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Abstract. In this paper, we present Active Cloud DB, an open source Software-
as-a-Service (SaaS) application that allows for RESTful access to cloud-based
distributed datastore technologies that implement the Google Datastore API. We
implement Active Cloud DB as a Google App Engine applicationthat we employ
to expose the Google App Engine Datastore API to developers –for use with any
language and framework. We evaluate this SaaS on both GoogleApp Engine
and over AppScale, the open-source implementation of Google App Engine that
enables Google App Engine applications to execute on cloud infrastructures with-
out modification. As part of this work, we extend Active CloudDB with simple
caching support to improve the performance of datastore access and evaluate our
technique with and without this support. We also make use of this support within
multiple client-facing prototypes (e.g. Ruby on Rails, Python through Django) to
show the ease-of-use and applicability of our contributionto other web develop-
ment environments.
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1 Introduction

Distributed key-value datastores have become popular in recent years due to their sim-
plicity, ability to scale within web applications and services usage models, and their
ability to grow and shrink in response to demand. As a result of their success in non-
trivial and highly visible cloud systems for web services, specifically BigTable [5]
within Google, Dynamo [1] within Amazon, and Cassandra [4] within Facebook, a
wide variety of open-source variations of distributed key-value stores have emerged
and are gaining widespread use.

However, these datastores implement a wide variety of features that make them
difficult for prospective users to compare. For example, there are differences in query
languages, topology (master/slave vs peer-to-peer), consistency policies, and end-user
library interfaces. As a result, we and others have investigated a single framework with
which such systems can be compared [6, 3, 7].

The Yahoo! Cloud Serving Benchmark (YCSB) provides a database interface and
a synthetic workload executor for exercising the DBs that the authors attach to the
interface. The system measures the response time of primitive operations in a workload
between a thread on one machine and the datastore on another.The authors support
four datastores: HBase, Cassandra, PNUTS (Yahoo’s proprietary key-value store), and
Sharded MySQL.
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AppScale is an open-source implementation of the Google AppEngine cloud plat-
form. It employs the Google Datastore API as a unifying API through which any datas-
tore can be “plugged in”. AppScale automates deployment andsimplifies configuation
of datastores that implement the API and faciliates their comparison and evaluation on
end-to-end performance using real programs (Google App Engine applications). App-
Scale currently supports HBase, Hypertable, Cassandra, Voldemort, MongoDB, Mem-
cacheDB, Scalaris, and MySQL Cluster datastores. One limitation of this system is that
only applications written in the languages that Google App Engine supports (currently
Python and Java) execute over AppScale and thus are able to make use of the AppScale
datastores. YCSB does not support applications at all, but instead spawns requests be-
tween the server and the datastore for the sole purpose of measuring datastore response
time and throughput.

In this work, we address the problem of how to facilitate access to these datastores
via any programming language and framework using a database-agnostic interface to
key-value datastores. To enable this, we present the designand implementation of a
Sofware-as-a-Service (SaaS) component called Active Cloud DB (in the spirit of Ruby’s
ActiveRecord). Active Cloud DB is a Google App Engine application that executes
over Google App Engine or AppScale that provides the glue between an application
and scalable cloud database systems (AppScale’s datastores and Google’s BigTable).
Active Cloud DB is easy to integrate into language and framework front-ends and also
provides the functionality to move data between distributed datastores without manual
configuration, manual deployment, or knowledge about the datastore implementation.

We employ this Software-as-a-Service to implement supportfor various web-based
language frameworks, including Ruby over the Sinatra and Rails web frameworks as
well as Python over the Django and web.py web frameworks. We evaluate the per-
formance of Active Cloud DB using the Cassandra and MemcacheDB datastores to
investigate the performance differences of the primitive datastore operations. Finally,
we extend Active Cloud DB with a simple data caching scheme mechanism that also
can be used by any Google App Engine application, and evaluate its impact.

In the sections that follow, we overview AppScale, the implementation and evalua-
tion framework we use to investigate the performance of our approach. We then describe
Active Cloud DB and the caching support with which we extend it. Next, we describe
four proof of concepts we have developed that make use of Active Cloud DB, evaluate
this Software-as-a-Service, and conclude.

