

13

Practicing JUDO: JavaTM Under Dynamic Optimizations
Michal Cierniak

Intel Corp
2200 Mission College Blvd

Santa Clara, CA 95052
Michal.Cierniak@intel.com

Guei-Yuan Lueh
Intel Corp

2200 Mission College Blvd
Santa Clara, CA 95052

Guei-Yuan.Lueh@intel.com

James M. Stichnoth
Inktomi Corp

4100 East Third Ave
Foster City, CA 94404

jims@inktomi.com

ABSTRACT
A high-performance implementation of a Java1 Virtual Machine
(JVM) consists of efficient implementation of Just-In-Time (JIT)
compilation, exception handling, synchronization mechanism, and
garbage collection (GC). These components are tightly coupled to
achieve high performance. In this paper, we present some static and
dynamic techniques implemented in the JIT compilation and
exception handling of the Microprocessor Research Lab Virtual
Machine (MRL VM), i.e., lazy exceptions, lazy GC mapping,
dynamic patching, and bounds checking elimination. Our
experiments used IA-32 as the hardware platform, but the
optimizations can be generalized to other architectures.

1 INTRODUCTION
A Java compiler compiles Java source code into a verifiably secure
and architecture-neutral format, called Java bytecodes. A JVM
interprets the bytecodes at run time. In a high-performance
implementation of a JVM, a JIT compiler translates Java bytecodes
into native code at run time. Since translation is taking place during
program execution, the compilation time is now part of the
execution time. Contrast this to the traditional methodology of
performance measurement, in which compilation time is ignored.
As such, it is important for the JIT compiler to be conscious of
compilation time. Hence, applying expensive optimizations to all
methods is not always justified because not all of the methods are
frequently executed. Lightweight optimizations have been shown to
be effective and fast in terms of trading code quality for compilation
speed [1]. The code quality, however, is sub-optimal due to the lack
of intensive compilation analysis, which is extremely important for
frequently executed methods. How to trade off code quality vs.
compilation time is crucial in the design of a JVM.
The Java language [12] provides exceptions as “a clean way to
check for errors without cluttering code” [5]. At the point where an
error is detected, an exception object is created and thrown. An
exception handler can catch exceptions of a specific type. A stack
trace containing all frames from the top to the bottom of the stack is
constructed. After the object is created, the stack is traversed again
starting at the active frame (top of the stack) and proceeding until

1 All third party trademarks, tradenames, and other brands are the
property of their respective owners.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00.

either a compatible exception handler is found or the bottom of the
stack is reached. Exception handling is expensive because it
involves the creation of the exception object, the traversal of the
stack, and the search for the compatible exception handler. For
applications throwing a large number of exceptions, efficient
exception handling is one of the important factors to achieve high
performance.
The rest of the paper is organized as follows. In Section 2, we
present the infrastructure of the compilation model of the MRL VM.
In Section 3, we describe the exception model of the MRL VM. In
Section 4, we discuss some key optimizations implemented in the
optimizer that try to eliminate the run-time overhead statically. In
Section 5, we discuss some dynamic techniques that implement
exceptions efficiently, generate the GC map lazily, and patch native
code to preserve correctness. In Section 6, we present two
mechanisms of the compilation model that trigger recompilation. In
Section 7, we show the measurements of the effectiveness of the
techniques. Finally, in Section 8, we give conclusions.
2 COMPILATION MODEL
The compilation model of the MRL VM implements a dynamic
recompilation mechanism. The key to our approach is to adaptively
and selectively perform simple code translation in a timely fashion
for cold methods and expensive optimizations solely for hot
methods. The main goal is to generate optimized code for those
methods whose previously compiled code is considered non-
optimized due to the lack of run-time value information, profiling
information or available compilation time.
Dynamic recompilation happens at run time and we need to make
sure that the time spent on recompilation is paid off by the
performance gain obtained from recompilation. Initially, all
methods are compiled by a fast code generator that produces
reasonably good code. Minimizing compilation time and gathering
profiling information are the major concerns at this point, not
producing the best code quality. As the program executes, the VM
adaptively identifies hot (frequently executed or loop-intensive)
methods and performs expensive optimizations to improve code
quality.
The structure of dynamic recompilation of the MRL VM is similar
to the Jalapeño optimizing compiler [7], consisting of three major
components: a fast code generator (baseline compiler), an
optimizing compiler, and profiling information (as depicted in
Figure 1). All methods are compiled to native code by the fast code
generator when first invoked. Instrumenting code is inserted into the
native code to collect profiling information. As the code is executed,
the instrumenting code updates the profiling information. Later,
based on the collected profiling data, some methods are identified as
hot methods and then recompiled by the optimizing compiler, using
the profiling information to guide optimizations. The VM registers
the optimized code so that the subsequent invocations of the
methods invoke the optimized versions instead of the old

(unoptimized) ones. The previously compiled code, if still
referenced by existing stack frames, will be executed when the
frames become active.
Our current dynamic recompilation is not a staged compilation
model [20][11], which performs most expensive analyses statically
and postpones some optimizations until run time. In other words, the
optimized code will not be considered for recompilation even if the
program behavior changes. With the two compilers in the VM, the
fast code generator and the optimizing compiler, the VM records the
information pertaining to who the producer of the native code of a
method is so as to invoke the right compiler to unwind the stack
frame as well as report the live references for garbage collection.

Figure 2 shows some of the relevant internal structure of the MRL
VM. Associated with each method is a data structure called
METHOD, which consists of name and descriptor of the method,
pointer to an exception table, pointer to default native code, and a
linked list of JIT information. Prior to recompilation, the default
native code points to the unoptimized native code. As soon as the
method is recompiled, the default native code is updated to point to
the optimized code. Since multiple JIT compilers can exist at the
same time, the VM maintains a linked list of JIT_INFO structures
containing specific information for the method generated by the JIT
compilers. The information is mainly for the purpose of handling
exceptions, unwinding stack frames, enumerating the root set for
GC, and collecting profile data. For example, the JIT_INFO on the
right of Figure 2 is for the fast code generator, consisting of
“Native” pointing to the unoptimized native code, and “Method
info” pointing to GC mapping and profile data representation.

2.1 Fast code generator
Methods are initially translated into native code by the fast code
generator. This approach has been shown to be fast and
effective [1]. The main goal here is to produce native code quickly
while maintaining reasonable code quality. It takes two passes over
the bytecodes with linear time complexity: The first pass collects
information such as basic block boundaries and the depth of the

Java operand stack. The second pass uses the lazy code selection
approach to generate efficient native code and performs some
lightweight optimizations (e.g., bounds checking and common
subexpression elimination). Instrumenting code is inserted to gather
profiling information as well as to trigger recompilation.

2.2 Fast code generator versus interpreter
One possible implementation of dynamic recompilation is to replace
the fast code generator with an interpreter. Namely, methods are
interpreted until they are identified as hot [25][21]. The reason that
we choose fast code generation instead of interpretation is twofold:

• The interpreting approach reduces the compilation time
dramatically at the price of performance degradation. The
performance gap between interpreting bytecodes and running native
code can easily reach orders of magnitude. With such a huge
performance gap, it is crucial for the JVM to compile hot methods at
the right point because lazy compilation incurs a huge performance
loss due to interpreting, and eager compilation may end up
compiling a lot of cold methods. The window of the right moment
to trigger compilation could be so narrow that it is easily missed.
Once the window is missed, the penalty is high. However, the
performance gap between the fast code generator and the optimizing
compiler is relatively small, around 30%, for computation intensive
applications. Therefore, the window for triggering recompilation is
wider than the interpreting approach, allowing more flexibility in
terms of determining when to recompile. Besides, because the
compilation time of the fast code generator is small, saving a small
amount of compilation time is not worth a huge performance loss.

• Applications running in debugging mode [24] require support
from the JIT compilers to inspect the state of the execution of a
program (e.g., printing or setting values of variables) and to control
the execution (e.g., setting a breakpoint). That is, the compilers need
to provide the addresses of variables and the native code offsets of
bytecode locations. Providing this information in an optimizing
compiler can be complicated because global optimizations and
instruction scheduling can cause endangered or nonresident
variables [2][3]. Always interpreting the program during debugging
may not be acceptable to the users because of slow execution time.
Another alternative is for the JVM to dynamically fall back to the
interpreting mode on demand for a method compiled by the
optimizing compiler when users want to debug the method. This
transition process is called deoptimization, which is similar to [15].
The drawback of this approach is that the transition from native
code to the interpreter can complicate the design of the JVM
because the compiler needs to record the information for
deoptimization. The fast code generator does not have the
drawbacks of the two previous approaches because the fast code
generator does not do any aggressive optimizations that could cause
inconsistent run-time values.

