Active Cloud DB: A RESTful Software-as-a-Service for
L anguage Agnostic Accessto Distributed Datastores

Chris Bunch Jonathan Kupferman Chandra Krintz

Computer Science Department
University of California, Santa Barbara

Abstract. In this paper, we present Active Cloud DB, an open sourcergof-
as-a-Service (SaaS) application that allows for RESTfakss to cloud-based
distributed datastore technologies that implement thegeobatastore API. We
implement Active Cloud DB as a Google App Engine applicatteat we employ
to expose the Google App Engine Datastore API to developgmsuse with any
language and framework. We evaluate this SaaS on both GdgyleEngine
and over AppScale, the open-source implementation of @oagp Engine that
enables Google App Engine applications to execute on clufuaktructures with-
out modification. As part of this work, we extend Active CloD& with simple
caching support to improve the performance of datastoresacand evaluate our
technique with and without this support. We also make ushisfsupport within
multiple client-facing prototypes (e.g. Ruby on Rails, iyt through Django) to
show the ease-of-use and applicability of our contributmother web develop-
ment environments.

Key words: Cloud Computing, SaaS, Open-Source, REST, Distributete8yss

1 Introduction

Distributed key-value datastores have become populacente/ears due to their sim-
plicity, ability to scale within web applications and ser®$ usage models, and their
ability to grow and shrink in response to demand. As a reduheair success in non-
trivial and highly visible cloud systems for web servicepedifically BigTable [5]
within Google, Dynamo [1] within Amazon, and Cassandra [4fhim Facebook, a
wide variety of open-source variations of distributed keyde stores have emerged
and are gaining widespread use.

However, these datastores implement a wide variety of featthat make them
difficult for prospective users to compare. For exampleralage differences in query
languages, topology (master/slave vs peer-to-peer)jstensy policies, and end-user
library interfaces. As a result, we and others have invatgigja single framework with
which such systems can be compared [6, 3, 7].

The Yahoo! Cloud Serving Benchmark (YCSB) provides a datatiaterface and
a synthetic workload executor for exercising the DBs that dluthors attach to the
interface. The system measures the response time of piénojtierations in a workload
between a thread on one machine and the datastore on anthleeauthors support
four datastores: HBase, Cassandra, PNUTS (Yahoo's ptaprikey-value store), and
Sharded MySQL.

2 Chris Bunch et al.

AppScale is an open-source implementation of the GoogleEmyine cloud plat-
form. It employs the Google Datastore API as a unifying APbtilgh which any datas-
tore can be “plugged in”. AppScale automates deploymensanglifies configuation
of datastores that implement the API and faciliates theingarison and evaluation on
end-to-end performance using real programs (Google Apprierapplications). App-
Scale currently supports HBase, Hypertable, Cassandidevmrt, MongoDB, Mem-
cacheDB, Scalaris, and MySQL Cluster datastores. Onediioit of this system is that
only applications written in the languages that Google Appgi&e supports (currently
Python and Java) execute over AppScale and thus are ablétousa of the AppScale
datastores. YCSB does not support applications at all,istéad spawns requests be-
tween the server and the datastore for the sole purpose cuniegdatastore response
time and throughput.

In this work, we address the problem of how to facilitate asde these datastores
via any programming language and framework using a datadigisestic interface to
key-value datastores. To enable this, we present the dasignmplementation of a
Sofware-as-a-Service (SaaS) component called ActivedIldgi(in the spirit of Ruby’s
ActiveRecord). Active Cloud DB is a Google App Engine apation that executes
over Google App Engine or AppScale that provides the gluevden an application
and scalable cloud database systems (AppScale’s dasmstodeGoogle’s BigTable).
Active Cloud DB is easy to integrate into language and fraorévront-ends and also
provides the functionality to move data between distribudatastores without manual
configuration, manual deployment, or knowledge about thastiare implementation.

We employ this Software-as-a-Service to implement sugportarious web-based
language frameworks, including Ruby over the Sinatra arits Raeb frameworks as
well as Python over the Django and web.py web frameworks. Véduate the per-
formance of Active Cloud DB using the Cassandra and MemdaBhdatastores to
investigate the performance differences of the primitia¢adtore operations. Finally,
we extend Active Cloud DB with a simple data caching schemehaism that also
can be used by any Google App Engine application, and eeilisatnpact.

