Practicing JUDO: Java™ Under Dynamic Optimizations

Michd Cierniak Gue-Yuan Lueh James M. Stichnoth
Intel Corp Intel Corp Inktomi Corp
2200 Mission College Blvd 2200 Mission College Blvd 4100 East Third Ave
Santa Clarg, CA 95052 Santa Clarg, CA 95052 Foster City, CA 94404

Michal.Cierniak@intel.com

ABSTRACT

A high-performance implementetion of a Java® Virtud Machine
(VM) congsts of efficient implementation of Just-In-Time (JT)
compilation, exception handling, synchronization mechanism, and
garbage collection (GC). These components are tightly coupled to
achieve high performance. In this paper, we present some static and
dynamic techniques implemented in the JT compilation and
exception handling of the Microprocessor Research Lab Virtua
Machine (MRL VM), i.e, lazy exceptions, lazy GC mapping,
dynamic patching, and bounds checking €iminaion. Our
experiments used 1A-32 as the hardware platform, but the
optimizations can be generdized to other architectures.

1 INTRODUCTION

A Java compiler compiles Java source code into a verifiably secure
and architecture-neutral format, caled Java bytecodes. A VM
interprets the bytecodes a run time. In a high-performance
implementation of a VM, aJT compiler trandates Java bytecodes
into native code at run time. Since trandation istaking place during
program execution, the compilation time is now part of the
execution time. Contrast this to the traditiond methodology of
performance measurement, in which compilaion time is ignored.
As such, it is important for the JT compiler to be conscious of
compilation time. Hence, applying expensive optimizations to all
methods is not dways justified because not all of the methods are
frequently executed. Lightweight optimizations have been shown to
be effective and fast in terms of trading code qudlity for compilation
speed [1]. The code quality, however, is sub-optimad due to the lack
of intensive compilation analysis, which is extremely important for
frequently executed methods. How to trade off code qudity vs.
compilation timeiscrucid in the design of aVM.

The Java language[12] provides exceptions as “a clean way to
check for errors without cluttering code”’ [5]. At the point where an
error is detected, an exception object is crested and thrown. An
exception handler can catch exceptions of a specific type. A stack
trace containing all frames from the top to the bottom of the stack is
constructed. After the object is created, the stack is traversed again
garting at the active frame (top of the stack) and proceeding until

L All third party trademarks, tradenames, and other brands are the
property of their respective owners.

Permission to mekedigital or hard copies of al or part of thiswork for persona
or classroom use is granted without fee provided that copies are not made or
digributed for profit or commercid advantage and that copies bear this notice
and thefull citation on thefirst page. To copy ctherwise, or republish, to post on
serversor to redistributeto ligts, requires prior specific permisson and/or afee
PLDI 2000, Vancouver, British Columbia, Canada.

Copyright 2000 ACM 1-58113-199-2/00/0006. .. $5.00.

Guei-Y uan.Lueh@intdl.com

13

jims@inktomi.com

either a compatible exception handler is found or the bottom of the
sack is reached. Exception handling is expendve because it
involves the cregtion of the exception object, the traversal of the
stack, and the search for the compatible exception handler. For
goplications throwing a large number of exceptions, efficient
exception handling is one of the important factors to achieve high
performance.

The rest of the paper is organized as follows. In Section 2, we
present the infrastructure of the compilation model of the MRL VM.
In Section 3, we describe the exception model of the MRL VM. In
Section 4, we discuss some key optimizations implemented in the
optimizer that try to eliminate the run-time overhead staticdly. In
Section 5, we discuss some dynamic techniques that implement
exceptions efficiently, generate the GC map lazily, and patch native
code to preserve correctness. In Section 6, we present two
mechanisms of the compilation modd that trigger recompilation. In
Section 7, we show the measurements of the effectiveness of the
techniques. Findly, in Section 8, we give conclusions.

2 COMPILATION MODEL

The compilation model of the MRL VM implements a dynamic
recompilation mechanism. The key to our gpproach isto adaptively
and sdectively perform smple code trandation in atimey fashion
for cold methods and expensve optimizations soldy for hot
methods. The main goa is to generate optimized code for those
methods whose previoudy compiled code is considered non-
optimized due to the lack of run-time value information, profiling
information or available compilation time.

Dynamic recompilation happens at run time and we need to make
sure that the time spent on recompilation is paid off by the
performance gain obtained from recompilaion. Initialy, dl
methods are compiled by a fast code generator that produces
reasonably good code. Minimizing compilation time and gathering
profiling informetion are the major concerns a this point, not
producing the best code qudity. As the program executes, the VM
adaptively identifies hot (frequently executed or loop-intensive)
methods and performs expensive optimizations to improve code
quality.

The structure of dynamic recompilation of the MRL VM is similar
to the Jalapefio optimizing compiler [7], consisting of three major
components: a fast code generator (basdline compiler), an
optimizing compiler, and profiling information (as depicted in
Figure 1). All methods are compiled to native code by the fast code
generator when firgt invoked. Instrumenting code isinserted into the
native code to collect profiling information. Asthe codeis executed,
the insrumenting code updates the profiling information. Later,
based on the collected profiling data, some methods are identified as
hot methods and then recompiled by the optimizing compiler, usng
the profiling information to guide optimizations. The VM registers
the optimized code so that the subsequent invocations of the
methods invoke the optimized versions ingead of the old

(unoptimized) ones. The previoudy compiled code if il
referenced by exiging stack frames, will be executed when the
frames become active.

Our current dynamic recompilation is not a staged compilation
mode [20][11], which performs most expensive analyses staticaly
and postpones some optimizations until run time. In other words, the
optimized code will not be considered for recompilation even if the
program behavior changes. With the two compilersin the VM, the
fast code generator and the optimizing compiler, the VM records the
information pertaining to who the producer of the native code of a
method is S0 as to invoke the right compiler to unwind the stack
frame aswel| asreport the live references for garbage collection.

Fast code Optimizing
generator compiler
Unoptimized Optimized
native native

Figure 1. Structure of dynamic recompilation

Figure 2 shows some of the relevant internal structure of the MRL
VM. Asxociated with each method is a data structure caled
METHOD, which consigts of name and descriptor of the method,
pointer to an exception table, pointer to default native code, and a
linked list of JT information. Prior to recompilation, the default
native code points to the unoptimized native code. As soon as the
method is recompiled, the default native code is updated to point to
the optimized code. Since multiple JT compilers can exist a the
same time, the VM maintains alinked list of JI T_| NFO Structures
containing specific information for the method generated by the JIT
compilers. The information is mainly for the purpose of handling
exceptions, unwinding stack frames, enumerating the root set for
GC, and collecting profile data. For example, theJI T_I NFOon the
right of Figure 2 is for the fast code generator, consgting of
“Native’ pointing to the unoptimized native code, and “Method
info” pointing to GC mapping and profile data representation.

2.1 Fast codegenerator

Methods are initidly trandated into native code by the fast code
generator. This agpproach has been shown to be fast and
effective[1]. The main god here is to produce native code quickly
while maintaining reasonable code qudity. It takes two passes over
the bytecodes with linear time complexity: The first pass collects
information such as basic block boundaries and the depth of the

Unoptimized
native code

Bytecode

Profiling data
representation

Name |METHOD

Optimized

Descriptor)
native code

Default native

Info JIT_INFO JIT_INFO
\ JT id JT id
Next Next
Exception — Exception —
table laa— Exceptions taehg)le lea— Exceptions
Native Native
Method info Method info
GC map Profiling |-— Profile data
data
representation GC map

Figure 2. Selected data structures of Intel VM

14

Java operand stack. The second pass uses the lazy code selection
agoproach to generate efficient native code and performs some
lightweight optimizations (e.g., bounds checking and common
subexpression dimination). Instrumenting code is inserted to gather
profiling information as well asto trigger recompilation.

2.2 Fast codegenerator versusinterpreter
One possible implementation of dynamic recompilation isto replace
the fast code generator with an interpreter. Namely, methods are
interpreted until they are identified as hot [25][21]. The reason that
we choose fast code generation insteed of interpretation istwofold:

The interpreting approach reduces the compilaion time
dramaticdly a the price of performance degradation. The
performance gap between interpreting bytecodes and running native
code can easly reach orders of magnitude. With such a huge
performance gap, it iscrucia for the VM to compile hot methods at
the right point because lazy compilation incurs a huge performance
loss due to interpreting, and eager compilation may end up
compiling alot of cold methods. The window of the right moment
to trigger compilation could be so narrow that it is easily missed.
Once the window is missed, the penalty is high. However, the
performance gap between the fast code generator and the optimizing
compiler is relatively smdl, around 30%, for computation intensive
applicaions. Therefore, the window for triggering recompilation is
wider than the interpreting gpproach, dlowing more flexibility in
terms of determining when to recompile. Besdes, because the
compilation time of the fast code generator is small, saving a smdl
amount of compilation timeis not worth a huge performance loss.

