candidate for lazy creation.  The rationale is 
that modifications to the state of an object that is dead have no 
observable side effects. 
One code fragment in the ClassNotFound(Identifier) 
constructor that could potentially have side effects is a store to the 
field name. 

aload_0  // this pointer 
aload_1  // constructor argument 
putfield <Identifier name> 

This code fragment is an example of a store to a field of the 
exception object whose creation we want to eliminate.  As discussed 
above, we do not consider such a store to have side effects. 

5.4.3.2 Method invocations 
An invocation of any method may have side effects.  The compiler 
must prove that that is not the case.  The optimizing compiler 
attempts to inline recursively all method invocations in the 
constructor.  General strategy for inlining is followed with general 
restrictions on inlining assumed by the compiler (see Section 4.4).  
Virtual method invocations are also inlined, possibly with a run-
time check.  In that case, only the path along which we inlined the 
method is considered a candidate for the lazy exceptions 
mechanism.  If a native method is invoked, the compiler must of 
course conservatively assume that the method may have side 
effects.  There is a mechanism to override this default, conservative 
assumption.  Every method has a flag associated with it that says if 
the method can be assumed to be side effect free without compiler 
analysis.  Specifically, for the purpose of the lazy exception 
analysis, we set this flag to mark the native method 
java.lang.Throwable.fillInStackTrace() as side effect 
free.  That assumption is valid because our VM implements 
fillInStackTrace() internally and the VM can guarantee that 
there are no side effects in this method. 
Another code fragment of  ClassNotFound(Identifier) with 
potential side effects is 

aload_0 
aload_1 
invokevirtual <String toString()> 
invokespecial <Exception(String)> 

Each of the two methods in this example presents different 
challenges. Identifier.toString() is invoked as a virtual 
method and needs a run-time check to make sure that the class of 
the object is indeed Identifier. This analysis is performed by 
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our compiler for inlining, so no new code had to be added to take 
care of that.  The body of Identifier.toString() does not 
throw exceptions as long as its argument is not null; our compiler’s 
inlining infrastructure equates that argument with variable 2 of the 
Identifier.Resolve(Environment, Identifier) method.  
That variable can be shown to be non-null by virtue of its earlier 
uses, which dominate the exception throwing code. 
The second method, Exception(String), is difficult to analyze 
for a different reason.  The invocation is not virtual, so inlining can 
be done without any extra effort.  However, inlining of this method 
causes in turn another method, Throwable(String), to be inlined.  
This method is more problematic.  One issue is that it modifies a 
field of the object being created, but this, as explained above, is a 
false side effect since it involves a modification of the very object 
we want to avoid creating.  So the following code is assumed to 
have no side effects. 
aload_0  // this pointer 
aload_1  // constructor argument 
putfield <String detailMessage> 

Another more difficult problem in Throwable(String) is in the 
following code fragment. 

aload_0 
invokevirtual <Throwable fillInStackTrace()> 

We have already explained that our compiler can inline virtual 
method invocations (with a run-time check).  The problem here is 
that Throwable.fillInStackTrace() is a native method and 
the JIT compiler conservatively assumes that all native methods 
may have arbitrary side effects.  As described above, the VM, which 
implements this method, marks it as side effect free. 

5.4.3.3 Using the right context 
The optimizing compiler always evaluates all arguments to the 
constructor of the exception object even if the constructor is never 
invoked, so the execution of any code related to the evaluation of 
arguments is always performed at the right time and in the right 
context.  However, the compiler must prove that the body of the 
constructor itself, including any methods invoked by the 
constructor, does not cause side effects. 
When the VM discovers the correct handler and finds that the 
exception object must be created, the context in which the exception 
was supposed to be executed may no longer exist, because some 
stack frames may have been destructively unwound.  A simple 
solution would be to first find the handler using non-destructive 
unwinds, find out if the exception object is live, create the object if 
necessary in the correct context, and then traverse the stack again, 
using destructive unwinds.  The drawback of this simple solution is 
that the stack is traversed twice and so throwing exceptions is 
actually slower if the exception object is live in the handler. 
We did not want to sacrifice performance and the extra stack 
traversal was not acceptable.  Instead we are giving up expressive 
power and only using lazy exceptions when the compiler analysis 
can prove that it is safe to execute the constructor in the context of 
the handler.  Two specific correctness issues are discussed below. 