2.3 Profiling data
There are two kinds of locations where the fast code generator
instruments code: method entry points and back edges. The former
tells if a method is call intensive. The latter indicates if a method is
loop intensive. When the optimizing compiler is invoked to
recompile a method, the profiling information associated with the
method is retrieved to guide optimization decisions such as inlining
policies and code layout decisions. How the optimizer makes these
decisions based on the profiling information is discussed in Section
4.

 F igure 1 . S tructure of dyna mic recom pila tion

Fast code
genera tor

U noptim ized
na tive

O ptim izing
com piler

Pro filing da ta
representa tion

C ounters

B ytecode

O ptim ized
na tive

 Figure 2. Selected data structures of Intel VM

Name

Descriptor

...

Default native

Info

...

Exception
table

Optimized
native code

Unoptimized
native code

 Profile data

GC map

Profiling
data

representation

GC map

METHOD

JIT_INFO JIT_INFO

 JIT id

...

Native

Method info

Next

Exceptions

 JIT id

...

Method info

Next

Native

Exceptions Exception
table

14

2.4 Optimizing Compiler
Global optimizations are highly effective in improving the code
quality. However, they are expensive in terms of compilation time.
We are willing to afford more time to apply global optimization to a
method only if the method is identified as hot. The optimizing
compiler takes a conventional compilation approach that builds an
intermediate representation (IR) and performs global optimizations
based on the IR.

The structure of the optimizing compiler is depicted in Figure 3.
There are several major phases. The profile information is used to
guide optimization decisions such as inlining policy, where to apply
expensive optimizations, and the code layout in code emission. The
prepass phase is similar to the one described in [1], which traverses
the bytecodes and collects information such as Java operand stack
depth and basic block boundaries. The IR construction phase then
uses the information to build the control flow graph and IR
instruction sequence for each basic block. Local common
subexpression elimination across extended basic blocks is done
during construction. The inlining phase iterates over each instruction
to identify which call sites are inlining candidates. The control flow
graph and IR are constructed for the inlined call sites and then
merged (grafted) into the caller’s, combined with exception tables.
The global optimization phase performs copy propagation, constant
folding, dead code elimination [4], bounds checking elimination and
limited loop invariant code motion. With only 7 registers in IA-
32 [16], registers are considered precious resources. Thus, we avoid
optimizations that are expensive and more likely to increase register
pressure, such as code motion and partial redundancy elimination,
because it is hard to justify that the optimizations can provide
substantial performance speedup.
The conceptual backend of the optimizing compiler starts from the
code expansion phase. It expands (lowers) some IR instructions
because there is no direct one-to-one mapping from the IR
instructions to native instructions. For instance, a 64-bit (long)
add instruction is done via two 32-bit instructions, one add and
one adc (add with carry). 64-bit shift and division instructions are
expanded into run-time calls. For the ease of detecting common
subexpressions in the IR construction phase, those instructions are
not expanded originally. Expansion facilitates gathering the GC map
(liveness of references) because our GC support requires a one-to-
one mapping relationship between IR and native instructions [22].
Global register allocation assigns physical registers and generates
spill code. The GC support phase computes the GC map at every
instruction to make every instruction GC-safe. Simple compression
techniques are used to reduce the size of the GC map. The code
emission phase iterates over the instructions and emits native code
and the compressed bit stream of the GC map.

3 EXCEPTION MODEL
Consider the following simple, if a bit silly, Java application.
class sum {
 public static void main(String args[]) {
 sum i = new sum();
 i.printSumOfInts(args);
 }

 public void printSumOfInts(String strArr[]) {
 try {
 int result = sumOfIntsAsStrings(strArr);
 System.out.println("The sum is " + result);
 } catch(NumberFormatException e) {
 System.out.println("Error!");
 }
 }

 public synchronized int
 sumOfIntsAsStrings(String strArr[]) {
 int sum = 0;
 for(int i = 0; i < strArr.length; i++)
 sum += Integer.parseInt(strArr[i]);
 return sum;
 }
}

This program interprets command line arguments as integer
numbers and prints their sum. The exception mechanism is used to
handle arguments that are not valid integers. If such an argument is
found, an error message is printed. For illustrative purposes, we
have made this program more complicated than necessary. For
instance we have declared one of the methods as synchronized, even
though there is no need for synchronization in this simple, single-
threaded program.
In this example the code of the library method Integer.parseInt
(not shown) creates and throws the NumberFormatException
when its argument is not a valid integer number. The exception is
caught by the handler declared in printSumOfInts and the error
condition is handled there. Two points are worth noting:
Method sumOfIntsAsStrings is declared as synchronized.
That means that a monitor associated with the this object is
entered when the method is entered and the monitor must be
released when we exit the method. If the exception is thrown, the
VM must make sure that the monitor is released as part of the
exception throwing process.
An exception object contains a stack trace that can be printed at any
point, even after some of the stack frames referred to in the trace
cease to exist. In our example we could add the following method
invocation to the exception handler:
 e.printStackTrace();

which might produce the output:
java.lang.NumberFormatException: badnumber
 at java.lang.Integer.parseInt
 at sum.sumOfIntsAsStrings
 at sum.printSumOfInts
 at sum.main

if the string “badnumber” were entered as a command line argument
to our application. The exact format of the stack trace output is
implementation-dependent (Section 20.22.6 of the Java Language
Specification [12]).
The JVM specification ([19], Section 2.16.1) categorizes exceptions
in three groups depending on the cause of the exception:
An abnormal execution condition was synchronously detected by
the Java VM.
A throw statement was executed
An asynchronous exception occurred.
This classification is important in our work, because exceptions in
the second category are more difficult to analyze and the description
of lazy throwing of those exceptions is a major part of our paper.
For the purpose of this paper, we call those exceptions user

PrepassPrepass

IR constructionIR construction

Global optimizationGlobal optimization

InliningInlining

Global register alloc.Global register alloc.

GC supportGC support

Code emissionCode emission

Code expansionCode expansion

Profiling data
representation

Profiling data
representation

Figure 3. Structure of the optimizing compiler

15

exceptions, because they may be created and thrown from user code.
By contrast, we will refer to exceptions in the other two groups as
VM exceptions, because they are detected and thrown by the JVM.

3.1 Interaction Between the Core VM and
the JIT

The MRL VM has a well-defined interface between the core VM
and the JIT compiler. There are two parts to the interface: compile-
and run-time. The compile-time interface is used by the VM to
invoke the compiler for a specific method and by the compiler to get
information needed to compile the method and to inform the VM
what the exception table for the compiled method is. Our VM uses
an exception table similar to the one defined by the JVM
specification. However, the exception table created by the JIT
compiler is expressed in terms of the generated native code and the
JIT can add new entries to handle some optimizations (see Section
4.3) and delete some entries as the result of other optimizations.
The run-time part of the interface (the JIT runtime) is used by the
VM to ask the JIT compiler to perform JIT-dependent tasks: stack
unwinding, enumeration of the root set for garbage collection, etc.

3.2 Unwinding Process
At the moment of throwing the exception in our example there are
four frames on the stack. At the bottom of the stack is the
sum.main method. Then methods printSumOfInts,
sumOfIntsAsStrings and Integer.parseInt were invoked.
The active frame corresponds to method Integer.parseInt. At
this point in the execution an exception of type
NumberFormatException is thrown. In general any of the
methods on the call stack may have registered a handler compatible
with the NumberFormatException type. In our example there is
only one such handler, declared in printSumOfInts.
A simple VM implementation would create an exception object of
type NumberFormatException as soon as the appropriate
condition is detected. As part of the exception object creation, a
constructor of the object would be invoked. The constructor would
create the stack trace and store it in the exception object. A stack
trace is constructed in a non-destructive stack traversal. The stack
trace contains all frames from the top to the bottom of the stack.
After the object is created, the stack would be traversed in a
destructive way starting at the active frame (top of the stack) and
proceeding until either a compatible exception handler is found or
the bottom of the stack is reached.
The difference between non-destructive and destructive unwinding
is that in the latter case as we unwind to the previous frame, we
release various VM resources. After we destructively unwind from
a frame, the execution can no longer resume in that context.
Resources released by the VM during the destructive unwind
include Java monitors (for synchronized methods) and internal VM
data structures. In our example, the destructive unwind exits the
monitor associated with the execution of the synchronized method
sumOfIntsAsStrings.
The unwinding process starts with a context of a thread and
determines the context of the caller. If the active frame belongs to a
Java method compiled by the compiler, the VM calls the compiler
runtime to perform the unwind. This arrangement allows great
flexibility in the frame layout used by a JIT compiler, because the
frame is a “black box” to the VM and a new JIT compiler can be
plugged into the core VM without any modifications to the VM.
If the active frame does not belong to a Java method compiled by
the JIT compilers, the VM uses its internal data structures to find the

