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ABSTRACT
In this paper, we present CSPOT, a distributed runtime system
implementing a functions-as-service (FaaS) programming model
for the “Internet of Things” (IoT). With FaaS, developers express
arbitrary computations as simple functions that are automatically
invoked and managed by a cloud platform in response to events.
We extend this FaaS model so that it is suitable for use in all tiers
of scale for IoT – sensors, edge devices, and cloud – to facilitate
robust, portable, and low-latency IoT application development and
deployment.

To enable this, we combine the use of Linux containers and
namespaces for isolation and portability, an append-only object
store for robust persistence, and a causal event log for triggering
functions and tracking event dependencies. We present the design
and implementation of CSPOT, detail its abstractions and APIs,
and overview examples of its use. We empirically evaluate the
performance of CSPOT using different devices and applications
and find that it implements function invocation with significantly
lower latency than other FaaS offerings, while providing portability
across tiers and similar data durability characteristics.
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1 INTRODUCTION
The Internet of Things (IoT) is a rapidly emerging set of technologies
that is fueling remarkable innovation in which ordinary physical
objects in our environment are increasingly equipped with Internet
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connectivity, sensing, control, and computing capabilities. IoT ap-
plication designers commonly combine these devices with the scale,
services, and cost-effectiveness of cloud computing to implement
IoT applications. However, at present, the heterogeneous (in terms
of hardware, software, and APIs), asynchronous, highly scalable,
dynamically changing, and geographically distributed nature of
IoT-cloud applications, makes their infrastructure complex and dif-
ficult to provision, program, and optimize for high performance,
energy efficiency, and scale.

One approach to taming this complexity goes by the moniker
of “Serverless computing” (also known as Functions-as-a-Service
(FaaS)) [6, 7, 17, 41] 1. AmazonWeb Services (AWS) released the first
commercially available FaaS in 2014 called AWS Lambda [7]. The
platform was originally developed to enable inexpensive and signif-
icantly simpler development and deployment of scalable, request-
triggered web services and microservices [8, 9]. Given its suc-
cess to date, other public cloud providers and open source com-
munities have released FaaS platforms with similar functional-
ity [13, 39, 45, 47].

FaaS developers structure their applications as simple, transient,
stateless functions that access cloud services for their functionality.
They upload them to a FaaS platform,which invokes the functions in
response to specified system-wide events (e.g. storage updates, API
requests, notifications, messages received, custom events, etc.). To
do so, the platform automatically configures and provisions isolated
execution environments (e.g. Linux containers [83]) on-demand.
Users pay only for the resources and services their functions use
during execution (and not for multiple virtualized servers). As a
result, a FaaS web service is often easier to develop and operate.
Because Linux containers typically provision more rapidly than vir-
tual machines, FaaS applications also typically leverage autoscaling
more efficiently than their virtualized server counterparts.

The event-driven programming style, fine-grained costing, easy
integration of cloud services, and support for multiple high-level
languages, makes FaaS attractive to IoT developers who plan to use a
cloud to host their application backends. IoT applications are often
event-driven (devices trigger computation, communication, and
storage events), have unpredictable execution profiles (requiring
efficient autoscaling), and perform a variety of data processing and
analytics (which clouds increasingly export as managed services).
To capitalize on this interest and potential fit of FaaS for IoT, and
to reduce the response latency associated with using the public
cloud, public cloud providers have begun to offer restricted versions
of their FaaS platforms for “edge” servers and devices, i.e. remote
compute and storage resources located near and directly connected

1FaaS is synonymous with the term “serverless” because the FaaS platform automati-
cally configures andmanages the execution environment of functions and links them to
cloud services, precluding the need for FaaS developers to provision servers explicitly
to do so.
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to IoT devices and sensors [24, 32, 35, 81, 87]. Example public cloud
offerings include AWS Greengrass [2, 4] and Azure Iot Edge [65, 66]

To use these edge systems however, IoT applications must over-
come multiple technology impediments not common to cloud-
hosted web services. Specifically, IoT applications must be able
to operate across a wide spectrum of computing devices, capabil-
ities, and scales, from simple microcontrollers with kilobytes of
memory and no virtualization, to privately-managed data centers,
to public clouds supporting hundreds of different APIs and services.
In addition, existing FaaS-based edge platforms (including AWS
Greengrass and Azure IoT Edge), limit what operations are per-
formed at the edge, fail when the edge is unable to reach the public
cloud (a common scenario in IoT), and require that applications
integrate a number of disparate programming models (e.g. publish-
subscribe, embedded OSs, cloud SDKs, and FaaS) [10, 20]. Finally, as
Hellerstein et al point out, FaaS itself is not a distributed computing
technology, lacking a messaging capability and any way to exploit
data locality [41] which IoT applications increasingly require. Thus,
while FaaS is attractive from a cost and efficiency perspective, it
currently does little to ameliorate other complexities facing reliable
and pervasive IoT application deployment.

At the same time, low-power microntroller-based devices are
becoming multi-functional. As a result, devices can now host ser-
vices directly (rather than relying on cloud-hosted or edge-hosted
proxies) leading to a new “Devices-as-services” architecture for
IoT [14]. Under this approach (unlike current IoT-cloud approaches)
it should be possible to write a single service once and then host
it in the cloud, on the edge, or on a device, without modification.
That is, resource capacity (and not programming heterogeneity
and complexity) dictate hosting decisions exclusively in a Devices-
as-services architecture. However, at present, no single runtime
system or service implementation is capable of hosting services at
device scale, edge scale, and cloud scale.

In this paper, we investigate an alternative approach for bringing
FaaS to IoT that attempts to address these challenges. In particular,
we design and develop a new IoT programming model (based on
FaaS) and a distributed runtime system that enables code portability
across all scales of IoT (sensors, edge, and cloud). The system, called
CSPOT, also integrates a number of features that enable efficient,
low-latency execution across IoT tiers, application robustness, AWS
Lambda compatibility, capability-based security, and record and
replay for application debugging and analysis 2.