Exceptions in constructors 
The most important problem can be caused by exceptions thrown by 
the constructor of the exception object itself.  The optimizing 
compiler ensures that the constructor will not throw any new 
exceptions that could be caught by a handler of a method whose 
stack frame is between the top of the stack and the frame of the 
method with the handler corresponding to the lazy exception.  To 
understand why it is necessary, consider the following example. 
A calls B.  B throws an exception of class foo lazily.  There is no 
handler for foo in B, so the VM destructively unwinds the frame of 
B.  Now, a handler for foo is found in A and the exception object is 
live in the handler.  The VM now creates an object of type foo. This 
object is supposed to be constructed in the context of B, so if the 
constructor of foo throws a new exception, say, of class bar, there 
is a possibility that a handler for this exception exists in B and the 
control is supposed to be transferred there.  We address this issue by 
only allowing lazy exceptions when the compiler can prove that the 
constructor will not throw exceptions. 

Synchronization 
Synchronized methods are another issue.  In Java a method can be 
declared as synchronized.  That means that a monitor associated 
with the object referenced by the this pointer is entered when the 
method is entered.  A destructive unwind exits this monitor.  But it 
is possible to write a program that throws an exception in such a 
way that the constructor of the exception object relies on the fact 
that the current thread entered a monitor for an object referenced by 
a this pointer of one of the methods on the stack.  If we invoke the 
constructor lazily after we exit the monitor, a deadlock can occur or 
an incorrect result can be produced due to insufficient 
synchronization. 
We avoid the deadlock potential by not allowing lazy exceptions if 
the compiler analysis of the constructor detects any monitorenter 
bytecodes or any invocation of synchronized methods. 
Note that errors due to insufficient synchronization are not actually 
possible, because we do not allow side effects in constructors for 
lazy exceptions. 

6 TRIGGERING RECOMPILATION 
One important component of dynamic recompilation is the 
mechanism to trigger recompilation. Recompilation is expensive in 
terms of compilation time. We want to recompile hot methods as 
soon as possible while avoiding recompiling cold methods.  In other 
words, the mechanism needs to make the decisions of when to 
recompile and what to be recompiled.  The MRL VM has 
implemented two mechanisms. 

6.1 Instrumenting 
The first mechanism uses the instrumenting code to trigger 
recompilation.  The initial values of counters are set to some 
threshold values.  As code gets executed, the counters are 
decremented.  We insert code to test the values of the counters 
against zero.  As soon as the counters reach zero, the code 
immediately jumps to the routine that triggers recompilation.  The 
threshold values for the method entry and the back-edge counters 
are set to 1000 and 10000 respectively.   The benefit of the 
mechanism is that once a threshold is reached, recompilation is 
triggered immediately, and thus the newly optimized code can be 
used as soon as possible.  Nevertheless, the drawback is that 
choosing the threshold is not trivial. If we would like to compile hot 
methods sooner, we need to set the threshold low.  As a result, the 
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optimizing compiler may end up recompiling lots of non-hot 
methods and wasting the compilation time.  If we want to avoid 
compiling non-hot methods, we need to set the threshold high.  
Consequently, performance may suffer because hot methods are not 
recompiled soon enough. 

6.2 Threading 
The second mechanism is thread-based, aimed at curtailing the 
compilation time by overlapping compilation with program 
execution on a multiprocessor system, which is also known as 
continuous compilation [21]. The code that updates counters 
increments counters to update the profiling information rather than 
decrementing.  A separate thread is created for recompilation, 
periodically scanning through the profiling information to determine 
which methods are hot and need to be recompiled. The thread can 
utilize cycles of an idle processor for recompilation. All counters are 
reset to zero during scanning so that no accumulated values are 
carried over to the next recompilation session.  The thread is 
suspended and waits for a TIMEOUT event. When the timer goes 
off, the thread is woken up to analyze the profiling information of all 
methods. Based on our observation, most hot methods are executed 
frequently in the early execution of programs. Therefore, the 
TIMEOUT interval is short in the beginning, and is linearly 
increased as programs are running. The current timer is set to 1 
second initially and increased by an extra 1 second for the next 
session. We stop increasing the timer when it reaches 8 seconds.  
There are two drawbacks of the approach: First, the thread needs to 
scan the profiling information of all methods to decide which 
methods are recompilation candidates. Second, hot methods are not 
immediately recompiled as they pass the thresholds.  They have to 
wait until the next TIMEOUT event. 
 # of 

compiled 
methods 

% of used 
GC map 

non-lazy 
GC map 

size 

% saved 
by lazy 
GC map 

200_check 374 10.7% 436K 86.2% 
201_comp. 309 4.2% 374K 89.8% 
202_jess 744 5.2% 609K 88.6% 
209_db 327 5.5% 394K 89.9% 
213_javac 1100 8.5% 953K 76.5% 
222_mpeg. 481 1.5% 573K 94.7% 
227_mtrt 449 4.9% 486K 85.9% 
228_jack 558 29.6% 631K 76.4% 