caller’s context. This condition always occurs for native methods.
The VM is responsible for maintaining a sufficient state to make this
possible even though we assume no cooperation from the native
code other than following a native interface like the Java Native
Interface (JNI).
The traversal of the stack is implemented as a loop starting with the
context of the frame on the top of the stack and ending at the bottom
of the stack in the case of the non-destructive unwind or at the frame
with the correct handler for the destructive unwind. The most
important operations are the method lookup and frame unwind
functions.
The method lookup function takes the instruction pointer (IP) as an
argument and returns a pointer to JIT_INFO, a structure
representing the method and the JIT compiler used to generate this
code. JIT_INFO is described in Section 2 and visualized in Figure
2. In our VM every Java method is compiled to a contiguous area
of memory. Given that assumption we organize our lookup table as
a sorted array of IP ranges (start_IP..end_IP). The method lookup
performs a binary search of the table.
The frame unwind uses the information generated by the JIT
compiler at compile time to unwind the stack frame to the frame
belonging to the caller. The unwind process must restore the values
of the IP, stack pointer (SP) and callee-saved registers. Note that a
Java method may have been recompiled and in that case it is
possible that at the same time there exist frames corresponding to
the same method compiled by different compilers. Therefore the
stack traversal loop must use the appropriate compiler to unwind
every frame. This is possible because the JIT_INFO returned by the
method lookup represents the method and the compiler used to
compile it.
The MRL VM uses the value of the IP register to determine if there
are handlers registered for this value of the IP and if so whether the
thrown exception is an instance of the catch type recorded in the
exception table.

4 STATIC OPTMIZATIONS
In this section, we discuss some key optimizations implemented in
the optimizer that try to eliminate the run-time overhead statically.

4.1 Class initialization
The JVM Specification ([19], Section 5.5) requires that a class is
initialized at its first active use. The JIT compiler needs to make sure
that the class is initialized before a non-constant field declared in the
class is used or assigned. We take a simple approach to eliminate
checks for class initialization. When building the IR for
getstatic and putstatic bytecodes, we call a helper routine
provided by the MRL VM to query if the class of the field has been
initialized. If the class is not yet initialized at the current compile
time, at run time right before the getstatic and putstatic,
we check if a class is initialized. If the check fails, that field access
is the first active use and the class is initialized.

4.2 Checkcast
A cast conversion must check at run time if the cast cannot be
proven correct at compile time ([12], Section 5.5). The compiler
generates a run-time helper call for checkcast. There are two
methods we use to reduce the run-time overhead for checkcast.
First, we use local common subexpression elimination to determine
whether the helper call is necessary. As we build the IR for a
checkcast bytecode that casts an object x of class A to the
resolved type B, we check whether “x instanceof B” is

16

available at this point. In our implementation, we propagate the
availability of an instanceof only if the instanceof is used
as a control-flow condition. The availability of the instanceof is
then propagated along the path on which the result of the
instanceof is true. Second, we partially inline the commonly
executed path of the helper call so as to eliminate the run-time call
overhead along the path.

4.3 Bounds checking
The Java language specifies that all array accesses are checked at
run time ([12], Section 10.4); an attempt to use an index that is out
of bounds causes ArrayIndexOutOfBounds Exception
exception to be thrown. The compiler can eliminate bounds
checking code if it can prove that the index is always within the
correct range. If the compiler cannot prove that, the array reference
must include bounds checking code (one unsigned compare and one
branch). Bounds checking code can be very expensive for
computation-intensive applications that heavily involve arrays.
The optimizing compiler performs analysis to figure out the range
that an array might access within a loop. If the range is known, the
compiler creates a cloned loop and eliminates the bounds checking
code for the array accesses by inserting code outside the loop to
check if both the lower and the upper limits are within the correct
range (as depicted in Figure 4 (b)). If either one of the limit checks
fails, the original loop with bounds checking code is executed
because the array accesses might cause ArrayIndex-
OutOfBoundsException to be thrown. For simplicity, we use
the notation @(j,arry,label) to indicate the bounds checking
code which contains two instructions: “cmp arry.length,j”
comparing the index variable j against the length of array arry,
and “jbe label” branching to the label if j is greater than or
equal to the length of arry. Comparing j against arry’s low limit
(zero) is unnecessary because the code sequence also branches to
the label when j is negative (below zero). The compiler performs
code hoisting for the newly cloned loop to move invariant code out
of the loop (e.g., load of a[i]).
The code inserted in BB1 of Figure 4 might throw exceptions,
possibly causing exceptions to be thrown out of order. The Java
language requires precise exceptions: all effects of the statements
executed and expressions evaluated before the point from which the
exception is thrown must appear to have taken place ([12], Section
11.3.1). To ensure not to violate the requirement of precise
exceptions, the compiler does not hoist code that can cause any side
effects, e.g., array store or putfield. Thus, the compiler does not
need to recover the old values of arrays, fields, and variables once
an exception happens in BB1. Moreover, an exception handler,
whose handler routine is the original loop, is created to catch any
exception that might happen within BB1. Once the exception
handler catches any exception, the transfer of control takes place
(indicated by dotted arrows in Figure 4 (b)) and the original loop is
then executed. During the execution of the original loop, exceptions
are thrown in the right order.
Let us consider an example. Assume that j/k throws
ArithmeticException (division by 0) during the first
iteration of the loop. That is, the execution of the original loop
throws ArithmeticException. Also assume that
“@(i,a,L0)” in BB1 throws NullPointerException.
Once the exception handler catches NullPointerException,
the original loop is executed. During the execution of the original
loop, j/k throws ArithmeticException. As such, the
precise exception is preserved.

4.3.1 Policy
Cloning loops can easily cause a code explosion so the policy of
applying bounds checking elimination is based on three parameters:
code size, amount of bound checking code that can be potentially
eliminated, and profiling information. The optimizing compiler only
considers the innermost loops as the scopes for bounds checking
elimination. For a given innermost loop, if the ratio of the total
number of instructions and the number of candidates is below a
certain threshold (which is set to 30 based on our empirical results),
this optimization is turned off because eliminating all bounds
checking code can only lead to a small percent speedup. The
optimizing compiler computes the average trip count of the loop
using the profiling information. If the trip count is not greater than 3,
the optimization is turned off as well because the performance gain
is small.

4.4 INLINING
Inlining is a common and well-adopted technique used in compilers
to reduce the overhead of method invocations. Inlining enlarges the
compilation scope, exposes more optimization opportunities and
eliminates the run-time overhead of creating a stack frame and
passing arguments and return values. Method calls in Java are
virtual (dynamically dispatched) unless their bytecodes are declared
as static, final or special. Virtual method calls cannot be easily
eliminated because the compiler generally has no idea which callee
will be invoked.
Before discussing the approaches of inlining a virtual method, we
need to describe the object layout, which has a direct influence on
how the method is inlined. Figure 5 depicts the object layout used
in most implementations of object-oriented languages, e.g., C++ and

 L11: ..j/k..
 L12: ..t[j]..
 L13: j++;
 L14: j < 100

L15: call out_of_bound

 L0: ..j/k..
 L1: @(i,a,L15)
 L2: t = a[i]
 L3: @(j,t,L15)
 L4: ..t[j]..
 L5: j++
 L6: j < 100

 L7: @(i,a,L0)
 L8: t = a[i]
 L9: @(j,t,L0)
 L10: @(99,t,L0)

original loop
cloned loop

Exception
handler

@(j,a,label)
cmp a.length,j
jbe label

j = x

L15: call out_of_bound

 L0: ..j/k..
 L1: @(i,a,L15)
 L2: t = a[i]
 L3: @(j,t,L15)
 L4: ..t[j]..
 L5: j++
 L6: j < 100

j = x

(a) Original code

(b) After transformation

Figure 4. Bounds checking elimination

BB1

17

Java. x is a reference pointing to an object. The first field of the
object points to the vtable (virtual method table). For each virtual
method of the object, there is a dedicated entry in the vtable,
pointing to the native code of the method. To get the address of a
virtual method foo, we need to dereference the pointer twice (two
memory accesses). The first one gets the vtable (t = [x]).
The second one gets the address of foo ([t+64]).
As the virtual method gets inlined, the JIT compiler generates a run-
time test to verify if the inlined callee is the right instance to be
invoked. The normal method invocation code sequence is executed
if the verification fails. The run-time test is usually implemented in
two ways [9]: one tests the vtable (discussed in Section 4.4.1)
and the other checks the actual target address of the method
invocation (discussed in Section 4.4.2). An inline cache approach

[13] is not taken into account here because the generated stubs
introduce one extra dereference, and a sequence of testing for
polymorphic call sites may cause high run-time overhead. That
approach is more applicable to languages that have high overhead
for method invocation, such as SELF. In Section 5.1, we describe
enhancements that further improve the inlining accuracy and the
code sequence for the conditional test.