The research contributions that we make to enable this approach
are summarized as follows.
• We explore the feasibility of a single FaaS for IoT programming
that makes multi-language program components portable across
all platform scales – from microcontroller devices through the
edge to the public clouds – in an IoT setting. Thus, in a CSPOT
deployment, it is possible to move the computation to the data, or
the data to the computation (which ever is most efficient) without
recoding the application or its constituent software components.

• We extend FaaS with support for geo-distributed execution and
dependency tracking. CSPOT storage is append-only (i.e. ver-
sioned) [52] for data durability and robustness in a distributed
execution setting. No CSPOT function can be triggered without

2CSPOT is available as open source from https://github.com/MAYHEM-Lab/cspot.git.

the generation of some concomitant datum in persistent storage.
In addition, CSPOT runtime system is log-based [79], and all log
records carry an identifier specifying the event that triggered the
function. These features together make it possible to determine
causal ordering of events efficiently and in a way that does not
rely on statistical sampling. For scalable FaaS programs, partic-
ularly in an IoT setting where there may be many hundreds or
thousands of sensors and actuators operating asynchronously
and, thereby triggering a wide variety of analytical and control
computations, determining the root cause of an error or unex-
pected program state is critical. The CSPOT abstractions are
designed with this capability in mind.

• We define new FaaS abstractions for messaging and locality. Auto-
matically garbage-collected, append-only storage objects (called
WooFs) are addressed by Universal Resource Identifiers (URIs)
and any access to a WooF across locality regions (called names-
paces) is via a message. The combination of distributed, append-
only storage and global causal event tracking makes it possible
to implement useful debugging and data repair capabilities via
targeted execution replay.

• We leverage emerging cloud and operating system technologies
to enable isolated portability and low latency execution (key for
near real-time, data-driven actuation, control, and automation
at the edge). CSPOT couples Linux containers [83] for isolation
(where available) with memory-mapped storage to support ap-
plication data structures. The result is that CSPOT can dispatch
isolated FaaS functions with latencies that are two orders of
magnitude lower than current commercial cloud offerings.

We empirically evaluate CSPOT using a wide range of devices
and performance metrics. In addition, we evaluate (i) persistent
data repair and function replay, (ii) AWS Lambda and S3 Python
compatibility, and (iii) capability-based security. Moreover, we com-
pare CSPOT performance to that of existing, production-quality,
alternatives: AWS Lambda and Greengrass and Microsoft Azure IoT
Edge. Our results show that, relative to extant FaaS systems, CSPOT
improves the response time and facilitates low-overhead end-to-
end performance for IoT benchmarks and applications across IoT
tiers/scales. To our knowledge, no other technology has taken the
CSPOT approach of bringing the cloud to IoT rather than IoT to
the cloud. As a result, our work addresses many of the complexity,
performance (in terms of latency), and forensic (in terms of causal
dependency tracking) challenges not addressed by alternative ap-
proaches.

2 CSPOT ABSTRACTIONS
Our CSPOT design is motivated by several observations that we
have made while building and deploying IoT applications “in the
wild”. These applications are long-lived, operate in remote, unat-
tended locations, and perform sensing, data production, processing,
and analysis, and data-driven operations for surrounding systems.
Many of the underlying devices rely on battery power or alterna-
tive/intermittent energy sources, have restricted or intermittent
access to computational and/or network infrastructure, and experi-
ence failures (hardware and software) that result in data loss and
corruption. To extend their capability, longevity, and robustness,
the applications increasingly rely on more capable, co-located edge
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systems for computational, communications, storage, and analytics
offloading as well as for other proxy services. Low-latency access
to these services is critical to enable the near real-time, data-driven
alerting, actuation, control, and automation of physical, mechanical,
and digital systems that these applications perform.

We find that most of these applications are modular and event-
driven (i.e. operations execute in response to state changes and
data arrival), making them suitable to the FaaS programming and
execution model. However, FaaS systems today are not distributed,
restrict both the type and scale of applications, and provide no
automated, end-to-end error tracking or failure recovery. Further,
they provide limited security mechanisms (if any) and incorpo-
rate heterogeneous devices (edge, sensors, microcontrollers) using
disparate technologies (different operating systems, protocols, soft-
ware development kits (SDKs), and FaaS services) – making them
challenging to program, deploy, debug, and maintain. Extant FaaS
systems for IoT also require that functions communicate global
state through remote, location-concealed data services. This limi-
tation prevents intelligent code placement and the exploitation of
data locality (i.e. moving the code to the data and/or the data to
the code) and becomes a bottleneck that limits performance and
scale [16, 40, 41, 49].

CSPOT addresses these limitations via a portable, high-perform-
ance, robust runtime system capable of running on all IoT tiers –
from sensors to public clouds – so that code and data can move be-
tween these infrastructures without the need for transformation or
recoding. We also design CSPOT to be extensible to efficiently sup-
port key IoT application services, including causal event tracking,
data repair, function replay, device/service access control, and API-
compatibility with popular cloud offerings. To enable this, CSPOT
defines, combines, and exports three abstractions:

• Wide Area Objects of Functions (WooFs), which are append-
only memory objects with which developers persist state,

• namespaces, which root separate, hierarchical, declarative re-
gions that provide a scope for WooFs, and

• event handlers, which developers use to define functions that
are triggered when a data item is appended to a WooF.

The CSPOT programming model is event-driven; events are trig-
gered by state updates to WooFs. The only way to persist data
beyond handler execution is via WooF updates. Thus a CSPOT
application consists of event-triggered computations that may gen-
erate volatile local state but that result in updates to application
“variables”, which are global to the application, have append-only
semantics (i.e. multiple versions), and are persistent.