Applicaions running in debugging mode[24] require support
from the JT compilers to ingpect the state of the execution of a
program (e.g., printing or setting values of variables) and to control
the execution (e.g., setting abreakpoint). That is, the compilers need
to provide the addresses of variables and the native code offsets of
bytecode locations. Providing this information in an optimizing
compiler can be complicated because globa optimizations and
ingruction scheduling can cause endangered or nonresident
variables[2][3]. Always interpreting the program during debugging
may not be acceptable to the users because of dow execution time.
Ancther dternative is for the VM to dynamicaly fal back to the
interpreting mode on demand for a method compiled by the
optimizing compiler when users want to debug the method. This
transition process is caled deoptimization, which is similar to [15].
The drawback of this approach is that the transition from native
code to the interpreter can complicate the design of the VM
because the compiler needs to record the information for
deoptimization. The fast code generator does not have the
drawbacks of the two previous approaches because the fast code
generator does not do any aggressive optimizations that could cause
incongistent run-time values.

2.3 Profilingdata

There are two kinds of locations where the fast code generator
instruments code: method entry points and back edges. The former
tellsif amethod is cdl intensve. The latter indicates if a method is
loop intensve. When the optimizing compiler is invoked to
recompile a method, the profiling information associated with the
method is retrieved to guide optimization decisions such asinlining
policies and code layout decisons. How the optimizer makes these
decisions based on the profiling information is discussed in Section
4.

2.4 Optimizing Compiler

Globd optimizations are highly effective in improving the code
quality. However, they are expensive in terms of compilation time.
We are willing to afford more time to apply globa optimization to a
method only if the method is identified as hot. The optimizing
compiler takes a conventional compilation approach that builds an
intermediate representation (IR) and performs globa optimizations
based ontheIR.

IR construction

representation

Figure 3. Structure of the optimizing compiler

The structure of the optimizing compiler is depicted in Figure 3.
There are severd major phases. The profile information is used to
guide optimization decisions such asinlining policy, where to apply
expensive optimizations, and the code layout in code emission. The
prepass phase is smilar to the one described in [1], which traverses
the bytecodes and collects information such as Java operand stack
depth and basic block boundaries. The IR congtruction phase then
uses the information to build the control flow graph and IR
indruction sequence for each badc block. Loca common
subexpression eimination across extended basic blocks is done
during congtruction. Theinlining phaseiterates over each indtruction
to identify which call sites are inlining candideates. The control flow
graph and IR are congructed for the inlined call Stes and then
merged (grafted) into the cdler’s, combined with exception tebles.
The globd optimization phase performs copy propagation, constant
folding, dead code eimination [4], bounds checking dimination and
limited loop invariant code motion. With only 7 registers in I1A-
32[16], registers are consdered precious resources. Thus, we avoid
optimizations that are expensive and more likely to increase register
pressure, such as code motion and partid redundancy elimination,
because it is hard to judtify that the optimizations can provide
substantia performance speedup.

The conceptua backend of the optimizing compiler starts from the
code expanson phase. It expands (lowers) some IR ingtructions
because there is no direct one-to-one mapping from the IR
ingtructions to native indructions. For instance, a 64-hit (I ong)
add ingruction is done via two 32-bit instructions, one add and
one adc (add with carry). 64-bit shift and divison ingtructions are
expanded into run-time calls. For the ease of detecting common
subexpressions in the IR congtruction phase, those ingtructions are
not expanded originally. Expanson facilitates gathering the GC map
(liveness of references) because our GC support requires a one-to-
one mapping relaionship between IR and native instructions[22].
Globa register dlocation assgns physicd registers and generates
spill code. The GC support phase computes the GC map at every
ingtruction to make every ingtruction GC-safe. Simple compression
techniques are used to reduce the size of the GC map. The code
emisson phase iterates over the ingtructions and emits native code
and the compressed bit stream of the GC map.

3 EXCEPTION MODEL
Consider the following smple, if abit silly, Javaapplication.

cl ass. sum g
pgbll? stntlc void main(String args[]) {
pri nt SUMCH npg%ar gs);

p
publi void printSunOInts(String strArr[]) {
% result = sunO‘IntsAsStrlngsgstrAr L
Sytemot prlntln"Th it);
} _cat ch(Nanber For mat Exception e) {
}Sy stemout.printin("Error!™);
}
ublic synchroniz
gunﬁlntgAsStrings?Str}ng strArr[]) {
int sum= 0;) :
for(int i =0; i <strAr IeAigt |
sum += | nt eger . par sel nt (st
return sum
}}

This program interprets command line arguments as integer
numbers and prints their sum. The exception mechanism is used to
handle arguments that are not valid integers. If such an argument is
found, an error message is printed. For illudtrative purposes, we
have made this program more complicated than necessary. For
instance we have declared one of the methods as synchronized, even
though there is no need for synchronization in this smple, single-
threaded program.

In this example the code of the library method | nt eger . par sel nt

(not shown) creates and throws the Nunber For mat Excepti on
when its argument is not a vaid integer number. The exception is
caught by the handler declared in pri nt Suntf I nt s and the error
condition is handled there. Two points are worth noting:

Method sunCf I nt sAsStrings is declared as synchroni zed.
That means that a monitor associated with the thi s object is
entered when the method is entered and the monitor must be
released when we exit the method. If the exception is thrown, the
VM must make sure that the monitor is released as part of the
exception throwing process.

An exception object contains a stack trace that can be printed at any
point, even after some of the stack frames referred to in the trace
cease to exist. In our example we could add the following method
invocation to the exception handler:

e.print StackTrace();
which might produce the output:

java. | ang. Nurber For mat Excepti on: badnunber
at java.lang.|nteger. parselnt
at sum sunCf I nt SASSt ri ngs
at sumprintSunCfints
at summain

if the string “ badnumber” were entered as a command line argument
to our gpplication. The exact format of the stack trace output is
implementation-dependent (Section 20.22.6 of the Java Language
Specification [12]).

The VM specification ([19], Section 2.16.1) categorizes exceptions
in three groups depending on the cause of the exception:

An abnorma execution condition was synchronousdly detected by
the JavaVM.

At hr ow Statement was executed

An asynchronous exception occurred.

This classfication is important in our work, because exceptions in
the second category are more difficult to anadyze and the description
of lazy throwing of those exceptions is a major part of our paper.
For the purpose of this paper, we call those exceptions user

exceptions, because they may be created and thrown from user code.
By contrast, we will refer to exceptions in the other two groups as
VM exceptions, because they are detected and thrown by the VM.

3.1 Interaction Between the CoreVM and

theJIT

The MRL VM has a well-defined interface between the core VM
and the J'T compiler. There are two parts to the interface: compile-
and run-time. The compiletime interface is used by the VM to
invoke the compiler for a gpecific method and by the compiler to get
information needed to compile the method and to inform the VM
what the exception table for the compiled method is. Our VM uses
an exception table smilar to the one defined by the VM
specification. However, the exception table created by the JT
compiler is expressed in terms of the generated native code and the
JT can add new entries to handle some optimizations (see Section
4.3) and delete some entries asthe result of other optimizations.

The run-time part of the interface (the JIT runtime) is used by the
VM to ak the JIT compiler to perform JT-dependent tasks: stack
unwinding, enumeration of the root set for garbage collection, etc.

3.2 Unwinding Process

At the moment of throwing the exception in our example there are
four frames on the stack. At the bottom of the stack is the
sum nmai n method. Then mehods printSunCiints,
sunO I ntsAsStrings and I nteger. parselnt were invoked.
The active frame corresponds to method | nt eger . parsel nt. At
this point in the execution an exception of type
Nunber For mat Excepti on is thrown. In general any of the
methods on the call stack may have registered a handler competible
with the Nunber For mat Except i on type. In our example there is
only one such handler, declared in pri nt Suncf I nt s.

A smple VM implementation would creste an exception object of
type Nunber For mat Exception as soon as the appropriate
condition is detected. As part of the exception object cregtion, a
congtructor of the object would be invoked. The constructor would
cregte the stack trace and dtore it in the exception object. A stack
trace is congtructed in a non-destructive stack traversal. The stack
trace contains dl frames from the top to the bottom of the stack.
After the object is created, the stack would be traversed in a
degtructive way darting at the active frame (top of the stack) and
proceeding until either a compatible exception handler is found or
the bottom of the stack isreached.

The difference between non-destructive and destructive unwinding
is that in the latter case as we unwind to the previous frame, we
release various VM resources. After we destructively unwind from
a frame, the execution can no longer resume in tha context.
Resources released by the VM during the destructive unwind
include Java monitors (for synchronized methods) and internd VM
data gtructures. In our example, the destructive unwind exits the
monitor associated with the execution of the synchronized method
suntX | nt sAsStri ngs.