2 AppScale

AppScale is a robust, open source implementation of the Google App Engine APIs that
executes over private virtualized cluster resources and cloud infrastructures including
Amazon Web Services and Eucalyptus [10]. Users can execute their existing Google
App Engine applications over AppScale without modification. [6] describes the design
and implementation of AppScale. We summarize the key components of AppScale that
impact our description and implementation of Active Cloud DB.

AppScale is an extension of the non-scalable software development kit that Google
makes available for testing and debugging applications. This component is called the
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AppServer within AppScale. AppScale integrates open-source datastore systems as well
as new software components that faciliate configuration, one-button deployment, and
distributed system support for scalable, multi-application, multi-user cloud operation.

The AppServer decouples the APIs from their non-scalable SDK implementations
and replaces them distributed and scalable versions – for either Python or Java. This
allows Google App Engine applications to be written in either language. AppScale im-
plements front-ends for both languages in this way.

Google App Engine applications write to a key-value datastore using the following
Google Datastore API functions:

– Put(k, v): Add keyk and valuev to table; creating a table if needed
– Get(k): Return value associated with keyk

– Delete(k): Remove keyk and its value
– Query(q): Perform queryq using the Google query language (GQL) on a single table,

returning a list of values
– Count(t): For a given query, returns the size of the list of values returned

Google App Engine applications employ this API to save and retrieve data. The
AppServer (and Google App Engine SDK) encodes each request using a Google Pro-
tocol Buffer [11]. Protocol Buffers facilitate fast encoding and decoding times and pro-
vide a highly compact encoding. As a result, they are much more efficient for data seri-
alization than other approaches. The AppServer sends and receives Protocol Buffers to
a Protocol Buffer Server in AppScale over encrypted sockets. All details about the use
of Protocol Buffers and the back-end datastore (in Google orin AppScale) is abstracted
away from Google App Engine applications using this API.

The AppScale Protocol Buffer Server implements all of the libraries necessary to
interact with each of the datastores that are plugged into AppScale. Since this server
interacts with all front-ends, it must be very fast and scalable so as to not negatively
impact end-to-end application performance. AppScale places a Protocol Buffer Server
on each node to which datastore reads and writes can be sent (i.e. the datastore entry
points) by applications. For master-slave datastores, theserver runs on the master node.
For peer-to-peer datastores, the server runs on all nodes.

AppScale currently implements eight popular open-source datastore technologies.
They are Cassandra, HBase, Hypertable, MemcacheDB, MongoDB, Voldemort, Scalaris,
and MySQL Cluster (with a key-value data layout). Each of these technologies vary in
their maturity, eventual/strong consistency, performance, fault tolerance support, imple-
mentation and interface languages, topologies, and data layout, among other character-
istics. [3] presents the details on each of these datastores.

Active Cloud DB and our caching support are datastore-agnostic. These extensions
thus work for all of the AppScale datastores (current and future) and for Google App
Engine applications deployed to Google’s resources. In ourevaluation, we choose two
representative datastores to collect empirical results for: Cassandra and MemcacheDB.
We provide a brief overview of each.

Cassandra. Developed and released as open source by Facebook in 2008, Cassandra
is a hybrid between Google’s BigTable and Amazon’s Dynamo [4]. It incorporates the
flexible column layout from the former and the peer-to-peer node topology from the
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latter. Its peer-to-peer layout allows the system to avoid having a single point of failure
as well as be resiliant to network partitions. Users specifythe level of consistency re-
quired on each read or write operation. This allows read and write requests to be sent to
any node in the system, allowing for greater throughput. However, this results in data
being “eventually-consistent.” Specifically, this means that a write to one node will take
some time to propagate throughout the system and that application designers need to
keep this in mind. Cassandra exposes a Thrift [12] API through which applications can
interact with in many popular programming languages.

MemcacheDB. Developed and released as open source by Steve Chu in 2007, Mem-
cacheDB [9] is a modification of the popular open source distributed caching service
memcached. Buildling upon thememcached API, MemcacheDB adds replication
and persistence using Berkeley DB [2] as a backing store. MemcacheDB provides a
key-value datastore with a master-slave node layout. Readscan be directed to any node
in the system, while writes can only be directed to the masternode. This allows for
strong data consistency but also multiple points of access for read requests. As Mem-
cacheDB is a master-slave datastore, the master node in the system is the single point
of failure. MemcacheDB can use any library available formemcached, allowing for
native access via many programming languages.