In the sections that follow, we overview AppScale, the impdamtation and evalua-
tion framework we use to investigate the performance of ppr@ach. We then describe
Active Cloud DB and the caching support with which we extemlext, we describe
four proof of concepts we have developed that make use ofd€ioud DB, evaluate
this Software-as-a-Service, and conclude.

2 AppScale

AppScale is a robust, open source implementation of the (8a%gp Engine APIs that
executes over private virtualized cluster resources amadcinfrastructures including
Amazon Web Services and Eucalyptus [10]. Users can exelsatedxisting Google
App Engine applications over AppScale without modificati@h describes the design
and implementation of AppScale. We summarize the key comptsrof AppScale that
impact our description and implementation of Active Cloud.D

AppScale is an extension of the non-scalable software dpwetnt kit that Google
makes available for testing and debugging applicationss @dmponent is called the

Active Cloud DB 3

AppServerwithin AppScale. AppScale integrates open<datastore systems as well
as new software components that faciliate configuratioe;mrtton deployment, and
distributed system support for scalable, multi-applmatimulti-user cloud operation.

The AppServer decouples the APIs from their non-scalabli€ Bitplementations
and replaces them distributed and scalable versions —tloerdPython or Java. This
allows Google App Engine applications to be written in eitlamguage. AppScale im-
plements front-ends for both languages in this way.

Google App Engine applications write to a key-value datastising the following
Google Datastore API functions:

— Put(k, v): Add keyk and valuev to table; creating a table if needed
Get(k): Return value associated with key

Delete(k): Remove ke and its value

Query(q): Perform queryusing the Google query language (GQL) on a single table,
returning a list of values

— Count(t): For a given query, returns the size of the listalfres returned

Google App Engine applications employ this API to save andenee data. The
AppServer (and Google App Engine SDK) encodes each reqagg} a Google Pro-
tocol Buffer [11]. Protocol Buffers facilitate fast encadiand decoding times and pro-
vide a highly compact encoding. As a result, they are mucterafiicient for data seri-
alization than other approaches. The AppServer sends aaives Protocol Buffers to
a Protocol Buffer Server in AppScale over encrypted sockdtgletails about the use
of Protocol Buffers and the back-end datastore (in Googie AppScale) is abstracted
away from Google App Engine applications using this API.

The AppScale Protocol Buffer Server implements all of thedries necessary to
interact with each of the datastores that are plugged infoS&ple. Since this server
interacts with all front-ends, it must be very fast and dol@lao as to not negatively
impact end-to-end application performance. AppScalegsl@aProtocol Buffer Server
on each node to which datastore reads and writes can be serth@ datastore entry
points) by applications. For master-slave datastoreseaher runs on the master node.
For peer-to-peer datastores, the server runs on all nodes.

AppScale currently implements eight popular open-souatasiore technologies.
They are Cassandra, HBase, Hypertable, MemcacheDB, MdBgdildemort, Scalaris,
and MySQL Cluster (with a key-value data layout). Each oséh=chnologies vary in
their maturity, eventual/strong consistency, perforneafault tolerance support, imple-
mentation and interface languages, topologies, and datatzamong other character-
istics. [3] presents the details on each of these datastores

Active Cloud DB and our caching support are datastore-adgnd$ese extensions
thus work for all of the AppScale datastores (current andr&)tand for Google App
Engine applications deployed to Google’s resources. Iregatuation, we choose two
representative datastores to collect empirical resuttsfassandra and MemcacheDB.
We provide a brief overview of each.

Cassandra. Developed and released as open source by Facebook in 2083 rCiaa
is a hybrid between Google’s BigTable and Amazon’s Dynanmol{4ncorporates the
flexible column layout from the former and the peer-to-pezdentopology from the

4 Chris Bunch et al.

latter. Its peer-to-peer layout allows the system to avendrig a single point of failure

as well as be resiliant to network partitions. Users spdtiéylevel of consistency re-
quired on each read or write operation. This allows read aité vequests to be sent to
any node in the system, allowing for greater throughput. &l@w, this results in data
being “eventually-consistent.” Specifically, this medmetta write to one node will take
some time to propagate throughout the system and that afipticdesigners need to
keep this in mind. Cassandra exposes a Thrift [12] API thhoulgich applications can

interact with in many popular programming languages.