The unwinding process starts with a context of a threed and
determines the context of the cdler. If the active frame belongsto a
Java method compiled by the compiler, the VM cals the compiler
runtime to perform the unwind. This arrangement alows grest
flexibility in the frame layout used by a JT compiler, because the
frame is a “black box” to the VM and anew JT compiler can be
plugged into the core VM without any modificationsto the VM.

If the active frame does not belong to a Java method compiled by
the JT compilers, the VM usesitsinternal data structuresto find the

16

cdler’s context. This condition aways occurs for native methods.
TheVM isresponsible for maintaining a sufficient state to make this
possible even though we assume no cooperation from the native
code other than following a native interface like the Java Native
Interface (INI).

Thetraversa of the stack isimplemented as aloop starting with the
context of the frame on the top of the stack and ending at the bottom
of the stack in the case of the non-destructive unwind or at the frame
with the correct handler for the dedtructive unwind. The most
important operations are the method lookup and frame unwind
functions.

The method lookup function takes the ingtruction pointer (IP) as an
agument and returns a pointer to JIT_INFO, a <gructure
representing the method and the JT compiler used to generate this
code. JI T_I NFOis described in Section 2 and visualized in Figure
2. Inour VM every Java method is compiled to a contiguous area
of memory. Given that assumption we organize our lookup table as
a sorted array of IP ranges (start_IP..end_IP). The method |ookup
performs abinary search of the table.

The frame unwind uses the information generated by the JT
compiler a compile time to unwind the stack frame to the frame
belonging to the caller. The unwind process must restore the values
of the IP, stack pointer (SP) and callee-saved registers. Notethat a
Java method may have been recompiled and in thet case it is
possible that a the same time there exist frames corresponding to
the same method compiled by different compilers. Therefore the
stack traversal loop must use the appropriete compiler to unwind
every frame. Thisispossible becausetheJ!I T_I NFOreturned by the
method lookup represents the method and the compiler used to
compileit.

The MRL VM uses the value of the IP register to determine if there
are handlers registered for this value of the IP and if so whether the
thrown exception is an instance of the catch type recorded in the
exception table.

4 STATIC OPTMIZATIONS

In this section, we discuss some key optimizations implemented in
the optimizer that try to eliminate the run-time overhead statically.

4.1 Classinitialization

The WM Specification ([19], Section 5.5) requires that a dass is
initidized at itsfirst active use. The JI'T compiler needs to make sure
that the classisinitialized before a non-congtant field declared in the
dass is used or assigned. We take a Smple approach to diminate
checks for class initidization. When building the IR for
getstati c and put st ati ¢ bytecodes, we cdl a helper routine
provided by the MRL VM to query if the class of the field has been
initidlized. If the class is not yet initialized at the current compile
time, a run time right before the get st ati ¢ and put stati c,
we check if aclassisinitidized. If the check fails, that field access
isthefirg active use and the classisinitidized.

4.2 Checkcast

A cast converson must check a run time if the cast cannot be
proven correct a compile time ([12], Section 5.5). The compiler
generates a run-time helper cal for checkcast . There are two
methods we use to reduce the run-time overhead for checkcast .
First, we use local common subexpresson eimination to determine
whether the helper cdl is necessary. As we build the IR for a
checkcast bytecode that casts an object x of class A to the
resolved type B, we check whether “x i nstanceof B’ is

available a this point. In our implementation, we propagate the
availability of ani nst anceof only if thei nst anceof isused
as acontrol-flow condition. The availability of thei nst anceof is
then propagated aong the path on which the result of the
i nst anceof is true. Second, we partidly inline the commonly
executed path of the heper cal so as to diminate the run-time call
overhead along the path.

4.3 Boundschecking

The Java language specifies that dl array accesses are checked at
run time ([12], Section 10.4); an attempt to use an index that is out
of bounds causes Arrayl ndexQut Of Bounds Exception
exception to be thrown. The compiler can diminate bounds
checking code if it can prove that the index is aways within the
correct range. If the compiler cannot prove that, the array reference
must include bounds checking code (one unsigned compare and one
branch). Bounds checking code can be very expensive for
computation-intensive gpplications that heavily involve arrays.

The optimizing compiler performs andlysis to figure out the range
that an array might access within aloop. If the range is known, the
compiler creates a cloned loop and eiminates the bounds checking
code for the array accesses by inserting code outside the loop to
check if both the lower and the upper limits are within the correct
range (as depicted in Figure 4 (b)). If either one of the limit checks
fails, the original loop with bounds checking code is executed
because the aray accesses might cause Arrayl ndex-

Qut O BoundsExcept i on to be thrown. For smplicity, we use
the notation @j , arry, | abel) to indicate the bounds checking
code which contains two ingructions. “cnp arry.length,j”
comparing the index varigble j againgt the length of array arry,
and “j be | abel ” branching to thel abel if j is greater than or
equd to the length of ar r y. Comparingj againg ar r y’slow limit
(zero) is unnecessary because the code sequence also branches to
thel abel whenj isnegative (below zero). The compiler performs
code hoigting for the newly cloned loop to move invariant code out
of theloop (eg., loadof a[i]).

The code inserted in BB1 of Figure 4 might throw exceptions,
possibly causing exceptions to be thrown out of order. The Java
language requires precise exceptions. dl effects of the statements
executed and expressons eva uated before the point from which the
exception is thrown must appear to have taken place ([12], Section
11.31). To ensure not to violate the requirement of precise
exceptions, the compiler does not hoist code that can cause any side
effects, e.g., array store or put f i el d. Thus, the compiler does not
need to recover the old values of arrays, fidds, and varigbles once
an exception happens in BB1. Moreover, an exception handler,
whose handler routine is the origina loop, is crested to catch any
exception that might happen within BB1. Once the exception
handler catches any exception, the transfer of control takes place
(indicated by dotted arrows in Figure 4 (b)) and the origina loop is
then executed. During the execution of the origind loop, exceptions
arethrown in theright order.

Let us condder an example. Asume that j/k throws
ArithneticException (divison by 0) during the first
iteration of the loop. That is, the execution of the origind loop
throws Arithneti cException. Also assume tha
“@i,a,L0)” in BBl throws Nul | Poi nt er Excepti on.
Once the exception handler catches Nul | Poi nt er Excepti on,
the origind loop is executed. During the execution of the origind
loop, j/k throws Arithneti cException. As such, the
precise exception is preserved.

17

431 Policy

Cloning loops can easly cause a code explosion so the policy of
applying bounds checking dimination is based on three parameters:
code sze, amount of bound checking code that can be potentidly
eiminated, and profiling information. The optimizing compiler only
congders the innermost loops as the scopes for bounds checking
eimination. For a given innermost loop, if the ratio of the tota
number of ingtructions and the number of candidates is below a
certain threshold (which is set to 30 based on our empirical results),
this optimization is turned off because eiminating dl bounds
checking code can only lead to a smdl percent speedup. The
optimizing compiler computes the average trip count of the loop
using the profiling information. If the trip count is not greater than 3,
the optimization is turned off as well because the performance gain
issmall.

44 INLINING

Inlining is a common and well-adopted technique used in compilers
to reduce the overhead of method invocations. Inlining enlarges the
compilation scope, exposes more optimization opportunities and
eliminates the run-time overhead of credting a stack frame and
passing arguments and return vaues. Method cdls in Java are
virtua (dynamicaly dispatched) unless their bytecodes are declared
as ddtic, fina or specid. Virtud method cals cannot be easily
eliminated because the compiler generally has no idea which calee
will beinvoked.

Before discussing the gpproaches of inlining a virtual method, we
need to describe the object layout, which has a direct influence on
how the method isinlined. Figure 5 depicts the object layout used
in most implementations of object-oriented languages, e.g., C++ and

i=x

sk
o @i, a,Lls)
cto=ali]

. cnp a.length,j
@j,a,label) { j be | abel

L15: call out_of _bound

(@) Origind code

i=x

BBL *

L7: @i, a, L0)

E : L8: t =ali]
I:*gl“on L9: @j,t,L0)
ancler L10: @99,t, L0)

original loop

L15: call out_of _bound

(b) After transformation

Figure 4. Bounds checking elimination

Java X is a reference pointing to an object. The firgt fied of the
object pointsto the vt abl e (virtud method table). For each virtua
method of the object, there is a dedicated entry in the vt abl e,
pointing to the native code of the method. To get the address of a
virtua method f 0o, we need to dereference the pointer twice (two
memory accesses). The first one gets the vtable (t = [x]).
The second one getsthe address of f 0o ([t +64]).