This “insistence on persistence” with versioning is motivated
by the observation that at the device tier (and to a lesser extent
the edge tier), computation, communication, and storage capabil-
ities are far less reliable than in less hostile environments. Thus,
CSPOT abstractions mandate that data persist after all meaningful
computations so that it can be processed when temporary outages
have been resolved. Our work focuses on making (as discussed in
Section 3 more completely) FaaS persistence and communication
“fast” and to ensure low latency response,application scalability,
and effective management of scarce resources. CSPOT uses append-
only semantics for its persistent data structures and distributed
log to handle eventual consistency robustly and efficiently as is

done in other distributed systems (e.g. HDFS, [34], SafeStore [52],
Chariots [73], Corfu [15], etc.), by prioritizing high availability and
partition tolerance over consistency [25].

Also unique to CSPOT, each namespace has a location (e.g. a host
machine), which gives application developers control over code and
data locality. Developers currently define namespaces via Universal
Resource Identifiers (URIs) which map to IP addresses (we currently
do not use DNS (but can) given its infrequent use in the remote IoT
deployments that we consider). URIs (and WooF names) are posted
to a web site for lookup and use by clients (we are investigating
integration of a discovery service in CSPOT as part of future work).

EachWooF and handler identifies uniquely with a CSPOT names-
pace and namespaces cannot overlap. Each handler operates directly
onWooFs within its namespace only. Handlers are triggered when a
WooF is appended to by a handler. That is,CSPOT couples FaaS func-
tion invocation with persistent storage in a 1-to-1 correspondence
to aid debugging, profiling, and management of highly concurrent
IoT applications.

Communication between namespaces is performed via point-
to-point messages (direct socket connections) sent by a handler
in one namespace performing an update on a WooF encapsulated
in another namespace. This mechanism also makes it possible for
WooFs to be accessed (and thus to trigger computations) from
external processes, including non-CSPOT programs and services.

Within each namespace,CSPOT maintains an append-only, event
log of WooF updates. CSPOT uses this event log to trigger han-
dlers and to track causal dependencies within a CSPOT application
(across handlers). Causal dependencies can be used to facilitate
data replication, synchronization, root cause analysis, and replay
by CSPOT. The size of the event log is a tunable parameter.

Each WooF is logically also a log of append operations where
each element appended is an untyped memory region of fixed size.
The element size is set when a WooF is created. Each WooF append
returns a unique sequence number associated with the appended
element. All elements between the element most recently appended
and the “earliest” element in the history can be accessed (i.e. there
are no missing elements between elements that are present in the
WooF history). Thus CSPOT maintains a version history of fixed-
size for each persistent data structure, and each version is identified
via a unique ID. CSPOT ’s append-only semantics make data struc-
tures logically immutable [28, 52, 62, 79, 80] facilitating, among
other benefits, data durability, access/update efficiency, version
control, debugging and repair, and lineage/provenance tracking.
CSPOT garbage collects WooFs and logs by overwriting the oldest
elements (i.e. using a circular buffer).

The CSPOT API
The CSPOT API consists of a create operation that defines the
name, element size, and history length for each WooF, a put oper-
ation that appends an element to a WooF (returning its sequence
number), and a get operation that returns the element correspond-
ing to a sequence number. The API also includes operations that
allow a programmer to get the attributes associated with a WooF, to
delete a WooF, and to create and destroy namespaces and handler
resources. We omit the details of these latter operations for brevity
but document them in the open source repository.

WooFCreate() creates a WooF in the local namespace.
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WooFPut() causes the untyped memory pointed to by one of
its parameters to be appended to the specified WooF (i.e. it is a
“blob” store [54, 82] in which each blob has a fixed size). When
WooFPut() succeeds, the unique sequence number assigned to the
appended element is returned to the caller.

WooFPut() also takes the name of a handler as an optional
parameter that is the name of a handler binary located in the same
namespace as the WooF that CSPOT will invoke once the append
has been successfully completed. Thus data is always appended to a
WooF, but the programmer can determine when a handler should be
triggered as a result of the append. However there is no facility for
invoking a handler without appending to aWooF. In this wayCSPOT
maintains a 1-to-1 mapping of data persistence to computation, i.e.
every function invocation is unambiguously caused by a particular
WooF update (identified by sequence number).

A call toWooFGet() returns the element corresponding to the
sequence number that is optionally passed in as an argument (the
default is the latest version, i.e. the WooF tail). Note, again, that the
size of the memory region that WooFGet() writes is determined
by the element size specified when the WooF is created.

Handlers and Clients
The CSPOT API can be invoked either within handlers or from
“client” programs that are interacting with one or more CSPOT
applications. Each handler must have the following C-language
prototype. However, as we show in Section 6, we support handlers
written in other languages (e.g. Python) via C bindings. Other high-
level programming languages (e.g. those with managed runtimes)
can be supported in a similar way and we are considering such
extensions as part of future work.

int handler_function_name(WOOF ∗wf, ulong seq_no , void ∗ ptr );
handler_function_name is a legal C-language function name (i.e.
the handler that will be compiled as a C-language function having
these three arguments). The first parameter is a C-language pointer
to a structure defined by CSPOT for manipulating WooFs. The
second parameter is the sequence number that CSPOT assigned to
the WooF append. Note that the append occurs prior to handler
invocation. The third parameter is an “in” pointer that points to a
copy of untyped memory that has been appended. This memory
is logically immutable so a change by the handler to the memory
pointed to by the ptr function does not persist beyond the handler’s
execution lifetime. By convention, handlers return zero on success
and a negative value on failure.

In the current version of CSPOT, handlers should only persist
state via a call to WooFPut(). However, this restriction is not cur-
rently enforced so it is possible for them to make network connec-
tions to access outside services, some of which could also persist
application state.

Clients are programs written in any programming language that
use the CSPOT API. Logically, a call to a CSPOT API function from
a program that is not a handler results in a request to the WooF’s
namespace to perform the operation on behalf of the caller and to
return the results.