MemcacheDB. Developed and released as open source by Steve Chu in 2081, Me
cacheDB [9] is a modification of the popular open source ithisted caching service
mentached. Buildling upon thenmentached API, MemcacheDB adds replication
and persistence using Berkeley DB [2] as a backing store. ddeheDB provides a
key-value datastore with a master-slave node layout. Resdbe directed to any node
in the system, while writes can only be directed to the mastele. This allows for
strong data consistency but also multiple points of acomseehd requests. As Mem-
cacheDB is a master-slave datastore, the master node igstesis the single point
of failure. MemcacheDB can use any library availablerfencached, allowing for
native access via many programming languages.

3 Active Cloud DB

We next present Active Cloud DB, a Software-as-a-Servie¢ éixecutes over App-
Scale to expose datastores to cloud clients. Clients arebased applications and soft-
ware implemented using languages and web frameworks dtherthose supported
by Google App Engine. Active Cloud DB exports RESTful [8] ass to cloud-based
distributed datastore technologies automatically anthbba

Active Cloud DB is implemented as a Google App Engine appibicethat executes
over AppScale (and thus Google App Engine). Its impleméniaequires no modifica-
tion to either AppScale or Google App Engine. To enable &dlithaand low response
times, we also extend Active Cloud DB with datastore caclkimgport to improve the
performance of datastore access by applications. We fiestviw Active Cloud DB
and then describe the design and implementation of our cgatheme.

3.1 Implementation

Our goal with Active Cloud DB is to remove the limitation imgexd by AppScale and
Google App Engine that requires that applications be writtePython or Java to gain
access to the functionality of the distributed datastookkends that these cloud fabrics
implement. This is particularly important for Google Appdtime, since not only must
applications be written in these languages but they musta@ntpe web frameworks
specified by Google using a restricted set of “whitelisteblfdries. AppScale removes
this constraint but currently still only supports Pythordalava Google App Engine
applications.

Active Cloud DB is a Google App Engine application that rumemAppScale that
exposes an RESTful API to the underlying datastore. Inttnfactive Cloud DB al-
lows for objects to be created with a given name (key) and trimggswithin (its value).

Active Cloud DB 5

This can be trivially extended to allow for all data typest this work considers only
string-type keys and values. It can make requests eitheppSArvers directly or to the
AppLoadBalancer in the system, who can intelligently rauadfic to AppServers but
can resultin higher latency (as it is an extra hop on all retg)e

Active Cloud DB exposes a single URL route in the typical RESTashion.
Specifically, the route (hamedesour ces) and supports the standard Google App
Engine datastore functions depending which HTTP MethodsiduIf the route is
called with theGET method with no parameters (e.g., simplyesour ces), a data-
store query is performed, returning all the keys in the datasand their associated
values. If the route is called with théET method with a single parameter (e.g.,
/ resour ces/ f 00), then a key-lookup is performed on that parameter, retgrni
the associated value (in our example this would look up tHaevassociated with
the keyf 00). If the route is called with th&OST method with two paramters (e.g.,
/ resour ces/ f oo/ bar), then a put operation is performed with the given key and
value (in our example this would store the Kayo with valuebar). Finally, if the route
is called with theDEL ETE method with a single parameter (e/gr,esour ces/ f 00),
then the key and associated value are deleted from the sy@temur example this
would delete the keffoo and its associated value).

3.2 Integration

To communicate with Active Cloud DB, developers impleméetelient side-interface.
We have done this for four popular web frameworks, Rails ainatf for Ruby, and
Django and web.py for Python. In Rails and Django, we rembechuilt-in database
abstractions and in all add in a wrapper for communicatirt) wictive Cloud DB. It
abstracts all remote communication logic and error hagdiinch that the application
developer need not be aware that the database is locatetetgnmall frameworks we
use the default templating library for creating the preatom layer of the applications.

The four prototype applications with which we make use ofivecCloud DB im-
plement a simple bookstore application (inspired by thdiegton given in [13]). To
access Active Cloud DB, the application makes a RESTful @sgwith the key and
value to put, or the key to get or delete. The bookstore amijitic maintains a special
key containing a list of all the books in the datastore, whi&maintained whenever
books are added or removed. When a book is added, we chamsgepttial key ac-
cordingly and then add an entry to the datastore with the bBawkme (the key) and a
summary of the book’s contents for users to view (the vaMéjen users wish to view
all books in the bookstore, we access the special key to gst af lall the books, and
for each book (key), we return the corresponding book infdrom (its value).