Asthe virtua method getsinlined, the J'T compiler generates arun-
time test to verify if the inlined calee is the right instance to be
invoked. The norma method invocation code sequence is executed
if the verification fails. The run-time test is usually implemented in
two ways[9]: one tedts the vt abl e (discussed in Section 4.4.1)
and the other checks the actud target address of the method
invocation (discussed in Section 4.4.2). An inline cache approach

object vtable

t=1[x]

7 I
4
data 6
I [[t+64] c

Figure5. Object layout

[13] is not taken into account here because the generated stubs
introduce one extra dereference, and a sequence of tegting for
polymorphic cal dtes may cause high run-time overhead. That
approach is more gpplicable to languages that have high overhead
for method invocation, such as SELF. In Section 5.1, we describe
enhancements that further improve the inlining accuracy and the
code sequence for the conditiona test.

44.1 Checking vtable

The firs approach compares the object’'s vtabl e with the
vt abl e of the class of the inlined method. The code sequence of
this gpproach is shown in below. If the test succeeds, it is safe to
execute the inlined code because the inlined method is the one that
will be dynamically dispatched a run time. If the test fails, the
regular dispatching code sequence is executed to invoke the virtua
method cdll.

nov eax, DWORD PTR [eax] // get vtable
cnp eax, 0Obc3508h
jnz def aul t _i nvocati on

/1 inlined callee

_defaul t _i nvocati on:
/1 normal invocation code

The benefit of this approach is that only one memory access ([X])
isinvolved to determine if either the inlined A’s f 0o or the regular
cal sequence should be executed. The origind cal overhead is
reduced to one memory access, one comparison and one branch.
But the drawback is that checking vtabl e is conservetive.
Consider the code x. f 00() . Presumably, x can be either class A
or Bwhere Aisasuperclassof B and A'sf 0o isnot overridden by
B. If x’sdynamic typeis dways of class B but its static typeis set to
A, the checking always fails because class A and B have distinct
vt abl es. The code shown above dways executes the non-inlined

18

OVERRIDDEN_RE

offset.,
eax, DWORD PTR [eax] n_patch

jTp_inlined_callee mhandle| offeet | length
nop patch T engt
n cnp eax, 0bc3508h
jnz _default_invocation

inlined calles m hende| offset | lengh
Iinlined callee cnp eax, 0bc3462h

_default_invocation:
// normal invocation code

Figure5. Dynamic patching
path instead of the inlined path even though A's f 00 is invoked
every time.

442 Checkingtarget address

The second gpproach inserts code to compare the actuad method
address that x. f 0o() isinvoking with the address of A'sf 0o (as
shown below).

nov eax, DWORD PTR [eax] // get vtable
mov ecx, DWORD PTR [eax+64] // target addr
cnp ecx, [BE762Ch]

jnz def aul t _i nvocat i on

/1 inlined callee

_defaul t _i nvocati on:
/1 normal invocation code

This gpproach is more precise. However, the checking needs at least
2 memory accesses ([x] and [t+64]). In Jugt-In-Time
compilation, amethod is compiled right beforeitsfirst execution. If
A's f oo is not yet compiled, we have no idea what the actua
address of A'sf oo is. The compiler then has to dlocate memory
space in which wefill the address of A'sf 0o assoon s A'sf 00 is
compiled. In such a circumgtance, the test reguires 3 memory
accesses,

The optimizing compiler uses the first approach, testing vt abl e,
because it requires only one memory access. However, we need to
dedl with the conservatism of the approach. We have implemented
two mechanisms to dleviae the issue type propagation and
dynamic patching that is discussed in Section 5.1.

In [13], type feedback is used to improve the accuracy of inlining
predictions. In the MRL VM, we do not record a type profile for
every cal ste. Instead, we propagate type information during copy
propagation to track the actud class type of the object of the
invoked method. Consider code x. f oo() . If type propageation
provesthat the actud type of x isclass B instead of class A, where A
isasuperclass of B, and the class hierarchy analysis[8] proves that
there is no dass in between A and B that overrides f oo, then we
generate the test for comparing x’svt abl e againg B's.

443 Policy

The inlining policy is based on the code size and profiling
information. If the execution frequency of a method entry is below
a certain threshold, the method is then not inlined because it is
regarded as a cold method. To avoid code explosion, we do not
inline a method with a bytecode sze of more than 25 bytes.
Inlining is performed in arecursive fashion. The compiler traverses
the IR and determines which cal sites need to be inlined. Then the

compiler builds the contral flow graphs (CFG) and IR for those
inlined methods. Before grafting the newly crested CFGs into the
cdler's, the compiler repests the same inlining process for the
inlined methods. To avoid inlining along a deep cal chain, inlining
stops when the accumulated inlined bytecode size adong the call
chain exceeds 40 bytes.

5 DYNAMIC OPTIMIZATIONS

In this section, we discuss some techniques gpplied at run time to
dedl with patching native code, reducing the GC map sze, caching
the stack frames, and avoiding creating exception objects.

5.1 Dynamicinlinepatching

Often, a method is not overridden from the time the JT compiler
inlines the method until the end of the program execution. The
method is always the right instance of invocation if the class
hierarchy does not change over time. We would like to generate
code based on the assumption that the inlined method will probably
never be overidden throughout the program execution.
Nevertheless, Java alows classes to be dynamicaly loaded at run
time, which is known as dynamic class loading. In other words, the
class hierarchy may change. Dynamic patching is a technique that
patches the native code to preserve the correctness of the program
once the assumptions made by the compiler areinvalidated.

The optimizing compiler produces the inlining code sequence as
shown in Section 4.4.1. Right before code emission, the compiler
replaces the cnp with a j np, directly to the inlined code (as
illugtrated in Figure 5), if theinlined method is not yet overridden at
that time. The overhead of the conditiond test, one cnp and one
j nz, is reduced to one direct jump instruction. A patch entry is
created for the cnp just replaced. The patch is composed of the
method handle of the inlined method (calee), the code offset and
length of the IA-32 cnp ingtruction, and the byte array for storing
the cnp. Since the ingtruction length of the cmp is longer than the
j mp, nops ae filled in for the remaining bytes &fter the
replacement. The compiler then invokes an APl cdl,
met hod_set _inline_ assunption(caller,callee),
to notify the VM that thecal | er hasinlinedthecal | ee with the
overridden optimization enabled. An overridden_rec is
created as part of cal | er ’s method_info, containing &l patches of
thecal | er aswell asthetotal number of the patches. A callback,
net hod_was_ overridden(caller,callee), provided
by the optimizing compiler, dlows the VM to notify the compiler
that the cal | ee has been overridden and therefore fixing the
cal | er’scodeisrequired.

net hod_was_overri dden retrisves the caller’s
overri dden_rec and performs fixing for dl the patches whose
method handle matches cal | ee’s. The code patching must be
thread-safe because other threads may be executing the instruction
that we are about to patch, i.e, the direct jump instruction. The code
sequence the compiler uses to make code patching thread-safe is
divided into three steps (shown in Figure 6): Firg, the direct jump
ingtruction is subgtituted by aspinning jump (jump to itsef). Weuse
the xchg, ingtead of nov, ingruction that exchanges two operands
to write the spinning jump because nmov is not an atomic operation.
If amemory operand is referenced in xchg, the processor’s locking
protocol is automatically implemented for the duration of the
exchange operation [16]. The locking protocol ensures writing
OxFEEB (two bytes) has exclusive use of any shared memory—the
operation is atomic. Other threads that hgppen to be executing the
ingruction will spin waiting for the completion of the patching.
Second, the origind cnp except the firgt two bytes are restored.

19

Finaly, the firgt two bytes of the crp are written atomically using
xchg.

52 Lazy GC map

The JT compilers generate a GC map for each method, alowing
the compilers to unwind stack frames for exceptions and compute
the root set of live references for garbage collection. The root set
conggts of al objects pointed to by globa pointers or by pointersin
the active stack frames. Typicaly only a small number of methods
are active when GC happens, which means the GC maps for the rest
of the methods are superfluous.

Wewould like to take alazy approach that generates the GC map on
the fly. Because computing the GC map requires recompiling
methods, the gpproach of lazy GC map generation is solely
applicable to the fast code generator. Instead of generating ordinary
method info, the fast code generator produces smal method info
that comprises a profile data pointer, a GC data pointer set to null
initidly, and a bit vector for class initidization. Whenever a
nonexisent GC map is needed, the method is recompiled to
compute the GC map and set the GC data pointer (as depicted in
Figure7).

The dass initidization bit vector deserves additional explanation.
As described in Section 4.1, the fast code generator aso diminates
class initidization calls, whenever the VM indicates that the class
has aready been initidized at JT compilation time. Therefore, the
actud code that the fast code generator produces is not stateless—it
depends on which class initidizers have been executed & the time
the method is compiled. This state is required for recomputing the
GC map, and thus the class initidization hit vector is saved in the
method_info when the method is first compiled.

5.3 Caching Of The Unwinding Process

We speed up the stack traversd by using caches to diminate
duplication of work for the same frame. This optimization relies on
the fact that often a st of frames remains on the stack long enough
to be traversed by the exception code for multiple exception
dispatches. We use two caches, one to improve the method lookup
and another to improve the unwind itsalf.