3 CSPOT IMPLEMENTATION
We implement CSPOT v1.0 using Linux memory-mapped files [84]
as the operating system storage abstraction forWooFs on all devices

that support Linux. We isolate function handlers as Linux processes
executing within a Docker v18.09 [27] container associated with
each namespace (each serviced by 1+ containers). Handler execu-
tion constitute “events” within the system. CSPOT triggers handler
execution via its event log. Autoscaling is controlled by throttling
invocations using a maximum concurrency level per namespace
(without prioritization). Developers can query the log to extract the
causal order of all events within a namespace for use as a debug-
ging aid. For cross namespace invocation, we use ZeroMQ [89] as
the messaging substrate and threads within the container to proxy
namespace-external operations.

WooFs
Each WooF is implemented as a separate memory-mapped Linux
file containing a typed header structure and space to contain some
number of fixed-sized elements. The header includes the local file
name of the WooF, element size, the number of elements that are
retained in the append history, and the current sequence number.

Each WooF keeps a circular buffer of appended elements. The
head and tail indices are stored in the header. The space for the
buffer is located immediately after the header in the memory-
mapped file.

Thus WooFs are self-describing in that all of the information
necessary to manipulate a WooF are contained in the WooF itself.
When aWooF is “opened”, its contents are mapped into the memory
space of the process opening the WooF as shared memory. Thus
multiple threads and, indeed, multiple processes can access a WooF
concurrently using the information contained in the WooF header.

To implement synchronization for internal operations, the WooF
header includes two Linux semaphores [59]. The first implements
mutual exclusion for operations like buffer head and tail index up-
date, sequence number assignments, etc. The second allows threads
to synchronize on the “tail” of theWooF so that when a new append
occurs, they can be activated. These semaphores are not exposed
through the CSPOT API, however, and are used strictly by the
runtime.

Handlers, Containers, and the Event Log
When CSPOT starts a namespace, it launches a Docker container for
the namespace, which shares the namespace directory in which all
WooFs and handlers for the namespace are located. Docker includes
an option to specify where, in the container’s directory structure, a
directory shared with the host must be located. By using the same
location within the container (e.g. “/CSPOT ”) the API can locate
the WooF and handlers within the container.

Each handler is compiled as a separate Linux executable program.
When an invocation of WooFPut() includes a handler name, the
API code appends the element specified in the call toWooFPut() to
the WooF and then appends an event record specifying the WooF,
the sequence number of the element that has been appended, and
the handler name to the CSPOT event log for the namespace.

The main process within the container spawns several threads
that synchronize on the tail of the event log in the namespace
using a semaphore in the event log header. These threads “claim”
events from the log by atomically appending a claim record for an
unclaimed event. They then call Linux fork() and exec() on the
handler binary. WhenWooFPut() is called from within a handler,

4



the sequence number of the caller is included in the event record
indicating that it is the “cause” of the handler firing. Thus the event
log that serves as the dispatchmechanism for handlers, also includes
the dependency information necessary to determine causal order.

To determine a global causal ordering, CSPOT includes a log-
merge tool chain that combines event logs from multiple names-
paces. It creates a single total order of events in which the causal
dependencies, both within and across namespaces, are correctly
represented. Multiple log merges produce the same causal order,
but may produce different total orders depending on namespace
merge order (unlike systems designed to produce a single total
order across logs [15, 73, 88] which is more costly).

CSPOT for Microcontrollers
Because microcontrollers typically do not support virtual memory,
the implementation of CSPOT for these systems does not rely on
memorymapped storage. Instead, we have developed amultitasking
system in which memory is addressed directly, but computations
can still be run in threads. The system uses setjmp and longjmp
primitives for stack manipulation. The CSPOT microcontroller sys-
tem is currently portable across the ARM, AVR, and Espressif mi-
crocontroller processors.

The CSPOT namespace server for microcontrollers implements
the same API semantics of the Linux implementation. However, all
handlers executing within a microcontroller are part of the same
trust domain due to a lack of memory isolation.We execute handlers
on different runtime stacks for resource isolation purposes.

A portion of the flash memory is used as the backing storage for
WooFs and namespace logs. To preserve the lifetime of the backing
flash memory, contents of WooFs are written back to non-volatile
storage at most every 2 seconds. As the controller also lacks a DMA
controller and the flash can only update whole sectors, the delayed
write back also benefits performance.

Finally, to save both memory space and porting effort, we imple-
ment cross-namespace messaging using the msgpack protocol [68].
Msgpack is similar in its data framing to ZeroMQ, and we imple-
ment the minimal functionality required for consistent messaging.

4 CSPOT SECURITY
For device authentication, we have developed capability-based se-
curity for CSPOT . Our approach is inspired by Macaroons [23] but
specifically designed for low-power device and edge implementa-
tions. Because CSPOT must run at all scales, and the security proto-
col is intrinsic to its function, we have developed this mechanism
to be computationally efficient, space efficient, and to allow secure
delegation of access policies in a way that does not require coordi-
nation messages between the principal and the delegate. As a result,
the CSPOT capability mechanism is suitable for implementation
on embedded systems and microcontrollers, where computational
load, radio activation, and storage usage must often be minimized
to save battery power.

Because TLS [78] and other public-key encryption systems are
computationally and space expensive, our system uses a capability
derivation [70] mechanism based on HMAC [53] cryptographic
hashing. When a device is commissioned (added to a deployment
through a manual registration process), we furnish it with a secret
“nonce” to use in generating digital signatures using HMAC.

Each time a resource is created (WooF, namespace, or handler)
the creating device creates and signs a capability by hashing the
capability and the nonce together. The capability describes the
access rights the holder of the capability (user) is entitled to exer-
cise. Each CSPOT message that operates initiated by the user on
a resource must include a capability that indicates that the sender
of the message is entitled to perform the operation. The message
receiver checks the validity of the capability by appending the
nonce to the capability, hashing the pair, and comparing it to the
signature carried in the capability. If the nonce remains secret, it is
cryptographically unlikely that the capability has been forged.