4.4.1 Checking vtable
The first approach compares the object’s vtable with the
vtable of the class of the inlined method. The code sequence of
this approach is shown in below. If the test succeeds, it is safe to
execute the inlined code because the inlined method is the one that
will be dynamically dispatched at run time. If the test fails, the
regular dispatching code sequence is executed to invoke the virtual
method call.

mov eax, DWORD PTR [eax] // get vtable
cmp eax, 0bc3508h
jnz _default_invocation
// inlined callee
. . .
_default_invocation:
// normal invocation code
. . .

The benefit of this approach is that only one memory access ([x])
is involved to determine if either the inlined A’s foo or the regular
call sequence should be executed. The original call overhead is
reduced to one memory access, one comparison and one branch.
But the drawback is that checking vtable is conservative.
Consider the code x.foo(). Presumably, x can be either class A
or B where A is a superclass of B and A’s foo is not overridden by
B. If x’s dynamic type is always of class B but its static type is set to
A, the checking always fails because class A and B have distinct
vtables. The code shown above always executes the non-inlined

path instead of the inlined path even though A’s foo is invoked
every time.

4.4.2 Checking target address
The second approach inserts code to compare the actual method
address that x.foo() is invoking with the address of A’s foo (as
shown below).
mov eax, DWORD PTR [eax] // get vtable
mov ecx, DWORD PTR [eax+64] // target addr
cmp ecx, [BE762Ch]
jnz _default_invocation
// inlined callee
. . .
_default_invocation:
// normal invocation code
. . .

This approach is more precise. However, the checking needs at least
2 memory accesses ([x] and [t+64]). In Just-In-Time
compilation, a method is compiled right before its first execution. If
A’s foo is not yet compiled, we have no idea what the actual
address of A’s foo is. The compiler then has to allocate memory
space in which we fill the address of A’s foo as soon as A’s foo is
compiled. In such a circumstance, the test requires 3 memory
accesses.
The optimizing compiler uses the first approach, testing vtable,
because it requires only one memory access. However, we need to
deal with the conservatism of the approach. We have implemented
two mechanisms to alleviate the issue: type propagation and
dynamic patching that is discussed in Section 5.1.
In [13], type feedback is used to improve the accuracy of inlining
predictions. In the MRL VM, we do not record a type profile for
every call site. Instead, we propagate type information during copy
propagation to track the actual class type of the object of the
invoked method. Consider code x.foo(). If type propagation
proves that the actual type of x is class B instead of class A, where A
is a superclass of B, and the class hierarchy analysis [8] proves that
there is no class in between A and B that overrides foo, then we
generate the test for comparing x’s vtable against B’s.

4.4.3 Policy
The inlining policy is based on the code size and profiling
information. If the execution frequency of a method entry is below
a certain threshold, the method is then not inlined because it is
regarded as a cold method. To avoid code explosion, we do not
inline a method with a bytecode size of more than 25 bytes.
Inlining is performed in a recursive fashion. The compiler traverses
the IR and determines which call sites need to be inlined. Then the

Figure 5. Object layout

object vtable

x
t = [x]

[t+64]

64
data

bar

foo

offset . . .
 mov eax, DWORD PTR [eax]
 jmp _inlined_callee
 nop
 nop
 jnz _default_invocation
_inlined_callee:
 // inlined callee
 . . .
_default_invocation:
 // normal invocation code

patch
m_handle offset length

cmp eax, 0bc3508h

m_handle offset length

cmp eax, 0bc3462h

n_patch

. . .

OVERRIDDEN_RE

Figure 5. Dynamic patching

18

compiler builds the control flow graphs (CFG) and IR for those
inlined methods. Before grafting the newly created CFGs into the
caller’s, the compiler repeats the same inlining process for the
inlined methods. To avoid inlining along a deep call chain, inlining
stops when the accumulated inlined bytecode size along the call
chain exceeds 40 bytes.

5 DYNAMIC OPTIMIZATIONS
In this section, we discuss some techniques applied at run time to
deal with patching native code, reducing the GC map size, caching
the stack frames, and avoiding creating exception objects.

5.1 Dynamic inline patching
Often, a method is not overridden from the time the JIT compiler
inlines the method until the end of the program execution. The
method is always the right instance of invocation if the class
hierarchy does not change over time. We would like to generate
code based on the assumption that the inlined method will probably
never be overridden throughout the program execution.
Nevertheless, Java allows classes to be dynamically loaded at run
time, which is known as dynamic class loading. In other words, the
class hierarchy may change. Dynamic patching is a technique that
patches the native code to preserve the correctness of the program
once the assumptions made by the compiler are invalidated.
The optimizing compiler produces the inlining code sequence as
shown in Section 4.4.1. Right before code emission, the compiler
replaces the cmp with a jmp, directly to the inlined code (as
illustrated in Figure 5), if the inlined method is not yet overridden at
that time. The overhead of the conditional test, one cmp and one
jnz, is reduced to one direct jump instruction. A patch entry is
created for the cmp just replaced. The patch is composed of the
method handle of the inlined method (callee), the code offset and
length of the IA-32 cmp instruction, and the byte array for storing
the cmp. Since the instruction length of the cmp is longer than the
jmp, nops are filled in for the remaining bytes after the
replacement. The compiler then invokes an API call,
method_set_inline_ assumption(caller,callee),
to notify the VM that the caller has inlined the callee with the
overridden optimization enabled. An overridden_rec is
created as part of caller’s method_info, containing all patches of
the caller as well as the total number of the patches. A callback,
method_was_ overridden(caller,callee), provided
by the optimizing compiler, allows the VM to notify the compiler
that the callee has been overridden and therefore fixing the
caller’s code is required.
method_was_overridden retrieves the caller’s
overridden_rec and performs fixing for all the patches whose
method handle matches callee’s. The code patching must be
thread-safe because other threads may be executing the instruction
that we are about to patch, i.e., the direct jump instruction. The code
sequence the compiler uses to make code patching thread-safe is
divided into three steps (shown in Figure 6): First, the direct jump
instruction is substituted by a spinning jump (jump to itself). We use
the xchg, instead of mov, instruction that exchanges two operands
to write the spinning jump because mov is not an atomic operation.
If a memory operand is referenced in xchg, the processor’s locking
protocol is automatically implemented for the duration of the
exchange operation [16]. The locking protocol ensures writing
0xFEEB (two bytes) has exclusive use of any shared memory—the
operation is atomic. Other threads that happen to be executing the
instruction will spin waiting for the completion of the patching.
Second, the original cmp except the first two bytes are restored.

Finally, the first two bytes of the cmp are written atomically using
xchg.

5.2 Lazy GC map
The JIT compilers generate a GC map for each method, allowing
the compilers to unwind stack frames for exceptions and compute
the root set of live references for garbage collection. The root set
consists of all objects pointed to by global pointers or by pointers in
the active stack frames. Typically only a small number of methods
are active when GC happens, which means the GC maps for the rest
of the methods are superfluous.
We would like to take a lazy approach that generates the GC map on
the fly. Because computing the GC map requires recompiling
methods, the approach of lazy GC map generation is solely
applicable to the fast code generator. Instead of generating ordinary
method info, the fast code generator produces small method info
that comprises a profile data pointer, a GC data pointer set to null
initially, and a bit vector for class initialization. Whenever a
nonexistent GC map is needed, the method is recompiled to
compute the GC map and set the GC data pointer (as depicted in
Figure 7).
The class initialization bit vector deserves additional explanation.
As described in Section 4.1, the fast code generator also eliminates
class initialization calls, whenever the VM indicates that the class
has already been initialized at JIT compilation time. Therefore, the
actual code that the fast code generator produces is not stateless—it
depends on which class initializers have been executed at the time
the method is compiled. This state is required for recomputing the
GC map, and thus the class initialization bit vector is saved in the
method_info when the method is first compiled.