The method lookup cache is a direct mapped cache indexed by a
hash value computed from the IP value. If the IP valuein the cache
matches the current value, the result is returned immediately,
otherwise the binary search is performed (see Section 3.2) and the
cache entry is updated before the result is returned. In our VM we

Byte *code = nethod_get _code_bl ock_addr (caller)
Byte *first_byte_addr = code + patch->code_of fset;

// step 1: wite a spinning inst

_asm{
nov eax, first_byte_addr
nov cx, OxFEEB /'l spinning

xchg word ptr [eax], cx

| step 2: restore cnp inst except
/ the first two bytes
or (int j =2; j < patch->length; j++)
code[patch->of fset + j] = patch->orig_code[j];

}
/
/
f

/] step 3: restore the first two bytes
Byte *first_orig_addr = (Byte *)patch->orig_code
_asm{

nov eax, first_byte_addr

nov edx, first_orig_addr

nov cx, word ptr [edx]

xchg word ptr [eax], cx
}
Figure 6. Code patching

use a cache of 512 entries. This size is larger than needed for the
benchmarks discussed in this paper, but is chosen for the benefit of
larger gpplications.

The unwind cache is maintained by the JT compiler. In our
implementation, the core VM does not know the layout of stack
frames corresponding to methods compiled by a compiler. The
compiler is responsible for creating appropriate information to meke
the unwind process possible. A pointer to the gppropriate unwind
data gtructureisstored inthe J1 T_I NFOstructure from Figure 2.

Our design requiresthat aJI'T compiler provides arun-time function
that, given a register context and a pointer to the unwind data
created & compile time, must update the context to the caler's
context. That involves recovering the vaues of the stack pointer
(SP), IP and cdlee-saved registers. The stack unwind function must
be designed so that two, possibly conflicting, gods are met:

The unwind data structures should be as small as possible. In our
earlier paper [22] we describe how to minimize the size of the GC
information. The same data structures hold information needed for
GC and other stack unwinds, because there is much overlap
between the root set enumeration and stack unwind functions.

The process of the unwinding should be as fast as possble. In
addition to implementing efficient compression schemes, we speed
up the unwinding by using a cache in the compiler [22]. The
unwind cache enables faster unwinds of frames corresponding to
cached IPvalues,

5.4 Lazy Exceptions

We have noted that some Java applications use exceptions to change
the control flow only. In those applications the exception object’s
type is used to determine which handler catches the exception, but
the content of the exception object is never accessed. In those cases
creating the stack trace is unnecessary and we can save a substantial
amount of work by never creating the exception object itsdf.

Let's revidt the code example in Section 3. The exception object is
not used in the handler in print SunCf I nts. Compiler andysis
can trividly detect that the object is dead at the entry of the handler.
Since the exception object is never used in this example, it would be

JTid JIT_INFO
Next

Exceptions
Native

Method info
¢ S_METHOD_INFQ, ...+~ W GCmap

Profiling L] Profile_data]
data GC_data
representation Class _initialization -—1

Fast code generator
recompilation |—|

Figure 7. Lazy GC map

possible to avoid its creation. The problem is that the exception is
thrown in a different method and at the time of the throw it is not
known which handler will catch the exception and consequently it is
not known whether it is necessary to create the object. Therefore, to
the best of our knowledge, dl Java VM implementations
conservatively create al exception objects. Our technique of lazy
exception throwing eliminates the need for creation of the exception
object in certain, common cases.

20

Exiging Java Virtua Machines cregte exceptions eegerly, i.e, as
soon as an exceptiona Situation is observed, and the exception
object is created and initidlized. In the next step the VM searches
the stack for the right handler. Our approach is to create exceptions
lazly, i.e, initidly assume that the exception object is not required,
search for the handler and when oneis found, consult data structures
provided by the JIT compiler to determine if the exception object is
live a the entry to the handler. |If the compiler can prove that the
exception object is deed, the object is never created. If, on the other
hand, the exception object is live, we have to create the exception
object. Thedifficulty isthat the exception object must be initidized
asif it were created in the context where the exception was thrown.
The VM has however destructively unwound a (possibly empty)
subset of the top dtack frames. See Section5.4.3 for a more
complete discussion of the correctnessissues.

Lazy exception throwing is relatively easy for exceptions thrown by
the VM itsdlf. Those predefined run-time exceptions are required
by the WM semantics[19]. Examples include
Arrayl ndexQut O BoundsExcept i on and Nul | Poi nt er -
Exception. The operation of the exception object crestion and
throwing is completely performed by the VM and therefore the
order of the operationsis not visible to the application. Thissmpler
case is described in Section 5.4.1. Our design is more aggressive
and attempts lazy exception throwing even for exceptions created by
user code. This requires a more complete support in the compiler
and is discussed in Sections 5.4.2 and 5.4.3. The lazy exception
mechanism isimplemented only in the optimizing compiler because
andyses that ensure that the mechanism does not violate the
semantics of Javaare based upon IR.

541 VM Exceptions

The implementetion of lazy VM exceptions is relatively
graightforward. When the VM detects an abnorma condition, it
first performs a destructive unwind to find an appropriate handler
and then queries its data structures whether the exception object is
live & the entry of the handler. If the object islive then the object is
created exactly the same way it would have been created in a
sandard VM implementation. If, on the other hand, the exception
object is dead @ the handler entry, its creation is skipped atogether.
Since VM exceptions in our implementation have no side effects,
the semantics of the application are not changed. Also, the
congructors of our VM exceptions never throw exceptions
themselves, s0 the extra difficulty described in Section 5.4.3.3 does
not apply here.

542 User Exceptions
User exceptions are typicdly created with the following sequence of
bytecodes:

Few <User Excepti on>

up, .
[bl nabhy P EmRpgh o 2 oyzent

Of course, in principle, these indructions do not have to be
contiguous and they may span multiple basic blocks or even
methods. In practice however, the complete ingtruction sequence is
usudly in the same basic block and its analysis is possible in an
optimizing compiler.

We could handle user exceptions the same way we handle VM
exceptions if we knew that not executing the congtructor or
executing it in adifferent context would not change the semantics of
the program.

54.3 Sdeeffects

Side effects may cause problems that violate semantics of the
program. We have the obvious set of operations thet we consider to
have side effects: stores to fields and array dements, and invoke
operations that have not been inlined. Because of the ressons
discussed in Section 5.4.3.3, we dso do not alow synchronizetion
operations and operations that may cause exceptions.

Using the lazy exception mechanism in javac requires complete side
effect analysis, so we useit asagood illustration for our paper. That
example is described below. The same techniques diminate the
cregtion of exception objects in many other gpplications and we
believe that our implementation is as powerful as necessary and
feesble given the redriction on how expensve compile time
andysiscanbeinadT compiler.

We will usejavac, aJava compiler, as an example of an application
that benefits from lazy exception creation and in which al
exceptions thrown in anormal run are user exceptions. Javac is a
relevant benchmark because:

Javec is part of the SPEC VM Client98 benchmark suite (dso
referred to as SPEC VM98 [22]) and therefore performance of this
benchmark is of interest to designers of JavaVMs.

Javec is a redidic Java application. It performs a relevant
computation and is in use by many programmers worldwide
(although note that versions of javac distributed with newer editions
of Sun Microsystems JDK have likely been improved and
expanded compared to the verson included in SPEC JVM98).

Here is the specific sequence of ingtructions from that gpplication.
For brevity, we omit package names, but note that al non-standard
classes ae declared in the spec. benchmarks. _213_j avac
package. This code fragment comes from the
I dentifier.Resol ve(Environnent, Identifier) method.

ew <Cl assNot Found>
/1 push a constructor
ﬁo[zespem al <d assNot Found(I dentifier)>

This example follows the generic pattern presented earlier for user
exceptions. The essence of the optimization is to delay the crestion
of the object of class A assNot Found until the VM finds the right
handler and determines that the exception object isindeed livein the
handler. In many gpplications, exceptions are used for abnormal
control flow, but the exception object is not used for anything other
than selecting the right handler. In those applications, the compiler
can often detect that the exception object is dead in the handler.
This dtuation happensin javec. For the workload included in SPEC
VMO8, javac throws 22,372 exceptions and dl of those exceptions
result in transferring control to handlers in which the exception
object is dead.

It is difficult to transform this code pattern into a lazy exception
throw, because the congtructor of the exception may have sde
effects. Of course, a congtructor with sde effects cannot be
eiminated, so we use lazy exceptions only if the compiler can prove
that there are no side effectsin the constructor.

Note tha while in our implementation the arguments to the
congtructor are dways evaluated, it would be possible for the VM to
be even more aggressve and lazily evaduae arguments to the
congtructor. That would require additionad compiler anaysis for the
side effects of the argument evaluation. In practice, it does not seem
to be necessary, because in the gpplications we looked at, there are
ether no arguments to the constructor or (as in the above example)

21

arguments are already evaluated and are stored in local variables or
on the Java stack.