3 Active Cloud DB

We next present Active Cloud DB, a Software-as-a-Service that executes over App-
Scale to expose datastores to cloud clients. Clients are web-based applications and soft-
ware implemented using languages and web frameworks other than those supported
by Google App Engine. Active Cloud DB exports RESTful [8] access to cloud-based
distributed datastore technologies automatically and scalably.

Active Cloud DB is implemented as a Google App Engine application that executes
over AppScale (and thus Google App Engine). Its implementation requires no modifica-
tion to either AppScale or Google App Engine. To enable scalability and low response
times, we also extend Active Cloud DB with datastore cachingsupport to improve the
performance of datastore access by applications. We first overview Active Cloud DB
and then describe the design and implementation of our caching scheme.

3.1 Implementation

Our goal with Active Cloud DB is to remove the limitation imposed by AppScale and
Google App Engine that requires that applications be written in Python or Java to gain
access to the functionality of the distributed datastore back-ends that these cloud fabrics
implement. This is particularly important for Google App Engine, since not only must
applications be written in these languages but they must employ the web frameworks
specified by Google using a restricted set of “whitelisted” libraries. AppScale removes
this constraint but currently still only supports Python and Java Google App Engine
applications.

Active Cloud DB is a Google App Engine application that runs over AppScale that
exposes an RESTful API to the underlying datastore. Internally, Active Cloud DB al-
lows for objects to be created with a given name (key) and one string within (its value).
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This can be trivially extended to allow for all data types, but this work considers only
string-type keys and values. It can make requests either to AppServers directly or to the
AppLoadBalancer in the system, who can intelligently routetraffic to AppServers but
can result in higher latency (as it is an extra hop on all requests).

Active Cloud DB exposes a single URL route in the typical RESTful fashion.
Specifically, the route (namedresources) and supports the standard Google App
Engine datastore functions depending which HTTP Method is used. If the route is
called with theGET method with no parameters (e.g., simply/resources), a data-
store query is performed, returning all the keys in the datastore and their associated
values. If the route is called with theGET method with a single parameter (e.g.,
/resources/foo), then a key-lookup is performed on that parameter, returning
the associated value (in our example this would look up the value associated with
the keyfoo). If the route is called with thePOST method with two paramters (e.g.,
/resources/foo/bar), then a put operation is performed with the given key and
value (in our example this would store the keyfoowith valuebar). Finally, if the route
is called with theDELETEmethod with a single parameter (e.g.,/resources/foo),
then the key and associated value are deleted from the system(in our example this
would delete the keyfoo and its associated value).

3.2 Integration

To communicate with Active Cloud DB, developers implement the client side-interface.
We have done this for four popular web frameworks, Rails and Sinatra for Ruby, and
Django and web.py for Python. In Rails and Django, we remove the built-in database
abstractions and in all add in a wrapper for communicating with Active Cloud DB. It
abstracts all remote communication logic and error handling such that the application
developer need not be aware that the database is located remotely. In all frameworks we
use the default templating library for creating the presentation layer of the applications.

The four prototype applications with which we make use of Active Cloud DB im-
plement a simple bookstore application (inspired by the application given in [13]). To
access Active Cloud DB, the application makes a RESTful request with the key and
value to put, or the key to get or delete. The bookstore application maintains a special
key containing a list of all the books in the datastore, whichis maintained whenever
books are added or removed. When a book is added, we change this special key ac-
cordingly and then add an entry to the datastore with the book’s name (the key) and a
summary of the book’s contents for users to view (the value).When users wish to view
all books in the bookstore, we access the special key to get a list of all the books, and
for each book (key), we return the corresponding book information (its value).

In lieu of using this special key, we could have simply performed a database query,
but previous work [3] has found that the query operation tends to take much longer than
the get operation once a non-trivial number of keys are in thedatastore.

3.3 Caching Support

To reduce latency and improve throughput to/from the datastores in AppScale and
Google’s hosting environment, we provide a transparent data caching layer. To enable
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this, we leverage the Google Memcache API (similar tomemcached). The API caches
web service data and provides a least-recently-used replacement policy.