In lieu of using this special key, we could have simply parfed a database query,
but previous work [3] has found that the query operationsdndake much longer than
the get operation once a non-trivial number of keys are ird#dtastore.

3.3 Caching Support

To reduce latency and improve throughput to/from the datastin AppScale and
Google’s hosting environment, we provide a transparera dathing layer. To enable

6 Chris Bunch et al.

this, we leverage the Google Memcache API (similaréocached). The APl caches
web service data and provides a least-recently-used eplaat policy.

To efficiently cache data, we combine two caching strategiege-through and
generational. For basic operations (get, put, delete) waanawrite-through caching
strategy. With this strategy all put operations are writiethe datastore as well as to
the cache. In doing so, subsequent requests are likely teriedsdirectly from cache,
avoiding any datastore interaction.

Efficiently caching query operations is more complex thagibaperations because
query results can contain multiple data items. Furthermenen a particular data item
is updated one must expire all query results which contaihitem so that stale data is
not returned. In order to ensure that this property is maiethwe utilize agenerational
caching strategy. In essence, a generation value is magéotéor the data. The gener-
ation value is included in the cache key for all query opereti Hence, by changing
the generation value all prior cached results are impjieipired as they can never be
accessed again.

Specifically, the operations are:

— Get(k): Return value associated with Keyf the value was not in the cache, store it
for future accesses.

— Put(k, v): Add keyk and valuev to table and the cache. Increment the generation
value.

— Delete(k): Remove kek and its value from the table and the cache. Increment the
generation value.

— Query(q): Perform query using the Google Query Language (GQL) on a single ta-
ble, returning a list of values. Store the result in the caeitie the current generation
number for future queries.

— Count(t): Acquire the query data via the new query techaiqud return the size of
the list of values found.

4 Evaluation

We next employ Active Cloud DB over AppScale to evaluate tegrmance charac-
teristics of the various supported datastores. We begirebgribing our methodology
and then present our results.

4.1 Methodology

For our experiments, we measure the performance of the tiv@roperations per-
formed in bulk and as part of an overall workload. In both sc@s, this is done over
two back-end AppScale datastores, Cassandra versionsh&.BlemcacheDB version
1.2.1-Beta. For the first set of experiments, we fill a tableach database with 1000
items and perform the get, put, query, and delete operaflorgrovide a baseline mea-
surement we also perform a no-op operation which simplyrnstand performs no
back-end processing. We invoke each operation 1000 tin@kst{thes for query since

Active Cloud DB 7

it takes significantly longer than the others). A query esteis all 1000 items from the
datastore.

For each experiment, we access Active Cloud DB using a maahinthe same
network. Our measurements are of round-trip time to/fromAlppServer as well as
all database activity. For each experiment, there are ronewrent threads that each
perform all of the operations and record the times for eadhc@visider multiple static
configurations of the AppScale cloud that consists of 4, 8,396 64, and 96 nodes.
On each node, AppScale runs a Database Slave/Peer, a PrBtdfay Server, and
an AppServer. Each thread accesses a single AppServernedhmeads are in use
in our setting. For each configuration, there is also a heal# tioat implements the
AppController and the Database Master if there is one (tiserit is a Database Peer).

The second set of experiments test the performance of thétjpe operations of
the system when performed as part of an overall workloade Hae number of nodes
is constrained to 16 nodes (due to space limitations) an@d@@ndom operations
are performed with a 50/30/20 get/put/query ratio. Oncearation is selected, nine
concurrent threads perform the operation and access theasponding AppServers.
We intentionally perform the operation on a single key in tiaastore in order to
maximize the amount of contention in the system.

As both of the datastores here have a number of settingsdhdieused, we con-
figure both Cassandra and MemcacheDB in a particular waygout AppScale de-
ployments. While Cassandra allows the user to specify theistency requirements on
all operations, we set it to use inconsistent reads andsvigtely one node in the sys-
tem is needed to participate in these operations. ConyenséllemcacheDB, we direct
all reads and writes to the master node in the system. Whilegs offer the ability to
read from any database node, these initial tests accesthemyaster node and use the
replicas for data backup. Current work is underway to expaopiScale to read from
any database node in the system.