Thus the capability issuer (called the “server” in CSPOT par-
lance), which can be any CSPOT device including a microcontroller,
can verify any capability without storing a copy of it. Further,
CSPOT supports complex access policies using a “chain” of capabil-
ity derivations constructed via capability attenuations.

Specifically, CSPOT crafts a capability as part of the create API
for each resource type (namespace, WooF, and handler) granting all
possible access rights for the resource instance. CSPOT returns the
capability upon successful completion of the create operation to
the entity requesting creation of the resource (e.g. a CSPOT handler
or client). The entity then includes the capability in all subsequent
API calls (resource access requests, e.g. WooFPuts and WooFGets).

Any entity holding the capability can attenuate (i.e. “lower” the
permissions) by adding a new less powerful capability to the end
of a chain that has the root capability as its first element. It adds
an attenuation and cryptographically hashes the chain along with
the signature associated with the chain that does not include the
attenuation being added. It then replaces the signature for the
chain (including the new attenuation) with this hash. That is, the
chain only carries the last signature which comprises all previous
signatures but obscures them cryptographically. As a result, only
the holder of the nonce can reproduce the correct sequence of
signatures starting at the head of the chain.

WhenCSPOT is presentedwith a chain of capability attenuations,
it rehashes the root with the nonce to generate the signature that
was used from the root in conjunction with the first attenuation
to generate the signature carried with the first attenuation. It then
repeats the process (using the “current” signature and the next
attenuation to generate the next signature) until it reaches the end
of the chain. If at the end, the signatures match, the holder of the
nonce can assert that each successive attenuation (starting from
the root) is valid.

Thus it is possible for aCSPOT device to verify a chain of unforge-
able attenuations that has been correctly aggregated by any set of
participating devices. In particular, if the device and a delegated
policy engine exchange secrets during commissioning so that the
device and the engine can mutually authenticate, then the policy
engine can issue and manage attenuations on behalf of the device
that the device can always perform verification independently.

We perform two optimizations in this scheme. First, to prevent
repeated hashing operations associated with long chains, the de-
vice can “squash” a chain by simply issuing a separate capability
carrying the the permissions in the last attenuation. Secondly, it
is possible to merge separate HMAC hashes in a way that permits
fast verification. Thus it is possible to create attenuations for sets
of capabilities that were generated separately, thereby permitting
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arbitrary policy implementation. We plan to explore enriching this
security protocol and its optimization as part of future work.

Note that the currentCSPOT security mechanisms do not address
privacy intrinsically. In particular, CSPOT capabilities cannot be
forged but they can be stolen and the current CSPOT system does
not implement a notion of identity. We are also investigating these
important issues also as part of future work.

5 AN EXAMPLE CSPOT APPLICATION
We use CSPOT as part of an IoT system for agriculture, which
aids growers and farm managers in frost protection for crops. One
method of frost prevention uses large wind-generating fans to mix
warm air aloft with cold air near the ground. The fans are typically
propane or diesel powered, causing considerable expense (in terms
of fuel cost) and carbon emissions when they are in use. Thus
farmers would like to know, with a considerable degree of accuracy,
the temperature differential between the air at approximately 10
meters altitude and at 1 meter altitude and for many locations
(microclimates) in their growing blocks, so that they can more
precisely control fan use.

Current solutions to this problem rely on manual labor to drive
though the property reading fixed thermometers. This solution is
error prone and expensive since the labor force must work through
the night when frost is likely (at least in the locations we study).

Our IoT system consists of inexpensive, low power temperature
sensors deployed widely and at multiple altitudes across the farm.
The devices measure temperature information in real time, ana-
lyze it for the temperature gradients that indicate fan activation
is necessary, and monitor the temperature change caused by fan
activation to ensure efficacy.

Currently, at each measurement location, we deploy a Raspberry
Pi Zero with an attached temperature and humidity sensor. This
installation uses a battery and a small set of solar panels that charge
the battery during the day so that the device can run at night. During
the course of this project, we observed that the internal CPU tem-
perature, as reported by the on-board health-and-status interfaces
implemented by Raspbian [77] (a Linux variant for the Raspberry
Pi platform), is highly correlated with outdoor temperature.

Figure 1 shows time series traces for the outdoor temperature (as
measured by a commercial-grade meteorological station) and the
internal CPU temperature for a Raspberry Pi “Zero” [76] located
at one of our farm locations. The meteorological station measures
outdoor temperature at 10 meters and the Raspberry Pi (located in
a weatherproof container) is at a 1 meter altitude.

From the Figure (and a number of other experiments including
those that use commercially available meteorological data), it is
clear that outdoor temperature can be predicted from CPU temper-
ature. However, note that there are some discrepancies in shape
between the two curves. To generate an accurate prediction of
outdoor temperature, our IoT application smooths the CPU series
using Singular Spectrum Analysis (SSA [38]) and computes a linear
regression between the smoothed CPU series and the observed out-
door temperature. SSA requires a number of lags of autocorrelation
to use and a finite history. In Figure 1 the system chooses up to 12
lags (30 minutes) over a history of 24 measurements (2 hours). It re-
computes both the smoothed series and the regression coefficients
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Figure 1: Time series trace of outdoor temperature and CPU
temperature taken from an IoT deployment at our experi-
mental farm. The units of the y-axis are degrees Fahrenheit.
The sensor generates a measurement every 5 minutes.
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Figure 2: Time series trace of outdoor temperature, CPU tem-
perature, and predicted outdoor temperature taken from an
IoT deployment at our experimental farm. The units of the
y-axis are degrees Fahrenheit. The sensor generates a mea-
surement every 5 minutes.

using CSPOT handlers every time a new outdoor measurement
is posted to a WooF. Similarly, every time a new CPU tempera-
ture measurement is posted, it uses the most recently computed
regression coefficients to predict the outdoor temperature.