To efficiently cache data, we combine two caching strategies, write-through and
generational. For basic operations (get, put, delete) we employ awrite-through caching
strategy. With this strategy all put operations are writtento the datastore as well as to
the cache. In doing so, subsequent requests are likely to be served directly from cache,
avoiding any datastore interaction.

Efficiently caching query operations is more complex than basic operations because
query results can contain multiple data items. Furthermore, when a particular data item
is updated one must expire all query results which contain that item so that stale data is
not returned. In order to ensure that this property is maintained we utilize agenerational
caching strategy. In essence, a generation value is maintained for the data. The gener-
ation value is included in the cache key for all query operations. Hence, by changing
the generation value all prior cached results are implicitly expired as they can never be
accessed again.

Specifically, the operations are:

– Get(k): Return value associated with keyk. If the value was not in the cache, store it
for future accesses.

– Put(k, v): Add keyk and valuev to table and the cache. Increment the generation
value.

– Delete(k): Remove keyk and its value from the table and the cache. Increment the
generation value.

– Query(q): Perform queryq using the Google Query Language (GQL) on a single ta-
ble, returning a list of values. Store the result in the cachewith the current generation
number for future queries.

– Count(t): Acquire the query data via the new query technique, and return the size of
the list of values found.

4 Evaluation

We next employ Active Cloud DB over AppScale to evaluate the performance charac-
teristics of the various supported datastores. We begin by describing our methodology
and then present our results.

4.1 Methodology

For our experiments, we measure the performance of the primitive operations per-
formed in bulk and as part of an overall workload. In both scenarios, this is done over
two back-end AppScale datastores, Cassandra version 0.5.0and MemcacheDB version
1.2.1-Beta. For the first set of experiments, we fill a table ineach database with 1000
items and perform the get, put, query, and delete operations. To provide a baseline mea-
surement we also perform a no-op operation which simply returns and performs no
back-end processing. We invoke each operation 1000 times (100 times for query since
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it takes significantly longer than the others). A query retrieves all 1000 items from the
datastore.

For each experiment, we access Active Cloud DB using a machine on the same
network. Our measurements are of round-trip time to/from the AppServer as well as
all database activity. For each experiment, there are nine concurrent threads that each
perform all of the operations and record the times for each. We consider multiple static
configurations of the AppScale cloud that consists of 4, 8, 16, 32, 64, and 96 nodes.
On each node, AppScale runs a Database Slave/Peer, a Protocol Buffer Server, and
an AppServer. Each thread accesses a single AppServer, so nine threads are in use
in our setting. For each configuration, there is also a head node that implements the
AppController and the Database Master if there is one (otherwise it is a Database Peer).

The second set of experiments test the performance of the primitive operations of
the system when performed as part of an overall workload. Here, the number of nodes
is constrained to 16 nodes (due to space limitations) and 10000 random operations
are performed with a 50/30/20 get/put/query ratio. Once an operation is selected, nine
concurrent threads perform the operation and access their corresponding AppServers.
We intentionally perform the operation on a single key in thedatastore in order to
maximize the amount of contention in the system.

As both of the datastores here have a number of settings that can be used, we con-
figure both Cassandra and MemcacheDB in a particular way throughout AppScale de-
ployments. While Cassandra allows the user to specify the consistency requirements on
all operations, we set it to use inconsistent reads and writes: only one node in the sys-
tem is needed to participate in these operations. Conversely, in MemcacheDB, we direct
all reads and writes to the master node in the system. While itdoes offer the ability to
read from any database node, these initial tests access onlythe master node and use the
replicas for data backup. Current work is underway to expandAppScale to read from
any database node in the system.

4.2 Results

We first present results for web application response time between Active Cloud DB
and the datastores. Response time includes the round-trip time between Active Cloud
DB and datastore including the processing overhead of the Protocol Buffer Server.

Figure 1 displays results for the get, put, and delete operations. The left graph shows
the performance of the get operation. The additional entry points for Cassandra allows
it to process reads faster than MemcacheDB. Additionally, varying the number of nodes
in the system does not have a significant impact on the performance of the get opera-
tion. With caching, there is an improvement in performance for both Cassandra and
MemcacheDB. This is because write-through caching leads tocache hits for all but the
first event and cache access is significantly faster than datastore access.