To decide if a congructor is side effect free, the compiler must
andyze the congtructor and recursively dl the invoked methods. A
congtructor aways invokes a constructor of the super class, whichin
turn invokes the condructor of its super class Since
d assNot Found is a subclass of Exception, congructors of
d assNot Found, Exception, Throwable, and bject are
invoked. Two other methods, Identifier.toString() and
Throwabl e. fill I nStackTrace() ae dsoinvoked. A detailed
discussion of the more troublesome of those methods follows.

5431 Fidd updates

Our nation of side effectsis standard but werelax it in oneway. For
the purposes of our analysis, we consder a sequence of ingructions
to have no sde effects even if there are stores to fields of the object
that is conddered as a candidate for lazy creation. The rationaleis
that modifications to the state of an object that is dead have no
observable side effects.

One code fragment in the O assNot Found(ldentifier)
congtructor that could potentially have side effects is a Sore to the
fidd narre.

al oad_0O /1 this pointer
aload_1 /1 constructor
putfield <ldentifier name>

ar gunment

This code fragment is an example of a dtore to a field of the
exception object whose crestion we want to diminate. As discussed
above, we do not consider such astore to have side effects.

54.3.2 Method invocations

An invocation of any method may have side effects. The compiler
must prove that that is not the case. The optimizing compiler
attempts to inline recursvely al method invocations in the
constructor. Generd strategy for inlining is followed with genera
restrictions on inlining assumed by the compiler (see Section 4.4).
Virtud method invocations are aso inlined, possbly with a run-
time check. In that case, only the path along which we inlined the
method is conddered a candidate for the lazy exceptions
mechanism. If a native method is invoked, the compiler must of
course consarvaively assume that the method may have sde
effects. There is a mechanism to override this default, conservative
assumption. Every method has a flag associated with it that says if
the method can be assumed to be side effect free without compiler
andyss. Specificdly, for the purpose of the lazy exception
andyss, we st this flag to mak the native method
java.lang. Throwabl e. fill I nStackTrace() as Sde effect
free. That assumption is valid because our VM implements
filllnStackTrace() internaly and the VM can guarantee that
there are no side effectsin this method.

Ancther code fragment of O assNot Found(1dentifier) with
potential side effectsis

al oad_0
al oad 1
i nvokevi rtual
i nvokespeci al

<String toString()>
<Exception(String)>

Each of the two methods in this example presents different
chdlenges. Identifier.toString() is invoked as a virtua
method and needs a run-time check to make sure tha the class of
the object is indeed | denti fier. This andysis is performed by

our compiler for inlining, so No new code had to be added to take
care of that. The body of Identifier.toString() does not
throw exceptions as long as its argument is not null; our compiler’s
inlining infrastructure equates that argument with variable 2 of the
I dentifier.Resol ve(Environnent, Identifier) method.
Tha variable can be shown to be non-null by virtue of its earlier
uses, which dominate the exception throwing code.

The second method, Excepti on(Stri ng), is difficult to andyze
for adifferent reason. The invocation is not virtua, so inlining can
be done without any extra effort. However, inlining of this method
causesin turn another method, Thr owabl e(Stri ng) , to beinlined.
This method is more problematic. One issue is that it modifies a
field of the object being crested, but this, as explained above, is a
false Sde effect since it involves a modification of the very object
we want to avoid creating. So the following code is assumed to
have no side effects.

al oad_0 /1 this pointer
al oad_1 /'l constructor argurent
putfield <String detail Message>

Ancther more difficult problem in Thr owabl e(Stri ng) isin the
following code fragment.

al oad_0

i nvokevirtual <Throwable filllnStackTrace()>

We have dready explained that our compiler can inline virtua
method invocations (with a run-time check). The problem here is
that Throwabl e. filllnStackTrace() is a naive method and
the JT compiler conservatively assumes that dl native methods
may have arbitrary side effects. Asdescribed above, the VM, which
implements this method, marks it as Sde effect free.

54.33 Usngtheright context

The optimizing compiler always evauates dl arguments to the
congtructor of the exception object even if the condructor is never
invoked, so the execution of any code related to the evauation of
arguments is dways performed at the right time and in the right
context. However, the compiler must prove tha the body of the
congructor itsdf, including any methods invoked by the
condiructor, does not cause side effects.

When the VM discovers the correct handler and finds thet the
exception object must be created, the context in which the exception
was supposed to be executed may no longer exist, because some
sack frames may have been destructivdly unwound. A simple
solution would be to firgt find the handler using non-destructive
unwinds, find out if the exception object is live, create the object if
necessary in the correct context, and then traverse the stack again,
using destructive unwinds. The drawback of this smple solution is
that the gtack is traversed twice and so throwing exceptions is
actudly dower if the exception object islivein the handler.

We did not want to sacrifice performance and the extra stack
traversal was not acceptable. Instead we are giving up expressive
power and only using lazy exceptions when the compiler andysis
can prove thet it is safe to execute the constructor in the context of
the handler. Two specific correctnessissues are discussed below.

Exceptionsin congtructors

The most important problem can be caused by exceptions thrown by
the congtructor of the exception object itsdlf. The optimizing
compiler ensures that the congtructor will not throw any new
exceptions that could be caught by a handler of a method whose
stack frame is between the top of the stack and the frame of the
method with the handler corresponding to the lazy exception. To
understand why it is necessary, consider the following example.

A cdls B. B throws an exception of class f oo lazily. Thereis no
handler for f oo in B, so the VM destructively unwinds the frame of
B. Now, ahandler for f oo isfound in A and the exception object is
liveinthe handler. The VM now cresates an object of typef oo. This
object is supposed to be congtructed in the context of B, so if the
congtructor of f oo throws a new exception, say, of class bar , there
is a possibility that a handler for this exception exists in B and the
control is supposed to be transferred there. We address thisissue by
only alowing lazy exceptions when the compiler can prove thet the
constructor will not throw exceptions.

Synchronization

Synchronized methods are another issue. In Java a method can be
declared as synchronized. That means that a monitor associated
with the object referenced by thet hi s pointer is entered when the
method is entered. A destructive unwind exits this monitor. But it
is possible to write a program that throws an exception in such a
way that the congtructor of the exception object relies on the fact
that the current thread entered a monitor for an object referenced by
at hi s pointer of one of the methods on the stack. If weinvokethe
congtructor lazily after we exit the monitor, a deadlock can occur or
an incorrect result can be produced due to insufficient
synchronization.

We avoid the deadlock potentia by not alowing lazy exceptions if
the compiler andysis of the congtructor detects any noni t or ent er

bytecodes or any invocation of synchronized methods.

Note that errors due to insufficient synchronization are not actualy
possible, because we do not dlow sde effects in congtructors for
lazy exceptions.

6 TRIGGERING RECOMPILATION

One important component of dynamic recompilation is the
mechanism to trigger recompilation. Recompilation is expensive in
terms of compilation time. We want to recompile hot methods as
soon as possible while avoiding recompiling cold methods. In other
words, the mechanism needs to make the decisons of when to
recompile and what to be recompiled. The MRL VM has
implemented two mechanisms.

6.1 Instrumenting

The firsd mechanism uses the instrumenting code to trigger
recompilation. The initid values of counters are set to some
threshold vaues. As code gets executed, the counters are
decremented. We insert code to test the vaues of the counters
agang zero. As soon as the counters reech zero, the code
immediately jumps to the routine that triggers recompilation. The
threshold values for the method entry and the back-edge counters
ae set to 1000 and 10000 respectively. The benefit of the
mechanism is that once a threshold is reached, recompilation is
triggered immediately, and thus the newly optimized code can be
used as soon as possble Neverthdess, the drawback is that
choosing the threshold is not trivid. If we would like to compile hot
methods sooner, we need to set the threshold low. As aresult, the

optimizing compiler may end up recompiling lots of non-hot
methods and wasting the compilation time. If we want to avoid
compiling non-hot methods, we need to sat the threshold high.
Consequently, performance may suffer because hot methods are not
recompiled soon enough.

6.2 Threading

The second mechanism is thread-based, aimed at curtaling the
compilation time by overlapping compilaion with program
execution on a multiprocessor system, which is aso known as
continuous compilation[21]. The code that updates counters
increments counters to update the profiling information rather than
decrementing. A separate thread is created for recompilation,
periodicaly scanning through the profiling information to determine
which methods are hot and need to be recompiled. The thread can
utilize cycles of an idle processor for recompilation. All countersare
resat to zero during scanning so that no accumulated vaues are
caried over to the next recompilation session. The thread is
suspended and waits for a TIMEOUT event. When the timer goes
off, the thread is woken up to analyze the profiling information of all
methods. Based on our observation, most hot methods are executed
frequently in the early execution of programs. Therefore, the
TIMEOUT interva is short in the beginning, and is linearly
increasad as programs are running. The current timer is set to 1
second initidly and increased by an extra 1 second for the next
session. We stop increasing the timer when it reaches 8 seconds.