5.3 Caching Of The Unwinding Process
We speed up the stack traversal by using caches to eliminate
duplication of work for the same frame. This optimization relies on
the fact that often a set of frames remains on the stack long enough
to be traversed by the exception code for multiple exception
dispatches. We use two caches, one to improve the method lookup
and another to improve the unwind itself.
The method lookup cache is a direct mapped cache indexed by a
hash value computed from the IP value. If the IP value in the cache
matches the current value, the result is returned immediately,
otherwise the binary search is performed (see Section 3.2) and the
cache entry is updated before the result is returned. In our VM we

 Byte *code = method_get_code_block_addr(caller);
 Byte *first_byte_addr = code + patch->code_offset;

 // step 1: write a spinning inst
 __asm {
 mov eax, first_byte_addr
 mov cx, 0xFEEB // spinning
 xchg word ptr [eax], cx
 }

 // step 2: restore cmp inst except
 // the first two bytes
 for (int j = 2; j < patch->length; j++)
 code[patch->offset + j] = patch->orig_code[j];

 // step 3: restore the first two bytes
 Byte *first_orig_addr = (Byte *)patch->orig_code;
 __asm {
 mov eax, first_byte_addr
 mov edx, first_orig_addr
 mov cx, word ptr [edx]
 xchg word ptr [eax], cx
 }
 Figure 6. Code patching

19

use a cache of 512 entries. This size is larger than needed for the
benchmarks discussed in this paper, but is chosen for the benefit of
larger applications.
The unwind cache is maintained by the JIT compiler. In our
implementation, the core VM does not know the layout of stack
frames corresponding to methods compiled by a compiler. The
compiler is responsible for creating appropriate information to make
the unwind process possible. A pointer to the appropriate unwind
data structure is stored in the JIT_INFO structure from Figure 2.
Our design requires that a JIT compiler provides a run-time function
that, given a register context and a pointer to the unwind data
created at compile time, must update the context to the caller’s
context. That involves recovering the values of the stack pointer
(SP), IP and callee-saved registers. The stack unwind function must
be designed so that two, possibly conflicting, goals are met:
The unwind data structures should be as small as possible. In our
earlier paper [22] we describe how to minimize the size of the GC
information. The same data structures hold information needed for
GC and other stack unwinds, because there is much overlap
between the root set enumeration and stack unwind functions.
The process of the unwinding should be as fast as possible. In
addition to implementing efficient compression schemes, we speed
up the unwinding by using a cache in the compiler [22]. The
unwind cache enables faster unwinds of frames corresponding to
cached IP values.

5.4 Lazy Exceptions
We have noted that some Java applications use exceptions to change
the control flow only. In those applications the exception object’s
type is used to determine which handler catches the exception, but
the content of the exception object is never accessed. In those cases
creating the stack trace is unnecessary and we can save a substantial
amount of work by never creating the exception object itself.
Let’s revisit the code example in Section 3. The exception object is
not used in the handler in printSumOfInts. Compiler analysis
can trivially detect that the object is dead at the entry of the handler.
Since the exception object is never used in this example, it would be

possible to avoid its creation. The problem is that the exception is
thrown in a different method and at the time of the throw it is not
known which handler will catch the exception and consequently it is
not known whether it is necessary to create the object. Therefore, to
the best of our knowledge, all Java VM implementations
conservatively create all exception objects. Our technique of lazy
exception throwing eliminates the need for creation of the exception
object in certain, common cases.

Existing Java Virtual Machines create exceptions eagerly, i.e., as
soon as an exceptional situation is observed, and the exception
object is created and initialized. In the next step the VM searches
the stack for the right handler. Our approach is to create exceptions
lazily, i.e., initially assume that the exception object is not required,
search for the handler and when one is found, consult data structures
provided by the JIT compiler to determine if the exception object is
live at the entry to the handler. If the compiler can prove that the
exception object is dead, the object is never created. If, on the other
hand, the exception object is live, we have to create the exception
object. The difficulty is that the exception object must be initialized
as if it were created in the context where the exception was thrown.
The VM has however destructively unwound a (possibly empty)
subset of the top stack frames. See Section 5.4.3 for a more
complete discussion of the correctness issues.
Lazy exception throwing is relatively easy for exceptions thrown by
the VM itself. Those predefined run-time exceptions are required
by the JVM semantics [19]. Examples include
ArrayIndexOutOfBoundsException and NullPointer-

Exception. The operation of the exception object creation and
throwing is completely performed by the VM and therefore the
order of the operations is not visible to the application. This simpler
case is described in Section 5.4.1. Our design is more aggressive
and attempts lazy exception throwing even for exceptions created by
user code. This requires a more complete support in the compiler
and is discussed in Sections 5.4.2 and 5.4.3. The lazy exception
mechanism is implemented only in the optimizing compiler because
analyses that ensure that the mechanism does not violate the
semantics of Java are based upon IR.

5.4.1 VM Exceptions
The implementation of lazy VM exceptions is relatively
straightforward. When the VM detects an abnormal condition, it
first performs a destructive unwind to find an appropriate handler
and then queries its data structures whether the exception object is
live at the entry of the handler. If the object is live then the object is
created exactly the same way it would have been created in a
standard VM implementation. If, on the other hand, the exception
object is dead at the handler entry, its creation is skipped altogether.
Since VM exceptions in our implementation have no side effects,
the semantics of the application are not changed. Also, the
constructors of our VM exceptions never throw exceptions
themselves, so the extra difficulty described in Section 5.4.3.3 does
not apply here.

5.4.2 User Exceptions
User exceptions are typically created with the following sequence of
bytecodes:
new <UserException>
dup
[optionally push constructor arguments]
invokespecial <UserException (...)>
athrow

Of course, in principle, these instructions do not have to be
contiguous and they may span multiple basic blocks or even
methods. In practice however, the complete instruction sequence is
usually in the same basic block and its analysis is possible in an
optimizing compiler.
We could handle user exceptions the same way we handle VM
exceptions if we knew that not executing the constructor or
executing it in a different context would not change the semantics of
the program.

S_METHOD_INFO

Profile_data

GC_data

Class_initialization

Profiling
data

representation

 JIT id

...

Native

Method info

Next

JIT_INFO

GC map

Fast code generator

recompilation

Exceptions

Figure 7. Lazy GC map

20

5.4.3 Side effects
Side effects may cause problems that violate semantics of the
program. We have the obvious set of operations that we consider to
have side effects: stores to fields and array elements, and invoke
operations that have not been inlined. Because of the reasons
discussed in Section 5.4.3.3, we also do not allow synchronization
operations and operations that may cause exceptions.
Using the lazy exception mechanism in javac requires complete side
effect analysis, so we use it as a good illustration for our paper. That
example is described below. The same techniques eliminate the
creation of exception objects in many other applications and we
believe that our implementation is as powerful as necessary and
feasible given the restriction on how expensive compile time
analysis can be in a JIT compiler.
We will use javac, a Java compiler, as an example of an application
that benefits from lazy exception creation and in which all
exceptions thrown in a normal run are user exceptions. Javac is a
relevant benchmark because:
Javac is part of the SPEC JVM Client98 benchmark suite (also
referred to as SPEC JVM98 [22]) and therefore performance of this
benchmark is of interest to designers of Java VMs.
Javac is a realistic Java application. It performs a relevant
computation and is in use by many programmers worldwide
(although note that versions of javac distributed with newer editions
of Sun Microsystems’ JDK have likely been improved and
expanded compared to the version included in SPEC JVM98).
Here is the specific sequence of instructions from that application.
For brevity, we omit package names, but note that all non-standard
classes are declared in the spec.benchmarks._213_javac
package. This code fragment comes from the
Identifier.Resolve(Environment, Identifier) method.
new <ClassNotFound>
dup
aload_2 // push a constructor
argument
invokespecial <ClassNotFound(Identifier)>
athrow

This example follows the generic pattern presented earlier for user
exceptions. The essence of the optimization is to delay the creation
of the object of class ClassNotFound until the VM finds the right
handler and determines that the exception object is indeed live in the
handler. In many applications, exceptions are used for abnormal
control flow, but the exception object is not used for anything other
than selecting the right handler. In those applications, the compiler
can often detect that the exception object is dead in the handler.
This situation happens in javac. For the workload included in SPEC
JVM98, javac throws 22,372 exceptions and all of those exceptions
result in transferring control to handlers in which the exception
object is dead.
It is difficult to transform this code pattern into a lazy exception
throw, because the constructor of the exception may have side
effects. Of course, a constructor with side effects cannot be
eliminated, so we use lazy exceptions only if the compiler can prove
that there are no side effects in the constructor.
Note that while in our implementation the arguments to the
constructor are always evaluated, it would be possible for the VM to
be even more aggressive and lazily evaluate arguments to the
constructor. That would require additional compiler analysis for the
side effects of the argument evaluation. In practice, it does not seem
to be necessary, because in the applications we looked at, there are
either no arguments to the constructor or (as in the above example)

arguments are already evaluated and are stored in local variables or
on the Java stack.
To decide if a constructor is side effect free, the compiler must
analyze the constructor and recursively all the invoked methods. A
constructor always invokes a constructor of the super class, which in
turn invokes the constructor of its super class. Since
ClassNotFound is a subclass of Exception, constructors of
ClassNotFound, Exception, Throwable, and Object are
invoked. Two other methods, Identifier.toString() and
Throwable.fillInStackTrace() are also invoked. A detailed
discussion of the more troublesome of those methods follows.