Figure 2 shows all three series: the CPU temperature series, the
outdoor measurement series, and the predicted outdoor tempera-
ture series. In this figure, the measurements are shown as individual
markers and the solid line shows the predictions. Despite some ob-
vious deviation, over this time period (24 hours), the mean absolute
error between the measured outdoor temperature and the predicted
outdoor temperature is 0.73 degrees Fahrenheit with a standard de-
viation of 0.61. We have shown in other work that this application
achieves average absolute errors of less than 1.5 degrees Fahrenheit
for a wide ranges of settings and devices, even when under load
(compute and transfer) [37]. By obviating the need to fit the Pi with
an external temperature sensor, we reduce power consumption and
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Figure 3: CSPOT Frost Prevention Application Structure

free up ports on the device for use by other sensors, e.g. to measure
other atmospheric phenomena, soil temperature and moisture, etc.

Figure 3 shows the structure of this CSPOT application. The
Raspberry Pi calls WooFPut() every time a CPU temperature mea-
surement is to be taken (every 5 minutes for the data in Figure 2).
Similarly, an agent that is polling a web site where the weather
station posts its data, executes aWooFPut() to store a raw outdoor
temperature measurement (every 5 minutes).

For data durability and overall robustness of the application,
we relay this initial data to two intermediary client applications
running on a wall-powered, edge device on-farm, which fetch the
data using WooFGet() and then forward it via WooFPut(). Note
that these intermediaries can query both source and target WooFs
to ensure that all sequence numbers are effectively forwarded.

The puts to the secondary data replica WooFs on the edge device
trigger a separate handler function. When data is put to the CPU
temperature replica WooF, the handler fetches the latest model
that has been fit using the most recent outdoor temperature data
and makes a prediction of outdoor temperature that it puts to the
prediction WooF. When new outdoor temperature data is put to
the temperature replication WooF, a triggered handler computes
a new prediction model using the latest outdoor temperature and
latest CPU temperature data. The model parameters are put to a
model WooF where they can be fetched by the CPU measurement
handler that is triggered for each new value appended to the CPU
replica WooF.

This application architecture is one of several different possible
architectures that would produce equivalent results. In particular,
it is possible to have puts to the initial data WooFs trigger model
generation and temperature prediction directly (i.e. without the use
intermediary clients and replica WooFs). CSPOT enables developers
to easily explore these alternatives in their applications.

However, from a deployment perspective, this architecture of-
fers several advantages. First, the sensors are located in a remote
location where network connectivity is both low quality and power
intensive over long distances. Thus, the first level WooFs are hosted
in an out-building near the sensors on an edge cloud that commu-
nicates with the sensors via a local, isolated network.

The replicaWooFs are hosted in a data center cloud that also runs
the intermediary client application components. The advantage of

this approach is that the edge cloud need not take responsibility
for delivering data to the data center cloud, thereby freeing cloud
resources to maximize the chance of correct data acquisition in
the face of a lossy network. Also, by replicating the data in the
data center cloud, it is possible for the edge cloud and the data
center cloud to operate independently, the latter using data that
is eventually-consistent. In this way, loss of network connectivity
to the edge cloud allows an outdoor temperature prediction using
out-of-date temperature information. Because outdoor temperature
does not fluctuate significantly on a 5 minute time scale, network
outages of a relatively short duration do not cause the application
to have to “fail stop.”

Note that this deployment architecture is not built into the ap-
plication itself. That is, the entire application can be hosted on the
edge cloud or (if the sensors can communicate with the wide-area
Internet) in a data center cloud. Note also that the intermediary
clients can be removed transparently. That is, if the WooFs at the
edge do puts in the handlers that are triggered, the “back end” of the
application does not need to change. Thus application structure can
be altered to fit different deployment, reliability, and power-usage
requirements while the application, itself, remains unchanged.

6 EVALUATION
We next empirically evaluate the performance profile of CSPOT
across a spectrum of scales using benchmarks and end-to-end IoT
deployments. We compare to CSPOT to FaaS-based edge systems
AWS Lambda (using CSPOT functions written in C and Python)
and Azure IoT Edge. We also investigate CSPOT extensibility via
novel IoT services for function replay and data repair. We then
evaluate the overhead of making CSPOT API-compatible with AWS
Lambda and AWS S3 (the Simple Storage Service [11]) so that any
AWS Lambda function written in Python (using S3 as its event
source) can execute over CSPOT without modification. Finally, we
assess and report on the performance impact of adding capability-
based security to CSPOT, combining virtualization mechanisms,
and CSPOT reliability.

To evaluate CSPOT performance, we benchmark the runtime
system across the hosts shown in Table 1. We synchronize each host
clock using ntp and the same time server for all experiments. The
deployment includes devices (sensors and single board computers),
an edge cloud, a private cloud, and a public cloud. The devices
are a microcontroller (esp8266) [30] and a Raspberry Pi Zero W
(RPi0) [76]; the edge cloud is an Intel NUC (NUC) [46]. All are
connected via WiFi. The edge cloud (the Intel NUC) and private
cloud runs Eucalyptus version 4.3 [31, 74]. We use an m5.xlarge
instance in AWS EC2 [72] in the us-east-1 region for the public
cloud component.

The private cloud is at UCSB in a secure and maintained data
center, is connected to the Internet via a layer-3 IP network, and is
used in production by approximately 1000 users per academic quar-
ter. We refer to it as the Campus private cloud in the tables. We did
not quiescent or otherwise isolate this private cloud infrastructure.

