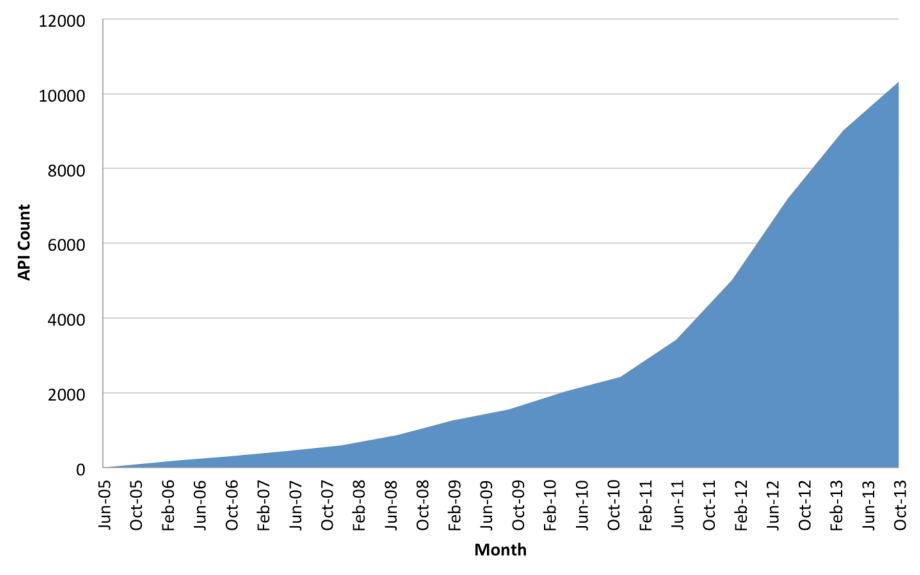
Service-Level Agreement Durability for Web Service Response Time

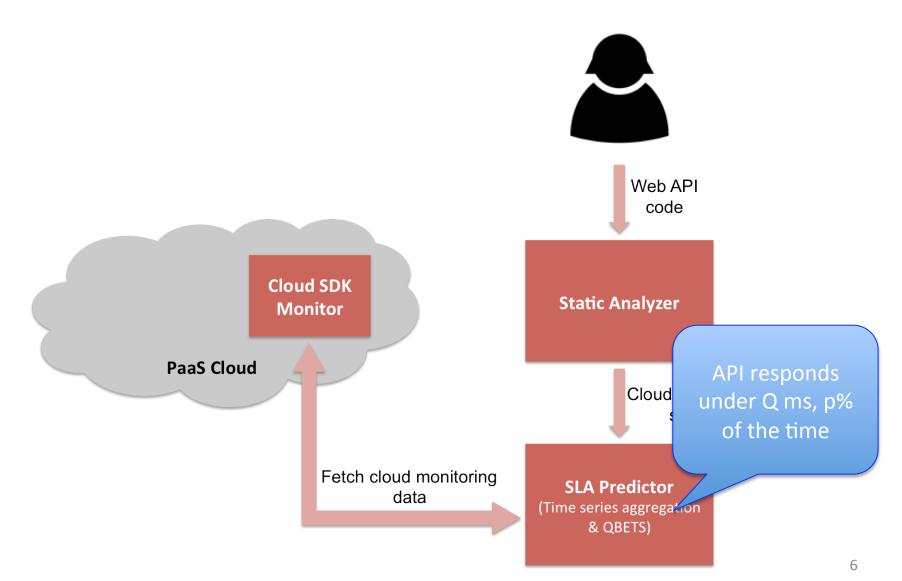
Hiranya Jayathilaka Prof. Chandra Krintz Prof. Rich Wolski Computer Science Dept., UC Santa Barbara


IEEE CloudCom 2015

Growth in Web APIs Since 2005

Number of API Today: 14,000+ Source: http://www.programmableweb.com/api-research

Web APIs as IT Resources


SLAs for Cloud-hosted APIs

- Modern cloud platforms only provide availability SLAs for individual APIs
- Cloud platforms do not provide SLAs on deployed user applications and APIs.
- We designed and implemented Cerebro to address these limitations
 - Response Time Service-Level Agreements for Cloud-hosted Web Applications [SOCC '15]

SLA Durability

- Cloud platforms are highly dynamic
- **SLA validity period:** the time until a predicted SLA can no longer be considered correct
- Can we detect when a predicted SLA has become invalid?
- Can we assess the durability of response time SLAs predicted for cloud-hosted web APIs?