5.4.3.1 Field updates
Our notion of side effects is standard but we relax it in one way. For
the purposes of our analysis, we consider a sequence of instructions
to have no side effects even if there are stores to fields of the object
that is considered as a candidate for lazy creation. The rationale is
that modifications to the state of an object that is dead have no
observable side effects.
One code fragment in the ClassNotFound(Identifier)
constructor that could potentially have side effects is a store to the
field name.

aload_0 // this pointer
aload_1 // constructor argument
putfield <Identifier name>

This code fragment is an example of a store to a field of the
exception object whose creation we want to eliminate. As discussed
above, we do not consider such a store to have side effects.

5.4.3.2 Method invocations
An invocation of any method may have side effects. The compiler
must prove that that is not the case. The optimizing compiler
attempts to inline recursively all method invocations in the
constructor. General strategy for inlining is followed with general
restrictions on inlining assumed by the compiler (see Section 4.4).
Virtual method invocations are also inlined, possibly with a run-
time check. In that case, only the path along which we inlined the
method is considered a candidate for the lazy exceptions
mechanism. If a native method is invoked, the compiler must of
course conservatively assume that the method may have side
effects. There is a mechanism to override this default, conservative
assumption. Every method has a flag associated with it that says if
the method can be assumed to be side effect free without compiler
analysis. Specifically, for the purpose of the lazy exception
analysis, we set this flag to mark the native method
java.lang.Throwable.fillInStackTrace() as side effect
free. That assumption is valid because our VM implements
fillInStackTrace() internally and the VM can guarantee that
there are no side effects in this method.
Another code fragment of ClassNotFound(Identifier) with
potential side effects is

aload_0
aload_1
invokevirtual <String toString()>
invokespecial <Exception(String)>

Each of the two methods in this example presents different
challenges. Identifier.toString() is invoked as a virtual
method and needs a run-time check to make sure that the class of
the object is indeed Identifier. This analysis is performed by

21

our compiler for inlining, so no new code had to be added to take
care of that. The body of Identifier.toString() does not
throw exceptions as long as its argument is not null; our compiler’s
inlining infrastructure equates that argument with variable 2 of the
Identifier.Resolve(Environment, Identifier) method.
That variable can be shown to be non-null by virtue of its earlier
uses, which dominate the exception throwing code.
The second method, Exception(String), is difficult to analyze
for a different reason. The invocation is not virtual, so inlining can
be done without any extra effort. However, inlining of this method
causes in turn another method, Throwable(String), to be inlined.
This method is more problematic. One issue is that it modifies a
field of the object being created, but this, as explained above, is a
false side effect since it involves a modification of the very object
we want to avoid creating. So the following code is assumed to
have no side effects.
aload_0 // this pointer
aload_1 // constructor argument
putfield <String detailMessage>

Another more difficult problem in Throwable(String) is in the
following code fragment.

aload_0
invokevirtual <Throwable fillInStackTrace()>

We have already explained that our compiler can inline virtual
method invocations (with a run-time check). The problem here is
that Throwable.fillInStackTrace() is a native method and
the JIT compiler conservatively assumes that all native methods
may have arbitrary side effects. As described above, the VM, which
implements this method, marks it as side effect free.

5.4.3.3 Using the right context
The optimizing compiler always evaluates all arguments to the
constructor of the exception object even if the constructor is never
invoked, so the execution of any code related to the evaluation of
arguments is always performed at the right time and in the right
context. However, the compiler must prove that the body of the
constructor itself, including any methods invoked by the
constructor, does not cause side effects.
When the VM discovers the correct handler and finds that the
exception object must be created, the context in which the exception
was supposed to be executed may no longer exist, because some
stack frames may have been destructively unwound. A simple
solution would be to first find the handler using non-destructive
unwinds, find out if the exception object is live, create the object if
necessary in the correct context, and then traverse the stack again,
using destructive unwinds. The drawback of this simple solution is
that the stack is traversed twice and so throwing exceptions is
actually slower if the exception object is live in the handler.
We did not want to sacrifice performance and the extra stack
traversal was not acceptable. Instead we are giving up expressive
power and only using lazy exceptions when the compiler analysis
can prove that it is safe to execute the constructor in the context of
the handler. Two specific correctness issues are discussed below.

Exceptions in constructors
The most important problem can be caused by exceptions thrown by
the constructor of the exception object itself. The optimizing
compiler ensures that the constructor will not throw any new
exceptions that could be caught by a handler of a method whose
stack frame is between the top of the stack and the frame of the
method with the handler corresponding to the lazy exception. To
understand why it is necessary, consider the following example.
A calls B. B throws an exception of class foo lazily. There is no
handler for foo in B, so the VM destructively unwinds the frame of
B. Now, a handler for foo is found in A and the exception object is
live in the handler. The VM now creates an object of type foo. This
object is supposed to be constructed in the context of B, so if the
constructor of foo throws a new exception, say, of class bar, there
is a possibility that a handler for this exception exists in B and the
control is supposed to be transferred there. We address this issue by
only allowing lazy exceptions when the compiler can prove that the
constructor will not throw exceptions.

Synchronization
Synchronized methods are another issue. In Java a method can be
declared as synchronized. That means that a monitor associated
with the object referenced by the this pointer is entered when the
method is entered. A destructive unwind exits this monitor. But it
is possible to write a program that throws an exception in such a
way that the constructor of the exception object relies on the fact
that the current thread entered a monitor for an object referenced by
a this pointer of one of the methods on the stack. If we invoke the
constructor lazily after we exit the monitor, a deadlock can occur or
an incorrect result can be produced due to insufficient
synchronization.
We avoid the deadlock potential by not allowing lazy exceptions if
the compiler analysis of the constructor detects any monitorenter
bytecodes or any invocation of synchronized methods.
Note that errors due to insufficient synchronization are not actually
possible, because we do not allow side effects in constructors for
lazy exceptions.

6 TRIGGERING RECOMPILATION
One important component of dynamic recompilation is the
mechanism to trigger recompilation. Recompilation is expensive in
terms of compilation time. We want to recompile hot methods as
soon as possible while avoiding recompiling cold methods. In other
words, the mechanism needs to make the decisions of when to
recompile and what to be recompiled. The MRL VM has
implemented two mechanisms.

6.1 Instrumenting
The first mechanism uses the instrumenting code to trigger
recompilation. The initial values of counters are set to some
threshold values. As code gets executed, the counters are
decremented. We insert code to test the values of the counters
against zero. As soon as the counters reach zero, the code
immediately jumps to the routine that triggers recompilation. The
threshold values for the method entry and the back-edge counters
are set to 1000 and 10000 respectively. The benefit of the
mechanism is that once a threshold is reached, recompilation is
triggered immediately, and thus the newly optimized code can be
used as soon as possible. Nevertheless, the drawback is that
choosing the threshold is not trivial. If we would like to compile hot
methods sooner, we need to set the threshold low. As a result, the

22

optimizing compiler may end up recompiling lots of non-hot
methods and wasting the compilation time. If we want to avoid
compiling non-hot methods, we need to set the threshold high.
Consequently, performance may suffer because hot methods are not
recompiled soon enough.