The right graph shows the performance of the put operation. As was the case in [3],
the increased number of entry points for Cassandra allow it to process writes faster than
MemcacheDB. The reduced consistency requirements also allow for faster writes in
Cassandra. Like in the case of the get operation, we see that the performance does not
drastically change in either direction for either datastore with respect to the number of
nodes in the system. We see the same trends occurring for the same datastores when
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Fig. 1. Average round-trip time for get (left), put (right), and delete (bottom) operations under a
load of 9 concurrent threads for a range of different AppScale cloud sizes (node count).

caching is employed, and about the same performance for a datastore regardless of
whether the cache is employed or not. This shows that the overhead of performing
caching is negligible with respect to the overall time of theoperation. The bottom graph
shows the performance of the delete operation. Deletes perform similarly to puts for
both datastores as well as with and without caching.

Figure 2 shows the performance of the query operation. This operation is to be the
slowest in the system since it operates on an entire table andreturns all the keys instead
of operating on a single key. For our experiments a query operation returns all 1000
items in the datastore, and we see that having more entry points negatively impacts the
datastore’s ability to return all the items for a given table. This impact is consistent
across the various node deployments, with Cassandra consistently performing worse
than MemcacheDB.

Employing the caching scheme negates this difference sinceall reads (except for the
first) access the cache instead of the datastore. This yieldsresults and conclusions very
similar to that for the get operation, but with a degraded performance due to the fact that
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Fig. 2. Average time for query operation for different node configurations and 9 concurrent
threads.

our caching scheme must marshal and un-marshal the data whencaching it. Therefore,
un-marshalling all 1000 items in the datastore constitutesthe difference between these
operations. Similarly to the get operation, this speedup only applies without writes: a
single write causes performance to degrade for the next read.

We next consider a second workload. Figure 3 shows the performance of the system
under a 50/30/20 get/put/query workload across 16 nodes. All operations perform faster
than in the previous experiments, as this workload is performed on an initially empty
database. However, the same trends from before are preserved in this workload analy-
sis. Get operations are still faster for Cassandra than MemcacheDB, but now both are
significantly slower than their cached equivalents. This islikely due to the substantially
smaller amount of data in memcached, allowing for much faster read access. As was
the case in the previous experiments, write performance is roughly the same whether
or not caching is employed. Finally, query performance is substantially better than in
the previous experiments. This is to be expected since the database has substantially
less information in it than in the previous experiments. Caching the data has less of an
impact here since the non-cached versions perform much better than in the previous
experiments.

Finally, we experiment with executing Active Cloud DB on Google’s resources. Ta-
ble 1 shows the average response time using a load of three threads as opposed to nine
for our original first workload (in-order, repeated operation execution). Google contin-
uously killed our 9-thread even though we were within our quota. We also summarize
the AppScale results (the same as from the previous graphs using the 16-node configu-
ration). For this data, we include the no-op data which we didnot present in graph form.
Note that for experiments on Google’s resources, we have no control over the number
of nodes we have been allocated for our application.
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Fig. 3. Average round-trip time for get (left), put (right), and query (bottom) operations under
a load of 9 concurrent threads for a 50/30/20 get/put/query workload, run over 16 nodes. The
legend is the same as that used for Figure 1 and Figure 2.

5 Conclusion

We present Active Cloud DB, a Software-as-a-Service that runs over the Google App
Engine cloud. Active Cloud DB is a Google App Engine application that executes
over Google App Engine or over its open-source counterpart,AppScale. It exposes
the Google Datastore API via REST to other languages and frameworks. We evalu-
ate its use within Google and AppScale and present a number ofproof of concept
applications that make use of the interface to access a wide range of diverse key-
value stores easily and automatically. We also extend Active Cloud DB with simple
caching support to significantly improve query performancefor Active Cloud DB and
other Google App Engine applications that execute using an AppScale cloud. The
proof of concept applications, AppScale, and Active Cloud DB, can all be found at
http://appscale.cs.ucsb.edu.
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Table 1. Average Active Cloud DB time for each operation using GoogleApp Engine (node
count unknown) and AppScale (16 nodes).

Google AppScale AppScale
App Engine 16 node 16 node

Medium CassandraMemcacheDB
Load Cache Cache

put 0.28 0.19 0.40
get 0.24 0.14 0.14

delete 0.28 0.18 0.14
query 2.62 0.26 0.26
no-op 0.18 0.14 0.14
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