There are two drawbacks of the gpproach: Firg, the thread needs to
scan the profiling information of all methods to decide which
methods are recompilation candidates. Second, hot methods are not
immediately recompiled as they pass the thresholds. They have to
wait until the next TIMEOUT event.

#0of % of used | poplazy | % saved
compiled | GC map GC map by lazy
methods size GC map

200_check 374 10.7% 436K 86.2%
201 _comp. | 309 4.2% 374K 89.8%
202 _jess 744 5.2% 609K 88.6%
209_db 327 5.5% 394K 89.9%
213 javec | 1100 8.5% 953K 76.5%
222 mpeg. | 481 1.5% 573K 94.7%
227_mirt 449 4.9% 486K 85.9%
228 jack 558 29.6% 631K 76.4%

Table 1. Lazy GC map

7 EVALUATION

We ran a collection of programs from the SPEC 3VM93[22]
benchmark suite on the Intd VM. All experiments were performed
on a sysfem with two 450MHz Intd® Pentium® Il Xeon™
processors. In our measurements, we did not fully follow the officia
run rules defined by the SPEC committeg, so no SPEC number
should be derived from the results, and no comparisons with other
vendors VM were evaluated. We chose an 80OMB hegp size.

7.1 GCmapsze
We used the fast code generator to compile SPEC VM98 and
measured how many methods were compiled for each program and

23

how many methods needed the GC mep (listed in Table 1). The
experimental results show that only a small portion of methods
remain active when exceptions or GC occurs. For programs that do
not involve a lot of exception throws and GC, the actud GC map
used is around or below 5%. That is, most of the time and space
spent on computing the GC map is wasted. Interestingly, 228 jack
is an exceptional case; 30% of the totd compiled methods need the
GC map a run time. The lazy approach saves the size of the GC
map substantially—86% on average. Our experimenta results show
that the incurred run-time overhead of recompilation is less than
0.2%.

7.2 Effectiveness of optimizations

We ran the experiments with 4 different configurations of our VM.
The firs configuration purdy used the fast code generaion
approach with the lazy GC map. The second one solely used the
optimizing compiler to generate native code without relying on the
profiling information feedback. All optimizations, e.g., inlining and
checkcast, were peformed based on the datic andysis of the
program. The last two were for different mechanisms of triggering
recompilation. The table below shows the execution time (seconds)

fast dynamic recomp.

code gen ot ingtr. thread
201 comp. | 29.30 2.29 238 | 247
202_jess 14.04 12.77 12.42 11.89
209_db 3441 29.78 29.38 29.62
213 javec 21.89 1891 1852 16.68
222 mpeg. | 23.75 19.32 18.58 18.60
227_mtrt 10.99 849 7.83 7.94
228 jack 20.23 17.93 1701 17.14
total 154.61 129.49 127.02 | 12434

Table 2. Dynamic recompilation
of each program.

The result of Table 2 shows that the dynamic recompilation
outperforms the rest except in the case of 201 _compress. For
201_compress, the compilation timeis not an issue and the profiling
information feedback does not help much to guide optimizations
(static loop hierarchy analysis is good enough). One noticeable
agpect from thetableisthat we do not see asignificant improvement
over the optimizing compiler for 201_compress and 209_db. There
are a few reasons. First, many methods are compiled before the
programs gart the timer. The performance gain from dynamic
recompilaion for those methods is not seen in the result. Second,
the optimizing compiler does not implement some expensive
optimizations, eg., code motion and code scheduling. Code
scheduling is not implemented in the optimizer because the Pentium
11 processor detects dependences among ingructions and does out-
of-order execution. Moreover, as mentioned earlier, code motion is
not implemented because of the potential increase of register
pressure on the |A-32, which has only a few registers. For this kind
of architecture, code scheduling and code motion become less
important. Nevertheless, for the architectures that can highly benefit
by expensive optimizations to achieve good performance, eg., I1A-
64 [17], we expect that the dynamic recompilation technique will
outperform the optimizing compiler significantly.

For 202_jess, 213 javac and 228 jack, the threading mechanism is
able to speed up (~11% for 213 javac) the running time by
overlgpping the compilation time with the program execution,
because quite a few methods are recompiled. Overal, the dynamic
ingrumenting and threading approaches gain 2% and 4%,
respectively, over the optimizing compiler.

We ran another set of experiments to test the effectiveness of
individual optimizations. The base line (the first column of Table 3)
is the dynamic recompilation with the threading scheme, in which
al optimizations are enabled except the overridden approach. We
compare the running times of al but one optimization. The second
column is the running time without the checkcast optimization. The
optimization has 3.4% performance impact for 209_db, negligible
influence for the rest. The third column shows the running time
when the bounds checking elimination is turned off. The compiler
gtill performs local bounds checking eimination during IR
congtruction. Bounds checking eimination has only observable
impact for 222_mpegaudio (~3%).

The rightmost three columns evauate inlining optimizations: The
first one shows the running time of turning off the inlining
optimization completely. The second one is for measuring the
effectiveness of type propagation in the presence of inlining
(discussed in Section 4.3.1). The last column indicates the running
time of the dynamic patching approach (described in Section 5.1).
When comparing the base line and no inlining columns, we see type
propagation has little effect on the overal performance for dll
programs except 227_mitrt which would otherwise has ~11%
peformance loss. Dynamic patching yidds farly small
performance gains (lessthan 0.5%) over the baseline.

7.3 Exceptions

Caching improves performance if exceptions are thrown multiple
times with frames on the stack corresponding to the same contexts.
Not dl benchmarks have this property, but both jack and javac from
SPEC VM98 use exceptions for control flow in away that benefits
from caching. The natura question is whether caching could cause
performance degradation for some benchmark. We bdieve that this
would not happen.

The firgt reason is that in our implementation the overhead of
caching compared to the regular method lookup is negligible. We
maintain a very smple, direct-mapped cache which can be checked
againg and updated efficiently. A regular lookup function must
perform a binary search in atable of IP ranges and that cost would
dwarf the cache overhead even if for a given gpplication al lookups
in acache resulted in cache misses.

The second part of the argument is that we believe that Java
aoplications either do not use exceptions heavily and then the
overhead of maintaining the cache is smal or they use exceptions
extensvely and then it should be the case that a least the frames
close to the bottom of the stack do not change quickly and their
lookup will be sped up by the cache. And likely, as in the case of
javac and jack, alarge set of stack frames will remain congtant from
one exception throw to another and the benefit of caching will be
significant.

Stack unwinding is used for exceptions, garbage collection and for
security-related stack walking. There may exist gpplications where
the security-related stack unwinding is a bottleneck. For SPEC
JVM98Bitisnot thecasein our VM.

inlining
no no no 2
thread no over
check. | bound | inline ;)r/gg riden

201_comp. 2247 | 2243 | 2259 | 2623 | 2254 | 2253

202 jess 1189 | 12.02 | 11.85 1297 | 11.79 | 11.63

209_db 2962 | 30.63 | 2967 | 30.39 | 29.63 | 2961

213 javec | 16.68 | 16.68 | 16.63 1738 | 16.71 | 1654

222 mpeg. | 1860 | 1857 | 19.20 | 19.39 | 1858 | 1855

227_mirt 794 | 791 | 7.89 10.06 | 8.82 7.71

228 jack 1714 | 17.20 | 17.19 1819 | 17.01 | 17.26

1243 | 1254 1346 | 1250 | 1238
total 4 4 125.02 1 8 3

Table 3. Effectiveness of optimizations

Although this paper focuses on the performance impact on
exception throwing, the caching described in this paper will
certainly improve the performance of gpplications with a lot of
security-related stack unwinding. The benefit for garbage collection
is smdll, because the total amount of work done during a GC cycle
ismuch larger than the enumeration of theroot set.

A smilar question can be posed about implementing lazy
exceptions. Isit possible that this optimization will have a negative
impact on the performance of some gpplications? There are two
potential sources of overhead: the added cost of the analyss to
determine a compiletime if an exception throw can be converted
into lazy exception crestion and the cost of executing an exception
lazily after the handler has been found. We have not observed a
negative impact on performance of lazy exceptions on any of the
applications we have run. In addition to SPEC VM98 we have also
run aset of larger applications.

We argue that this observation can be generdlized for Java
goplications in generd. The extra compile-time overhead in the
optimizing compiler to detect lazy exceptions opportunities is
minimal, because most of the work (eg., inlining) is performed
anyway to enable other optimizations and lazy exceptions-gpecific
pat of the analysis (detection of side effects, potentiad exceptions
and synchronization) is not computetionaly intensve. More
importantly, in our dynamic compilation scheme the optimizing
compiler is invoked only on a smal subset of methods that were
determined to be hot. For those methods a more expensive anaysis

isacceptable.