6.2 Threading
The second mechanism is thread-based, aimed at curtailing the
compilation time by overlapping compilation with program
execution on a multiprocessor system, which is also known as
continuous compilation [21]. The code that updates counters
increments counters to update the profiling information rather than
decrementing. A separate thread is created for recompilation,
periodically scanning through the profiling information to determine
which methods are hot and need to be recompiled. The thread can
utilize cycles of an idle processor for recompilation. All counters are
reset to zero during scanning so that no accumulated values are
carried over to the next recompilation session. The thread is
suspended and waits for a TIMEOUT event. When the timer goes
off, the thread is woken up to analyze the profiling information of all
methods. Based on our observation, most hot methods are executed
frequently in the early execution of programs. Therefore, the
TIMEOUT interval is short in the beginning, and is linearly
increased as programs are running. The current timer is set to 1
second initially and increased by an extra 1 second for the next
session. We stop increasing the timer when it reaches 8 seconds.
There are two drawbacks of the approach: First, the thread needs to
scan the profiling information of all methods to decide which
methods are recompilation candidates. Second, hot methods are not
immediately recompiled as they pass the thresholds. They have to
wait until the next TIMEOUT event.
 # of

compiled
methods

% of used
GC map

non-lazy
GC map

size

% saved
by lazy
GC map

200_check 374 10.7% 436K 86.2%
201_comp. 309 4.2% 374K 89.8%
202_jess 744 5.2% 609K 88.6%
209_db 327 5.5% 394K 89.9%
213_javac 1100 8.5% 953K 76.5%
222_mpeg. 481 1.5% 573K 94.7%
227_mtrt 449 4.9% 486K 85.9%
228_jack 558 29.6% 631K 76.4%

 Table 1. Lazy GC map

7 EVALUATION
We ran a collection of programs from the SPEC JVM98 [22]
benchmark suite on the Intel VM. All experiments were performed
on a system with two 450MHz Intel® Pentium® II Xeon™
processors. In our measurements, we did not fully follow the official
run rules defined by the SPEC committee, so no SPEC number
should be derived from the results, and no comparisons with other
vendors’ JVM were evaluated. We chose an 80MB heap size.

7.1 GC map size
We used the fast code generator to compile SPEC JVM98 and
measured how many methods were compiled for each program and

how many methods needed the GC map (listed in Table 1). The
experimental results show that only a small portion of methods
remain active when exceptions or GC occurs. For programs that do
not involve a lot of exception throws and GC, the actual GC map
used is around or below 5%. That is, most of the time and space
spent on computing the GC map is wasted. Interestingly, 228_jack
is an exceptional case; 30% of the total compiled methods need the
GC map at run time. The lazy approach saves the size of the GC
map substantially—86% on average. Our experimental results show
that the incurred run-time overhead of recompilation is less than
0.2%.

7.2 Effectiveness of optimizations
We ran the experiments with 4 different configurations of our VM.
The first configuration purely used the fast code generation
approach with the lazy GC map. The second one solely used the
optimizing compiler to generate native code without relying on the
profiling information feedback. All optimizations, e.g., inlining and
checkcast, were performed based on the static analysis of the
program. The last two were for different mechanisms of triggering
recompilation. The table below shows the execution time (seconds)

of each program.
The result of Table 2 shows that the dynamic recompilation
outperforms the rest except in the case of 201_compress. For
201_compress, the compilation time is not an issue and the profiling
information feedback does not help much to guide optimizations
(static loop hierarchy analysis is good enough). One noticeable
aspect from the table is that we do not see a significant improvement
over the optimizing compiler for 201_compress and 209_db. There
are a few reasons. First, many methods are compiled before the
programs start the timer. The performance gain from dynamic
recompilation for those methods is not seen in the result. Second,
the optimizing compiler does not implement some expensive
optimizations, e.g., code motion and code scheduling. Code
scheduling is not implemented in the optimizer because the Pentium
II processor detects dependences among instructions and does out-
of-order execution. Moreover, as mentioned earlier, code motion is
not implemented because of the potential increase of register
pressure on the IA-32, which has only a few registers. For this kind
of architecture, code scheduling and code motion become less
important. Nevertheless, for the architectures that can highly benefit
by expensive optimizations to achieve good performance, e.g., IA-
64 [17], we expect that the dynamic recompilation technique will
outperform the optimizing compiler significantly.

 dynamic recomp.

fast
code gen opt.

instr. thread

201_comp. 29.30 22.29 22.38 22.47
202_jess 14.04 12.77 12.42 11.89
209_db 34.41 29.78 29.38 29.62
213_javac 21.89 18.91 18.52 16.68
222_mpeg. 23.75 19.32 18.58 18.60
227_mtrt 10.99 8.49 7.83 7.94
228_jack 20.23 17.93 17.91 17.14

total 154.61 129.49 127.02 124.34
Table 2. Dynamic recompilation

23

 For 202_jess, 213_javac and 228_jack, the threading mechanism is
able to speed up (~11% for 213_javac) the running time by
overlapping the compilation time with the program execution,
because quite a few methods are recompiled. Overall, the dynamic
instrumenting and threading approaches gain 2% and 4%,
respectively, over the optimizing compiler.
We ran another set of experiments to test the effectiveness of
individual optimizations. The base line (the first column of Table 3)
is the dynamic recompilation with the threading scheme, in which
all optimizations are enabled except the overridden approach. We
compare the running times of all but one optimization. The second
column is the running time without the checkcast optimization. The
optimization has 3.4% performance impact for 209_db, negligible
influence for the rest. The third column shows the running time
when the bounds checking elimination is turned off. The compiler
still performs local bounds checking elimination during IR
construction. Bounds checking elimination has only observable
impact for 222_mpegaudio (~3%).
The rightmost three columns evaluate inlining optimizations: The
first one shows the running time of turning off the inlining
optimization completely. The second one is for measuring the
effectiveness of type propagation in the presence of inlining
(discussed in Section 4.3.1). The last column indicates the running
time of the dynamic patching approach (described in Section 5.1).
When comparing the base line and no inlining columns, we see type
propagation has little effect on the overall performance for all
programs except 227_mtrt which would otherwise has ~11%
performance loss. Dynamic patching yields fairly small
performance gains (less than 0.5%) over the base line.

7.3 Exceptions
Caching improves performance if exceptions are thrown multiple
times with frames on the stack corresponding to the same contexts.
Not all benchmarks have this property, but both jack and javac from
SPEC JVM98 use exceptions for control flow in a way that benefits
from caching. The natural question is whether caching could cause
performance degradation for some benchmark. We believe that this
would not happen.
The first reason is that in our implementation the overhead of
caching compared to the regular method lookup is negligible. We
maintain a very simple, direct-mapped cache which can be checked
against and updated efficiently. A regular lookup function must
perform a binary search in a table of IP ranges and that cost would
dwarf the cache overhead even if for a given application all lookups
in a cache resulted in cache misses.
The second part of the argument is that we believe that Java
applications either do not use exceptions heavily and then the
overhead of maintaining the cache is small or they use exceptions
extensively and then it should be the case that at least the frames
close to the bottom of the stack do not change quickly and their
lookup will be sped up by the cache. And likely, as in the case of
javac and jack, a large set of stack frames will remain constant from
one exception throw to another and the benefit of caching will be
significant.
Stack unwinding is used for exceptions, garbage collection and for
security-related stack walking. There may exist applications where
the security-related stack unwinding is a bottleneck. For SPEC
JVM98 it is not the case in our VM.