We deploy CSPOT and the benchmarks described herein on each
of these systems. Note that we use the same source code to compile
the benchmark binaries for each host. Thus the benchmarks detail
portable performance across all scales in a tiered IoT-cloud setting.
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Host Make and Model CPU Memory OS
device Espressif esp8266 80 MHz L106 RISC 112 KB CSPOT native

2018-06-27 Raspbian
RPi0 Raspberry Pi Zero W 1 GHz single Core BCM2835 512 MB Stretch Lite
NUC Intel NUC 6i7KYK 2.6 GHz Intel Core i7-6770HQ 32 GB CentOS 7.2
Campus private cloud cg1.4xlarge 2.1 GHz Xeon, 4 vCPU 8 GB CentOS 7.2
AWS EC2 m5.xlarge 2.5 GHz Xeon, 4 vCPU 16 GB CentOS 7.5

Table 1: Edge cloud testbed for CSPOT performance benchmarking

Host Mean (ms) std-dev (ms) 95% (ms)
esp8266 0.13, 38 0.015, 1.2 0.16, 40
RPi 0 37 6.8 48
NUC 4.0 0.63 4.9
NUC-VM 6.5 3.3 15
Campus private
cloud 5.0 1.6 7.0
AWS EC2 5.0 0.96 6.6
AWS Lambda 253 90 584

Table 2: Comparison of CSPOT function dispatch times
across different devices, edge, and cloud hosts. The statis-
tics are each computed from 100 function invocations. The
client andhandler arewritten inC for allCSPOT results. The
esp8266 results show statisticswithout andwithflushing, re-
spectively. For the AWS Lambda results, the handler is writ-
ten in Python (C is not directly supported) and executed on
AWSLambda in response to aDynamoDBwrite.We evaluate
a CSPOT Python handler later in this section.

We first benchmark CSPOT function invocation across tiers.
Table 2 shows the mean, standard deviation, and 95th percentile
function invocation performance for 100 function invocations. In
each data cell of the table, the units aremilliseconds. The benchmark
application runs a client on the same host where theWooF is located
causing the CSPOT to bypass the ZeroMQ messaging layer. The
client records the current time using the gettimeofday() system
call and then executes WooFPut() to put this time stamp into a
pre-installed WooF. The call to WooFPut() invokes a handler that
reads the first time stamp, calls gettimeofday(), and writes both
timestamps to a second WooF. After the experiment is complete,
the benchmark reads the sequence of timestamp pairs from the
second WooF. The difference between each pair of time stamps is
the time for handler invocation by the CSPOT runtime. Both the
client and handler are written in C.

Currently, CSPOT throttles handler invocation requests so that
no more than 5 are active at the same time (which is a tunable
parameter) per namespace container. In these experiments, we
deploy a single container per namespace.

The table shows two values for the microcontroller (esp8266)
results, separated by commas. Because the microcontroller does not
implement virtual memory, the CSPOT implementation must copy
the data from data memory to flash memory. To prevent undue wear
on the flash, CSPOT performs this flush operation asynchronously,
once every 2 seconds. Thus, the first number is the dispatch time
for a put that does not synchronize with the flash memory and
the second is the time necessary to synchronize the flash memory

before the handler is fired. Note also that the microcontroller imple-
mentation does not support multiple namespaces per device. That
is, all WooFs sited on a microcontroller must be part of the same
namespace which is also sited on that microcontroller.

The table also includes two CSPOT edge deployments. NUC-
VM is an edge cloud which uses KVM as a hypervisor to host the
namespace and the client in a virtual machine instance running
on an Intel NUC. NUC shows the performance CSPOT runtime
natively on the NUC (i.e. not in a virtual machine).

For comparative purposes, we have also implemented the bench-
mark in Python (AWS Lambda currently does not support handlers
written in C). The AWS Lambda results in the table use this bench-
mark and AWS Lambda for execution [7]. For this case, the handler
is triggered by an update to DynamoDB [3] (i.e. DynamoDB is the
event source). We evaluate benchmark performance for a handler
written in Python (using CSPOT ) later in this section.

The results in Table 2 indicate that CSPOT is able to achieve
high rates of invocation performance regardless of the language
used or the scale of the system on which it is deployed. Indeed,
all x86 deployments (NUC, NUC-VM, Campus cloud, and AWS
EC2) are two orders of magnitude faster than AWS Lambda. The
microcontroller is three orders of magnitude faster when it does not
flushWooF appends and one order or magnitude faster when it does.
Finally, the Raspberry Pi (with its slower BCM processor, memory
system, and storage) is one order of magnitude faster. In terms of
latency, CSPOT represents a substantial performance improvement
over AWS Lambda even when it is run in AWS EC2.

Also note that the NUC, campus private cloud, and EC2 invoca-
tion times are all similar. This is somewhat surprising given their
very different internal engineering and scale. Curiously, the mean
of the virtualized deployment on the NUC is higher than the others
due to the presence of more values near the tail of the distribution.
That is, in the virtualized case, the run time occasionally generates
a much longer execution time (as evidenced by the larger 95th
percentile) than in the non-virtualized case. It is not possible for
us to perform the virtualized versus non-virtualized experiment on
the campus cloud or EC2. However, the 95th percentile in each case
is much closer to the mean than in the NUC-VM case, indicating
that the effect is not as pronounced if present.

To make the comparison a fair one, for the Lambda benchmark,
we use a “warm start”. That is, we run the benchmark once to al-
low AWS to employ whatever state or container caching it might
implement internally and then run the benchmark immediately
thereafter. Note that CSPOT pre-allocates some number of con-
tainers for each namespace (each of which carries a throttle) upon
deployment so there is no “cold start” penalty. Timing data is taken
from the second run and for 100 invocations.
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Host Mean (ms) std-dev (ms) 95% (ms)
NUC 16 0.57 17
NUC-VM 18 1.2 19
Campus private
cloud 22 0.6 23
AWS EC2 18 3.1 23

Table 3: CSPOT function dispatch times for the edge and
cloud hosts when the handler is written in Python. The sta-
tistics are each computed from 100 function invocations.