4.2 Results

We first present results for web application response timeden Active Cloud DB
and the datastores. Response time includes the roundrtepbietween Active Cloud
DB and datastore including the processing overhead of th@&wl Buffer Server.

Figure 1 displays results for the get, put, and delete ojperstThe left graph shows
the performance of the get operation. The additional ertigtp for Cassandra allows
it to process reads faster than MemcacheDB. Additionadigyimg the number of nodes
in the system does not have a significant impact on the pediocmof the get opera-
tion. With caching, there is an improvement in performararelfoth Cassandra and
MemcacheDB. This is because write-through caching leadachbe hits for all but the
first event and cache access is significantly faster tharsibaésaccess.

The right graph shows the performance of the put operatieiwas the case in [3],
the increased number of entry points for Cassandra allawpitacess writes faster than
MemcacheDB. The reduced consistency requirements alew &ir faster writes in
Cassandra. Like in the case of the get operation, we seehtngerformance does not
drastically change in either direction for either datastwith respect to the number of
nodes in the system. We see the same trends occurring foathe datastores when

8 Chris Bunch et al.

OFfeieeee E : I Cassandra
: B Cassandra+Cache
: [MemcacheDB
OB et | [MermcacheDB+ Gache

o
2
T

o
&
T

I Cassardia
I Cassandra+Gache
[MermcacheDB

| 0 MermcacheDB+ Cache

o
o

o
Iy

o
%)

=
)

=

Average Put Time {seconds)

Average Get Time (seconds)

o

8 16 32 64 9B 4 8 16 32 64 9B
Number of Nodes Number of Nodes

I C:ssandia

I C:ssandra+Cache
(I MemeacheDB

[MemeacheDB+ Gache

=
2
T

=
S
T

=
o

o
~

o
o

o
ro

=)

Average Delete Time (seconds)

=)

4 8 16 32 B4 g8
Number of Nodes

Fig. 1. Average round-trip time for get (left), put (right), and e (bottom) operations under a
load of 9 concurrent threads for a range of different App&cidud sizes (node count).

caching is employed, and about the same performance forastde¢ regardless of
whether the cache is employed or not. This shows that thehewaerof performing
caching is negligible with respect to the overall time of tiperation. The bottom graph
shows the performance of the delete operation. Deletesnper§imilarly to puts for
both datastores as well as with and without caching.

Figure 2 shows the performance of the query operation. Tisation is to be the
slowest in the system since it operates on an entire tablestinchs all the keys instead
of operating on a single key. For our experiments a queryatjmer returns all 1000
items in the datastore, and we see that having more entryspoégatively impacts the
datastore’s ability to return all the items for a given taldldis impact is consistent
across the various node deployments, with Cassandra temtbjsperforming worse
than MemcacheDB.

Employing the caching scheme negates this difference sihcsads (except for the
first) access the cache instead of the datastore. This yieddéts and conclusions very
similar to that for the get operation, but with a degradedqrerance due to the fact that

Active Cloud DB 9

n
=]

: : ; B Cascandra

...... -Cassandra+Cache
' I MermcacheDB

...... ---I:lMemcacheDB+Cache—

-
o

-
@

Average Query Time (seconds)

64 965

8 16 32
Number of Nodes

Fig. 2. Average time for query operation for different node confadioms and 9 concurrent
threads.

our caching scheme must marshal and un-marshal the datacshkimg it. Therefore,
un-marshalling all 1000 items in the datastore constittiteglifference between these
operations. Similarly to the get operation, this speedup applies without writes: a
single write causes performance to degrade for the next read

We next consider a second workload. Figure 3 shows the peafioce of the system
under a 50/30/20 get/put/query workload across 16 nodéep&fations perform faster
than in the previous experiments, as this workload is peréat on an initially empty
database. However, the same trends from before are prddartiés workload analy-
sis. Get operations are still faster for Cassandra than Meh&DB, but now both are
significantly slower than their cached equivalents. Thikely due to the substantially
smaller amount of data in memcached, allowing for much fasted access. As was
the case in the previous experiments, write performanceughly the same whether
or not caching is employed. Finally, query performance Isstantially better than in
the previous experiments. This is to be expected since ttabase has substantially
less information in it than in the previous experiments.l@ag the data has less of an
impact here since the non-cached versions perform muchrkbtn in the previous
experiments.