213 javac | 228 jack
No method lookup cache esger 3041 22.28
No unwind cache lazy 20.07 22.28
Method lookup cache esger 29.49 21.43
No unwind cache lazy 19.91 2143
No method lookup cache eager 21.32 18.72
Unwind cache lazy 19.11 18.72
Method lookup cache esger 20.45 17.93
Unwind cache lazy 1891 17.93

Table4. Lazy exceptionsand caching.

There is dmog no overhead associated with saving the throw
context so that when the VM detects that an exception thrown lazily
is caught in a handler in which the exception object islive, the VM
can execute the congtructor in the correct context. The VM ensures
thet the right context exists by performing a copy of the origina
context once, before the stack unwinding process starts.

We have instrumented our VM to collect dtetitics relevant to the
performance. One of the numbers we collect is the count of
exceptions thrown during the execution of the gpplication. Out of 7
applications in SPEC VM98 only two, javac and jack, throw any
exceptions. But for those two applications exception counts are
ratively high, 22,373 and 241,877 regpectivdly. Those two
programs belong in the category of irregular gpplications that are
smilar to many other red-life applications and are notorioudy
difficult to optimize.

We show the performance results for javac and jack in Table4.
Jack does not benefit from lazy exceptions, so the “eager” and
“lazy” numbers are identicl. The two types of caching are
described in Section 5.3. For SPEC VM98, the configuration with
both caching mechanisms enabled offersthe best performance.

A combination of caching and lazy exception cregtion results in
speedups of 37% for javac and 20% for jack.

The performance improvement from caching for javac is 6% if we
use lazy exceptions and 33% if we use eager exceptions. The
technique of lazy exceptions improves the performance of javac by
34% if we do not use any caching and by 8% if we use both forms
of caching.

Jack, with far more exception throws, does not benefit from the lazy
exceptions optimization. Our investigation suggests that authors of
jack must have reglized the cost of exceptions and avoided much of
the pendty by reusng the same exception object. The
instrumentation shows that only 35 exceptions are actualy created,
4 orders of magnitude less than are being thrown. One might
speculate that if jack were written in the more naturd way of
cregting an exception every time it is thrown, the impact of our
optimization would be larger than for javac since the number of
exceptions thrown is an order of magnitude higher and the running
times of javac and jack are comparable.

8 CONCLUSIONS

This paper has presented the structure of dynamic recompilation of
the Intel research VM, condgting of the fast code generator, the
optimizing compiler and the profile data representation. When first
executed, dl methods are consdered to be cold. The fast code
generator compiles the methods usng some lightweight
optimizations in this cold phase. Some of the methods switch from
the cold state to the hot state when they are executed often enough.
Identified hot methods are recompiled using the optimizing
compiler that performs heavyweight optimizations to improve the
code qudlity.

We have discussed some optimizations that eiminate run-time
overhead and evaluated their effectiveness. We have proposed four
new techniques. One is to use newly crested exception handlers to
maintain the precise exception order during optimizetion
transformations, alowing the compiler to be aggressive in terms of
hoisting loop invariant code as well as checking bounds outside
loops. The second one is dynamic patching which preserves the
correctness of the program in the presence of dynamic classloading.
The paper has shown that the lazy GC map approach is able to
reduce the size of the GC map by an average of 86% with very little

run-time overhead introduced. The other two techniques ded with
exceptions. Caching of the method lookup in the core VM and of
the unwind processin the JI T speeds up stack unwinding and helps
two of the SPEC VM98 benchmarks. Lazy exceptions help
programs like javac which throw alarge number of exceptions.

We have dso described and evduaed two mechanisms,
insrumenting and threading, for triggering recompilation.
Experimental results show that the threading gpproach has a
noticeable improvement over the instrumenting gpproach for
programs that have a fair amount of recompiled methods. We
expect the gap will enlarge if the target machine needs
sophigticated/expensive dgorithms to deliver good qudity code,
eg., the |A-64 architecture.

9 ACKNOWLEDGEMENTS

We appreciate the feedback provided by the referees. We dso thank
Perry Wang, Yong-Fong Lee, Rick Hudson, Jesse Fang, Tdiana
Shpeisman, and Aart Bik for their insightful comments on the paper.

10 REFERENCES

[1] A. Adl-Tabataba, M. Cierniak, G.-Y. Lueh, V.M. Parikh, and
JM. Stichnoth. Fagt, Effective Code Generation in a Just-In-
Time Java Compiler. Conference on Programming Language
Design and Implementation, May 1998, pp. 280-290.

[2] A. Ad-Tabataba and T. Gross. Detection and Recovery of
Endangered Variables Caused by Instruction Scheduling.
Conference on Programming Language Design and
Implementation, May 1993, pp. 13-25.

[3] A. Adl-Tabatabai and T. Gross. Source-Level Debugging of
Scdar Optimized Code. Conference on Programming
Language Design and Implementation, May 1996, pp. 33-42.

[4 A.V.Aho, R Sethi, and J. Ullman. Compilers. Principles,
Techniques, and Tools. Addison-Wedey, Reading, MA,
second edition, 1986.

[5] K. Arnold and J. Goding. The Java Programming Language.
Second Edition. Addison-Wedey, 1997.

[6] J Audander, M. Philipose, C. Chambers, S. Eggers, and B.
Bershad. Fast, effective dynamic compilation. Conference on
Programming Language Design and Implementation, May
1996, pp. 149-159.

[71 M. Burke, JD. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V. Sreedhar, H. Srinivasan, and J. Whaley. The
Jdgpefio Dynamic Optimizing Compiler for Java Java
Grande Conference, 1999, pp. 129-141.

[8] J Dean, D. Grove, and C. Chambers. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Anayss.
ECOOP 1995, pp. 71-101.

[99 D. Delefs and O. Agesen, Inlining of Virtua Methods.
ECOOP 1999, pp. 258-278.

[10] D.R. Engler, W.C. Hseh, and M.F. Kaashoek. ‘C: A language
for high-levd, efficient, and machine-independent dynamic
code generation. Symposum on Principles of Programming
Languages, January 1996, pp. 131-144.

[11] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers,
An Evaluation of Staged Run-Time Optimizations in DyC.
Conference on Programming Language Design and
Implementation, May 1999, pp. 293-304.

[12] J. Goding, B. Joy and G. Stede.
Specification. Addison-Wedey, 1996.

[13] U. HolzZle, C. Chambers, and D. Ungar. Optimizing
Dynamicdly-Typed Objected-Oriented Languages With
Ploymorphic Inline Caches. ECOOP91 conference
proceedings, 1991. Published as Springer Verlag Lecture
Notesin Computer Science 512.

[14] U. Holzle and D. Ungar. Optimizing Dynamically-Dispatched
Cdls with Run-Time Type Feedback. Conference on
Programming Language Design and Implementation,
Orlando, FL, June 1994, pp. 326-335.

[15] U. Hélzle, C. Chambers, and D. Ungar. Debugging Optimized
Code with Dynamic Deoptimizetion. Conference on
Programming Language Design and Implementation, June
1992, pp. 32-43.

[16] Intel Corp. Intel Architecture Software Developer’s Manud,
order number 243192. 1997

[17] Inted Corp. Intd 1A-64 Architecture Software Developer's
Manud, order number 245319. 2000

[18] S.Lee B.-Y. Yang, K. Ebcioglu and E. Altman. On-Demand
Trandation of Java Exception Handlers in the LaTTe VM
Jugt-In-Time Compiler. Workshop on Binary Trandation.
Newport Beach, CA. October 1999.

[19] T. Lindholm and F. Yédlin. The Java Virtud Machine
Specification. Second Edition. Addison-Wed ey, 1999.

[20] M. Leone and R. K. Dybvig. Dynamo: A Staged Compiler
Architecture for Dynamic Program Optimization. Technica
Report #490, Indiana University, 1997

The Java Language

26

[21] M. Plezbert and R. Cytron, Does “Just in Time” = “Better Late
Than Never”? Symposum on Principles of Programming
Languages, 1997, pp. 120-131.

[22] M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for
Garbage Collection a Every Indruction in a Java Compiler.
Conference on Programming Language Design and
Implementation, May 1999, pp. 118-127.

[23] Standard Performance Evauation Corporation. SPEC VM98
Benchmarks. Availablea http://www.spec.org/osg/jvm98

[24] Sun Microsystems, Inc. JavaVirtua Machine Debug Interface
Reference. Available at: http://java.sun.conv-
products/jdk/1.3/docs/quide/j pdaljvmdi-spec.html.

[25] Sun Microsystems, Inc. The Java Hotspot Performance Engine
Architecture. Available at http://java.sun.conv-
products’hotspot/whitepaper.html.