   Table 1. Lazy GC map 
 

7 EVALUATION 
We ran a collection of programs from the SPEC JVM98 [22] 
benchmark suite on the Intel VM. All experiments were performed 
on a system with two 450MHz Intel® Pentium® II Xeon™ 
processors. In our measurements, we did not fully follow the official 
run rules defined by the SPEC committee, so no SPEC number 
should be derived from the results, and no comparisons with other 
vendors’ JVM were evaluated. We chose an 80MB heap size.  

7.1 GC map size 
We used the fast code generator to compile SPEC JVM98 and 
measured how many methods were compiled for each program and 

how many methods needed the GC map (listed in Table 1).  The 
experimental results show that only a small portion of methods 
remain active when exceptions or GC occurs. For programs that do 
not involve a lot of exception throws and GC, the actual GC map 
used is around or below 5%. That is, most of the time and space 
spent on computing the GC map is wasted. Interestingly, 228_jack 
is an exceptional case; 30% of the total compiled methods need the 
GC map at run time. The lazy approach saves the size of the GC 
map substantially—86% on average. Our experimental results show 
that the incurred run-time overhead of recompilation is less than 
0.2%. 

7.2  Effectiveness of optimizations 
We ran the experiments with 4 different configurations of our VM. 
The first configuration purely used the fast code generation 
approach with the lazy GC map. The second one solely used the 
optimizing compiler to generate native code without relying on the 
profiling information feedback.  All optimizations, e.g., inlining and 
checkcast, were performed based on the static analysis of the 
program. The last two were for different mechanisms of triggering 
recompilation. The table below shows the execution time (seconds) 

of each program.  
The result of Table 2 shows that the dynamic recompilation 
outperforms the rest except in the case of 201_compress. For 
201_compress, the compilation time is not an issue and the profiling 
information feedback does not help much to guide optimizations 
(static loop hierarchy analysis is good enough).  One noticeable 
aspect from the table is that we do not see a significant improvement 
over the optimizing compiler for 201_compress and 209_db. There 
are a few reasons. First, many methods are compiled before the 
programs start the timer. The performance gain from dynamic 
recompilation for those methods is not seen in the result. Second, 
the optimizing compiler does not implement some expensive 
optimizations, e.g., code motion and code scheduling. Code 
scheduling is not implemented in the optimizer because the Pentium 
II processor detects dependences among instructions and does out-
of-order execution. Moreover, as mentioned earlier, code motion is 
not implemented because of the potential increase of register 
pressure on the IA-32, which has only a few registers. For this kind 
of architecture, code scheduling and code motion become less 
important. Nevertheless, for the architectures that can highly benefit 
by expensive optimizations to achieve good performance, e.g., IA-
64 [17], we expect that the dynamic recompilation technique will 
outperform the optimizing compiler significantly. 

    dynamic recomp. 
 

fast 
code gen opt. 

instr.     thread 

201_comp. 29.30 22.29 22.38 22.47 
202_jess 14.04 12.77 12.42 11.89 
209_db 34.41 29.78 29.38 29.62 
213_javac 21.89 18.91 18.52 16.68 
222_mpeg. 23.75 19.32 18.58 18.60 
227_mtrt 10.99 8.49 7.83 7.94 
228_jack 20.23 17.93 17.91 17.14 