Finally, we experiment with executing Active Cloud DB on @as resources. Ta-
ble 1 shows the average response time using a load of thresdhas opposed to nine
for our original first workload (in-order, repeated opevatexecution). Google contin-
uously killed our 9-thread even though we were within ourtquiVe also summarize
the AppScale results (the same as from the previous grajtg the 16-node configu-
ration). For this data, we include the no-op data which wendicpresent in graph form.
Note that for experiments on Google’s resources, we havental over the number
of nodes we have been allocated for our application.

10 Chris Bunch et al.

Average Get Time (seconds)
Average Put Time (seconds)

Average Query Time (seconds)

Fig. 3. Average round-trip time for get (left), put (right), and gquébottom) operations under
a load of 9 concurrent threads for a 50/30/20 get/put/querskhad, run over 16 nodes. The
legend is the same as that used for Figure 1 and Figure 2.

5 Conclusion

We present Active Cloud DB, a Software-as-a-Service thas aver the Google App
Engine cloud. Active Cloud DB is a Google App Engine applmatthat executes
over Google App Engine or over its open-source counterpgupScale. It exposes
the Google Datastore API via REST to other languages andeframks. We evalu-
ate its use within Google and AppScale and present a numbproof of concept

applications that make use of the interface to access a veidger of diverse key-
value stores easily and automatically. We also extend Adfiloud DB with simple

caching support to significantly improve query performafueeActive Cloud DB and

other Google App Engine applications that execute using ppS&ale cloud. The
proof of concept applications, AppScale, and Active Clousl, Ban all be found at
htt p://appscal e. cs. ucsh. edu.

Active Cloud DB 11

Table 1. Average Active Cloud DB time for each operation using Googjfgp Engine (node
count unknown) and AppScale (16 nodes).

Googlg AppScal AppScalg

App Engine 16 nod} 16 node

Medium| CassandrdemcacheDB

Load Cache Cache

put 0.28 0.19 0.40

get 0.24 0.14 0.14

delete 0.28 0.18 0.14

query 2.62 0.26 0.26

no-op 0.18 0.14 0.14

References

1. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a trames dynamic optimization

2.

3.

11.

12.

13.

system.ACM S GPLAN Notices, 35(5):1-12, 2000.

BerkeleyDB. http://ww. oracl e. com t echnol ogy/ product s/
ber kel ey- db/i ndex. htmi .

C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupfermar,akhina, Y. Li, and Y. No-
mura. An Evaluation of Distributed Datastores Using the 3pgle Cloud Platform. In
IEEE International Conference on Cloud Computing, 2010.

Cassandraht t p: / /i ncubat or . apache. or g/ cassandr a/ .

F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, Mrdug, T. Chandra, A. Fikes,
and R. Gruber. Bigtable: A Distributed Storage System fou@tired Data. IrBymposium
on Operating System Design and Implementation, 2006.

N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Spraad R. Wolski. AppScale:
Scalable and Open AppEngine Application Development ardyenent. InICST Interna-
tional Conference on Cloud Computing, Oct. 2009.

B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, an8dars. Benchmarking Cloud
Serving Systems with YCSB, Mar. 201t t p: / / www. bri anf r ankcooper . net/
pubs/ycsb. pdf.

R. T. Fielding. Architectural styles and the design ofwmrk-based software architectures.
Ph.D. Dissertation, University of California, Irvine, 200

MemcacheDBht t p: / / mencachedb. or g/ .

. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. SamL. Youseff, and D. Zagorod-

nov. The Eucalyptus Open-source Cloud-computing SystemEEE International Sym-
posium on Cluster Computing and the Grid, 2009.ht t p: / / open. eucal ypt us. com
docunent s/ ccgri d2009. pdf .

Protocol Buffers. Google's Data Interchange Fornatt p: / / code. googl e. cont p/

pr ot obuf .

M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: ScalaCross-Language Services Im-
plementation, Apr. 2007. Facebook White Paper.

D. Thomas and D. Hansson. Agile Web Development withsR8&cond Edition. 2006.