Although this paper focuses on the performance impact on
exception throwing, the caching described in this paper will
certainly improve the performance of applications with a lot of
security-related stack unwinding. The benefit for garbage collection
is small, because the total amount of work done during a GC cycle
is much larger than the enumeration of the root set.
A similar question can be posed about implementing lazy
exceptions. Is it possible that this optimization will have a negative
impact on the performance of some applications? There are two
potential sources of overhead: the added cost of the analysis to
determine at compile-time if an exception throw can be converted
into lazy exception creation and the cost of executing an exception
lazily after the handler has been found. We have not observed a
negative impact on performance of lazy exceptions on any of the
applications we have run. In addition to SPEC JVM98 we have also
run a set of larger applications.
We argue that this observation can be generalized for Java
applications in general. The extra compile-time overhead in the
optimizing compiler to detect lazy exceptions opportunities is
minimal, because most of the work (e.g., inlining) is performed
anyway to enable other optimizations and lazy exceptions-specific
part of the analysis (detection of side effects, potential exceptions
and synchronization) is not computationally intensive. More
importantly, in our dynamic compilation scheme the optimizing
compiler is invoked only on a small subset of methods that were
determined to be hot. For those methods a more expensive analysis
is acceptable.
 213_javac 228_jack

eager 30.41 22.28 No method lookup cache
No unwind cache lazy 20.07 22.28

eager 29.49 21.43 Method lookup cache
No unwind cache lazy 19.91 21.43

eager 21.32 18.72 No method lookup cache
Unwind cache lazy 19.11 18.72

eager 20.45 17.93 Method lookup cache
Unwind cache lazy 18.91 17.93
Table 4. Lazy exceptions and caching.

inlining

thread

no

check.

no

bound
no

inline

no
type
prop.

 over-
riden

201_comp. 22.47 22.43 22.59 26.23 22.54 22.53

202_jess 11.89 12.02 11.85 12.97 11.79 11.63

209_db 29.62 30.63 29.67 30.39 29.63 29.61

213_javac 16.68 16.68 16.63 17.38 16.71 16.54

222_mpeg. 18.60 18.57 19.20 19.39 18.58 18.55

227_mtrt 7.94 7.91 7.89 10.06 8.82 7.71

228_jack 17.14 17.20 17.19 18.19 17.01 17.26

total 124.3
4

125.4
4 125.02 134.6

1
125.0
8

123.8
3

 Table 3. Effectiveness of optimizations

24

There is almost no overhead associated with saving the throw
context so that when the VM detects that an exception thrown lazily
is caught in a handler in which the exception object is live, the VM
can execute the constructor in the correct context. The VM ensures
that the right context exists by performing a copy of the original
context once, before the stack unwinding process starts.
We have instrumented our VM to collect statistics relevant to the
performance. One of the numbers we collect is the count of
exceptions thrown during the execution of the application. Out of 7
applications in SPEC JVM98 only two, javac and jack, throw any
exceptions. But for those two applications exception counts are
relatively high, 22,373 and 241,877 respectively. Those two
programs belong in the category of irregular applications that are
similar to many other real-life applications and are notoriously
difficult to optimize.
We show the performance results for javac and jack in Table 4.
Jack does not benefit from lazy exceptions, so the “eager” and
“lazy” numbers are identical. The two types of caching are
described in Section 5.3. For SPEC JVM98, the configuration with
both caching mechanisms enabled offers the best performance.
A combination of caching and lazy exception creation results in
speedups of 37% for javac and 20% for jack.
The performance improvement from caching for javac is 6% if we
use lazy exceptions and 33% if we use eager exceptions. The
technique of lazy exceptions improves the performance of javac by
34% if we do not use any caching and by 8% if we use both forms
of caching.
Jack, with far more exception throws, does not benefit from the lazy
exceptions optimization. Our investigation suggests that authors of
jack must have realized the cost of exceptions and avoided much of
the penalty by reusing the same exception object. The
instrumentation shows that only 35 exceptions are actually created,
4 orders of magnitude less than are being thrown. One might
speculate that if jack were written in the more natural way of
creating an exception every time it is thrown, the impact of our
optimization would be larger than for javac since the number of
exceptions thrown is an order of magnitude higher and the running
times of javac and jack are comparable.

8 CONCLUSIONS
This paper has presented the structure of dynamic recompilation of
the Intel research VM, consisting of the fast code generator, the
optimizing compiler and the profile data representation. When first
executed, all methods are considered to be cold. The fast code
generator compiles the methods using some lightweight
optimizations in this cold phase. Some of the methods switch from
the cold state to the hot state when they are executed often enough.
Identified hot methods are recompiled using the optimizing
compiler that performs heavyweight optimizations to improve the
code quality.
We have discussed some optimizations that eliminate run-time
overhead and evaluated their effectiveness. We have proposed four
new techniques. One is to use newly created exception handlers to
maintain the precise exception order during optimization
transformations, allowing the compiler to be aggressive in terms of
hoisting loop invariant code as well as checking bounds outside
loops. The second one is dynamic patching which preserves the
correctness of the program in the presence of dynamic class loading.
The paper has shown that the lazy GC map approach is able to
reduce the size of the GC map by an average of 86% with very little

run-time overhead introduced. The other two techniques deal with
exceptions. Caching of the method lookup in the core VM and of
the unwind process in the JIT speeds up stack unwinding and helps
two of the SPEC JVM98 benchmarks. Lazy exceptions help
programs like javac which throw a large number of exceptions.
We have also described and evaluated two mechanisms,
instrumenting and threading, for triggering recompilation.
Experimental results show that the threading approach has a
noticeable improvement over the instrumenting approach for
programs that have a fair amount of recompiled methods. We
expect the gap will enlarge if the target machine needs
sophisticated/expensive algorithms to deliver good quality code,
e.g., the IA-64 architecture.

9 ACKNOWLEDGEMENTS
We appreciate the feedback provided by the referees. We also thank
Perry Wang, Yong-Fong Lee, Rick Hudson, Jesse Fang, Tatiana
Shpeisman, and Aart Bik for their insightful comments on the paper.

10 REFERENCES
[1] A. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V.M. Parikh, and

J.M. Stichnoth. Fast, Effective Code Generation in a Just-In-
Time Java Compiler. Conference on Programming Language
Design and Implementation, May 1998, pp. 280-290.

[2] A. Adl-Tabatabai and T. Gross. Detection and Recovery of
Endangered Variables Caused by Instruction Scheduling.
Conference on Programming Language Design and
Implementation, May 1993, pp. 13-25.

[3] A. Adl-Tabatabai and T. Gross. Source-Level Debugging of
Scalar Optimized Code. Conference on Programming
Language Design and Implementation, May 1996, pp. 33-42.

[4] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA,
second edition, 1986.

[5] K. Arnold and J. Gosling. The Java Programming Language.
Second Edition. Addison-Wesley, 1997.

[6] J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B.
Bershad. Fast, effective dynamic compilation. Conference on
Programming Language Design and Implementation, May
1996, pp. 149-159.

[7] M. Burke, J-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeño Dynamic Optimizing Compiler for Java. Java
Grande Conference, 1999, pp. 129-141.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis.
ECOOP 1995, pp. 71-101.

[9] D. Detlefs and O. Agesen, Inlining of Virtual Methods.
ECOOP 1999, pp. 258-278.

[10] D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynamic
code generation. Symposium on Principles of Programming
Languages, January 1996, pp. 131-144.

[11] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers,
An Evaluation of Staged Run-Time Optimizations in DyC.
Conference on Programming Language Design and
Implementation, May 1999, pp. 293-304.

25

[12] J. Gosling, B. Joy and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[13] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Objected-Oriented Languages With
Ploymorphic Inline Caches. ECOOP’91 conference
proceedings, 1991. Published as Springer Verlag Lecture
Notes in Computer Science 512.

[14] U. Hölzle and D. Ungar. Optimizing Dynamically-Dispatched
Calls with Run-Time Type Feedback. Conference on
Programming Language Design and Implementation,
Orlando, FL, June 1994, pp. 326-335.

[15] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized
Code with Dynamic Deoptimization. Conference on
Programming Language Design and Implementation, June
1992, pp. 32-43.

[16] Intel Corp. Intel Architecture Software Developer’s Manual,
order number 243192. 1997

[17] Intel Corp. Intel IA-64 Architecture Software Developer's
Manual, order number 245319. 2000

[18] S. Lee, B.-Y. Yang, K. Ebcio lu and E. Altman. On-Demand
Translation of Java Exception Handlers in the LaTTe JVM
Just-In-Time Compiler. Workshop on Binary Translation.
Newport Beach, CA. October 1999.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Second Edition. Addison-Wesley, 1999.

[20] M. Leone and R. K. Dybvig. Dynamo: A Staged Compiler
Architecture for Dynamic Program Optimization. Technical
Report #490, Indiana University, 1997

[21] M. Plezbert and R. Cytron, Does “Just in Time” = “Better Late
Than Never”? Symposium on Principles of Programming
Languages, 1997, pp. 120-131.

[22] J.M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for
Garbage Collection at Every Instruction in a Java Compiler.
Conference on Programming Language Design and
Implementation, May 1999, pp. 118-127.

[23] Standard Performance Evaluation Corporation. SPEC JVM98
Benchmarks. Available at http://www.spec.org/osg/jvm98

[24] Sun Microsystems, Inc. Java Virtual Machine Debug Interface
Reference. Available at: http://java.sun.com/-
products/jdk/1.3/docs/guide/jpda/jvmdi-spec.html.

[25] Sun Microsystems, Inc. The Java Hotspot Performance Engine
Architecture. Available at http://java.sun.com/-
products/hotspot/whitepaper.html.

26