Cerebro Architecture

Statistical Model

- Suppose at time t Cerebro predicts value Q as the pth percentile of some APIs response time.
- The probability of API's response time being greater than Q:
 - (1 0.01p)
- Probability of observing *n* consecutive readings greater than *Q*:
 - (1 0.01p)ⁿ

A Concrete Example

- Suppose Cerebro predicts that some API responds under 100ms, 95% of the time.
 - Probability of API response time exceeding 100ms
 is (1 0.01 * 95) = 0.05
 - Probability of observing 3 consecutive such readings is 0.05³ = 0.000125
- This value 3 is conservative with regard to autocorrelation
 - E.g. To get the same small value 0.000125 with 0.5 autocorrelation, we need to observe 5 events

Detecting SLA Invalidation

- Each time Cerebro makes a prediction, it computes the current autocorrelation in the time series
- Autocorrelation can be used to lookup a table, and determine C_w; the number of consecutive readings greater than Q, that constitute a rare event
- We consider the SLA to have become invalid if this rare event occurs

SLA Acquisition and Monitoring

- API consumers acquire an initial SLA as part of the API subscription process
 - Cerebro calculates both Q and C_w, and records them for future reference
- Cerebro continuously monitors the response time of deployed APIs
- If it observes more than C_w response time measurements greater than Q, it considers the prediction to have become invalid

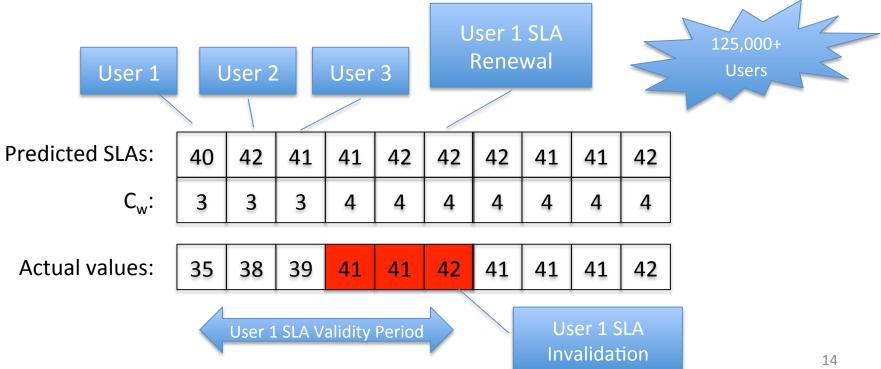
Google App Engine Experiment

- We applied the above statistical model to a set of web APIs deployed in GAE.
- Are the predicted SLAs valid? [SOCC '15]
- If so, for how long are they valid?
- What would an individual user experience?
 - SLA validity period
 - Number of renewals due to invalidations

Step 1: Data Gathering

• We deployed a set of APIs in Google App Engine, and monitored their response time over 3 months.

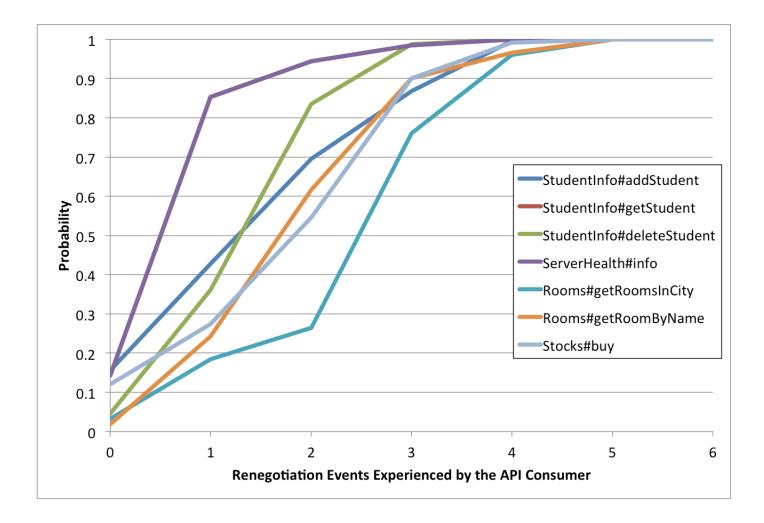
Used a set of open source applications


- We also measured and recorded the response time of individual cloud SDK calls made by these APIs.
 - Using Cerebro's Cloud SDK Monitor

Step 2: SLA Prediction

- We used Cerebro to make response time SLA predictions for the test web APIs.
- Cerebro analyzed the cloud SDK performance data gathered over 3 months, and made 95th percentile predictions for the test web APIs.
 - One prediction per minute, thus forming time series of SLA predictions
 - Each prediction is accompanied by a C_w value

Step 3: Simulation


 We used the predicted SLAs, and the actual API response times measured during the 3 month period in a series of simulations.

SLA Validity Periods (In Hours)

ΑΡΙ	5 th Percentile	Mean	95 th Percentile
StudentInfo#getStudent	12.97	631.24	1911.19
StudentInfo#deleteStudent	7.65	472.07	2031.59
ServerHealth#info	12.96	630.01	1911.19
Rooms#getRoomByName	8.48	345.13	1096.53
Rooms#getRoomsInCity	20.56	296.44	1143.45
Stocks#buy	8.46	411.75	815.5

SLA Renewals Per User

Conclusions

- Web APIs impact the performance of the applications that depend on them.
- Cerebro provides a way to automatically predict response-time SLAs for APIs.
- We present a statistical model that can detect when a predicted SLA has become invalid.
- We extend Cerebro with a simple SLA acquisition and renewal model.
- We show that Cerebro predicted SLAs are highly durable, and the API consumers do not have to renew them too often.