total 154.61 129.49 127.02 124.34 
Table 2. Dynamic recompilation 
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 For 202_jess, 213_javac and 228_jack, the threading mechanism is 
able to speed up (~11% for 213_javac) the running time by 
overlapping the compilation time with the program execution, 
because quite a few methods are recompiled. Overall, the dynamic 
instrumenting and threading approaches gain 2% and 4%, 
respectively, over the optimizing compiler. 
We ran another set of experiments to test the effectiveness of 
individual optimizations. The base line (the first column of Table 3) 
is the dynamic recompilation with the threading scheme, in which 
all optimizations are enabled except the overridden approach.  We 
compare the running times of all but one optimization.  The second 
column is the running time without the checkcast optimization. The 
optimization has 3.4% performance impact for 209_db, negligible 
influence for the rest. The third column shows the running time 
when the bounds checking elimination is turned off. The compiler 
still performs local bounds checking elimination during IR 
construction. Bounds checking elimination has only observable 
impact for 222_mpegaudio (~3%). 
The rightmost three columns evaluate inlining optimizations: The 
first one shows the running time of turning off the inlining 
optimization completely. The second one is for measuring the 
effectiveness of type propagation in the presence of inlining 
(discussed in Section 4.3.1). The last column indicates the running 
time of the dynamic patching approach (described in Section 5.1).  
When comparing the base line and no inlining columns, we see type 
propagation has little effect on the overall performance for all 
programs except 227_mtrt which would otherwise has ~11% 
performance loss. Dynamic patching yields fairly small 
performance gains (less than 0.5%) over the base line. 

7.3 Exceptions 
Caching improves performance if exceptions are thrown multiple 
times with frames on the stack corresponding to the same contexts.  
Not all benchmarks have this property, but both jack and javac from 
SPEC JVM98 use exceptions for control flow in a way that benefits 
from caching.  The natural question is whether caching could cause 
performance degradation for some benchmark.  We believe that this 
would not happen.   
The first reason is that in our implementation the overhead of 
caching compared to the regular method lookup is negligible.  We 
maintain a very simple, direct-mapped cache which can be checked 
against and updated efficiently.  A regular lookup function must 
perform a binary search in a table of IP ranges and that cost would 
dwarf the cache overhead even if for a given application all lookups 
in a cache resulted in cache misses. 
The second part of the argument is that we believe that Java 
applications either do not use exceptions heavily and then the 
overhead of maintaining the cache is small or they use exceptions 
extensively and then it should be the case that at least the frames 
close to the bottom of the stack do not change quickly and their 
lookup will be sped up by the cache.  And likely, as in the case of 
javac and jack, a large set of stack frames will remain constant from 
one exception throw to another and the benefit of caching will be 
significant. 
Stack unwinding is used for exceptions, garbage collection and for 
security-related stack walking.  There may exist applications where 
the security-related stack unwinding is a bottleneck.  For SPEC 
JVM98 it is not the case in our VM. 

Although this paper focuses on the performance impact on 
exception throwing, the caching described in this paper will 
certainly improve the performance of applications with a lot of 
security-related stack unwinding.  The benefit for garbage collection 
is small, because the total amount of work done during a GC cycle 
is much larger than the enumeration of the root set. 
A similar question can be posed about implementing lazy 
exceptions.  Is it possible that this optimization will have a negative 
impact on the performance of some applications?  There are two 
potential sources of overhead: the added cost of the analysis to 
determine at compile-time if an exception throw can be converted 
into lazy exception creation and the cost of executing an exception 
lazily after the handler has been found.  We have not observed a 
negative impact on performance of lazy exceptions on any of the 
applications we have run.  In addition to SPEC JVM98 we have also 
run a set of larger applications. 
We argue that this observation can be generalized for Java 
applications in general.  The extra compile-time overhead in the 
optimizing compiler to detect lazy exceptions opportunities is 
minimal, because most of the work (e.g., inlining) is performed 
anyway to enable other optimizations and lazy exceptions-specific 
part of the analysis (detection of side effects, potential exceptions 
and synchronization) is not computationally intensive.  More 
importantly, in our dynamic compilation scheme the optimizing 
compiler is invoked only on a small subset of methods that were 
determined to be hot.  For those methods a more expensive analysis 
is acceptable. 
 213_javac 228_jack 

eager 30.41 22.28 No method lookup cache 
No unwind cache lazy 20.07 22.28 

eager 29.49 21.43 Method lookup cache 
No unwind cache lazy 19.91 21.43 

eager 21.32 18.72 No method lookup cache 
Unwind cache lazy 19.11 18.72 

eager 20.45 17.93 Method lookup cache 
Unwind cache lazy 18.91 17.93 
Table 4.  Lazy exceptions and caching. 

inlining 

  
thread 

 
no 

check. 

 
no 

bound 
no 

inline 

no 
type 
prop. 

 over- 
riden 

201_comp. 22.47 22.43 22.59 26.23 22.54 22.53 

202_jess 11.89 12.02 11.85 12.97 11.79 11.63 

209_db 29.62 30.63 29.67 30.39 29.63 29.61 

213_javac 16.68 16.68 16.63 17.38 16.71 16.54 

222_mpeg. 18.60 18.57 19.20 19.39 18.58 18.55 

227_mtrt 7.94 7.91 7.89 10.06 8.82 7.71 

228_jack 17.14 17.20 17.19 18.19 17.01 17.26 

total 124.3
4 

125.4
4 125.02 134.6

1 
125.0
8 

123.8
3 

                      Table 3. Effectiveness of optimizations 
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There is almost no overhead associated with saving the throw 
context so that when the VM detects that an exception thrown lazily 
is caught in a handler in which the exception object is live, the VM 
can execute the constructor in the correct context.  The VM ensures 
that the right context exists by performing a copy of the original 
context once, before the stack unwinding process starts. 
We have instrumented our VM to collect statistics relevant to the 
performance.  One of the numbers we collect is the count of 
exceptions thrown during the execution of the application.  Out of 7 
applications in SPEC JVM98 only two, javac and jack, throw any 
exceptions.  But for those two applications exception counts are 
relatively high, 22,373 and 241,877 respectively.  Those two 
programs belong in the category of irregular applications that are 
similar to many other real-life applications and are notoriously 
difficult to optimize. 
We show the performance results for javac and jack in Table 4.  
Jack does not benefit from lazy exceptions, so the “eager” and 
“lazy” numbers are identical.  The two types of caching are 
described in Section 5.3.  For SPEC JVM98, the configuration with 
both caching mechanisms enabled offers the best performance. 
A combination of caching and lazy exception creation results in 
speedups of 37% for javac and 20% for jack. 
The performance improvement from caching for javac is 6% if we 
use lazy exceptions and 33% if we use eager exceptions.  The 
technique of lazy exceptions improves the performance of javac by 
34% if we do not use any caching and by 8% if we use both forms 
of caching. 
Jack, with far more exception throws, does not benefit from the lazy 
exceptions optimization.  Our investigation suggests that authors of 
jack must have realized the cost of exceptions and avoided much of 
the penalty by reusing the same exception object.  The 
instrumentation shows that only 35 exceptions are actually created, 
4 orders of magnitude less than are being thrown.  One might 
speculate that if jack were written in the more natural way of 
creating an exception every time it is thrown, the impact of our 
optimization would be larger than for javac since the number of 
exceptions thrown is an order of magnitude higher and the running 
times of javac and jack are comparable. 

8 CONCLUSIONS 
This paper has presented the structure of dynamic recompilation of 
the Intel research VM, consisting of the fast code generator, the 
optimizing compiler and the profile data representation. When first 
executed, all methods are considered to be cold. The fast code 
generator compiles the methods using some lightweight 
optimizations in this cold phase. Some of the methods switch from 
the cold state to the hot state when they are executed often enough. 
Identified hot methods are recompiled using the optimizing 
compiler that performs heavyweight optimizations to improve the 
code quality. 
We have discussed some optimizations that eliminate run-time 
overhead and evaluated their effectiveness. We have proposed four 
new techniques. One is to use newly created exception handlers to 
maintain the precise exception order during optimization 
transformations, allowing the compiler to be aggressive in terms of 
hoisting loop invariant code as well as checking bounds outside 
loops. The second one is dynamic patching which preserves the 
correctness of the program in the presence of dynamic class loading. 
The paper has shown that the lazy GC map approach is able to 
reduce the size of the GC map by an average of 86% with very little 

run-time overhead introduced.  The other two techniques deal with 
exceptions.  Caching of the method lookup in the core VM and of 
the unwind process in the JIT speeds up stack unwinding and helps 
two of the SPEC JVM98 benchmarks.  Lazy exceptions help 
programs like javac which throw a large number of exceptions. 
We have also described and evaluated two mechanisms, 
instrumenting and threading, for triggering recompilation. 
Experimental results show that the threading approach has a 
noticeable improvement over the instrumenting approach for 
programs that have a fair amount of recompiled methods. We 
expect the gap will enlarge if the target machine needs 
sophisticated/expensive algorithms to deliver good quality code, 
e.g., the IA-64 architecture. 
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