Note also that because CSPOT uses a memory-mapped, append-
only log to trigger events, it captures captures timings and causal
dependencies automatically. That is, the runtime event log is the
“ground truth” for event invocations. In contrast, AWS Lambda
(and FaaS equivalents from Microsoft and Google) rely on external
sampling systems (e.g. AWS X-ray [12]) to capture event timing and
dependencies. Further, CSPOT carries these dependencies across
namespaces and, thus, across tiers and across clouds. Vendor FaaS
systems are only able to track dependencies within the confines
of each specific FaaS system – not across cloud services within a
single cloud or across clouds.

One difference between the AWS Lambda results and the CSPOT
results in Table 2 is that the Lambda benchmark is written in Python
while the CSPOT implementation uses C. To measure the effect of
this difference (C is widely believed to be significantly faster than
Python) we have developed a simple Python binding for CSPOT
handlers. Using this binding, we recoded the Lambda benchmark
for CSPOT in Python (the CSPOT runtime is still written in C).

Table 3 shows the CSPOT timings for the benchmark when coded
in Python using the x86 architectures. These results indicate that use
of the Python programming language in CSPOT, introduces only 3–
4x slowdown vs C for this benchmark. Thus, using Python, CSPOT
is one order of magnitude faster than AWS Lambda. Generally,
from the perspective of invocation latency, these results show that
CSPOT is high performance and lightweight across a spectrum of
platform scales.

6.1 Deployment Performance
While the data in the previous tables indicates that CSPOT is able
to achieve high performance as a FaaS system, we also evaluate its
performance within an IoT deployment. The application takes a
local time stamp and callsWooFPut() on a remote WooF to store
it. The handler for this WooF takes a local time stamp and calls
WooFPut() on a remote handler, and so on, until the end of the
“chain” of puts. In this way, the data is replicated on each WooF
before it is forwarded to the next. Thus, this application implements
“weak-chain” replication as described in [86] by van Renessee and
Schneider but without the “master” process that is responsible for
implementing chain reconfiguration.

Note that this communication pattern represents an alternative
form of eventually consistent storage to that typically offered in
most public clouds. Using the public clouds, data is transmitted from
the device (possibly through an edge device) to the public cloud for
storage, and that storage is replicated using eventual consistency.
As a result, there is no possibility to exploit geographic locality.
CSPOT allows the deployment designer to implement replication

throughout the device-edge-cloud hierarchy in a way that enables
both disconnected operation and locality-based optimizations.

Table 4 shows the end-to-end latencies in milliseconds for vari-
ous CSPOT deployments. It also shows the same benchmark results
when implemented using AWS Greengrass [2] and Microsoft Azure
IoT Edge [65]. Greengrass is an AWS service designed to enable
the AWS Lambda function execution in edge computing devices.
Greengrass for IoT consists of two complementary technologies:
The AWS IoT SDK [4] or FreeRTOS [19] for devices, and Green-
grass “Core” which implements the AWS Lambda runtime (using
Linux containers) for edge computing platforms. With Greengrass,
a device (using the AWS IoT SDK or FreeRTOS) publishes its data
via the MQTT [44] protocol.

In this experiment, we have implemented MQTT for the esp8266
according to the protocol specification in described in [63]. The
Core (which is available for different edge computing platforms)
subscribes to an MQTT event stream for the device and triggers
a Lambda function when each event arrives. That function can
then either invoke other Lambda functions locally within the core,
or access other AWS services in the public AWS cloud. Note that
AWS Lambda does not include a data persistence abstraction in
the edge so data that persists must be stored using one of AWS’s
many storage services, all of which are available only as public
cloud services. Thus, a Lambda function running in the Greengrass
Core at the edge, can only persist data in the AWS public cloud and
only when the edge and cloud are connected.

Azure IoT Edge also uses MQTT for data acquisition and can
trigger a function when data is published. Like CSPOT (but unlike
Greengrass), Azure IoT Edge includes a simple storage capability
at the edge. However this storage capability (i.e. an SQL database)
is not able to trigger arbitrary functions when updated. Further,
at the time of the investigation we were unable to get the Python
IoT Edge module to run our benchmark on the RPi0. Similarly, we
were unable to integrate the client-side MQTT for the esp8266 with
IoT Edge’s server implementation with sufficient fidelity to run the
benchmark. Thus, the IoT Edge timings are from the NUC-based
edge cloud (edge) to Azure (the public cloud) where the data is
persisted using CosmosDB [64].

The first four data rows of Table 4 show the latencies from
different CSPOT deployments, each corresponding to a different
strategy. In each case, the initial timestamp is generated on the
microcontroller (esp8266). The esp8266-WooF strategy stores the
timestamp on the microcontroller before forwarding the data to
the next host in the “chain” (via a WooF handler).

For example, the row containing esp8266-WooF->RPi0->edge-
>campus->AWS stores 5 replicas of the data passed to the first call
to WooFPut() in WooFs along the chain. The first is stored on the
microcontroller, the second is on the RPi0, the third is on the edge
cloud VM (NUC-VM in the previous tables), the fourth is on the
campus private cloud, and the fifth is in AWS EC2.

Alternatively, rows prefixed with esp8266 (where WooF is elided)
show the benchmark configured with the CSPOT client executing
aWooFPut() directly on a remotely hosted WooF (either RPi0 or
edge VM in the table). In each case, the second column shows the
number of replicas that are generated.

The last two rows of the table show the results for a version
of the benchmark executing in Greengrass and Azure IoT Edge,
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Deployment Replicas Mean (ms) std-dev (ms) 95% (ms)
esp8266-WooF->RPi0->edge->campus->AWS 5 535 61 650
esp8266->RPi0->edge->campus->AWS 4 513 48 607
esp8266-WooF->edge->AWS 3 298 14.6 326
esp8266->edge->campus->AWS 3 323 17 457
AWS Greengrass (esp8266->edge->AWS) >= 3 4136 632 4288
Azure IoT Edge (edge->Azure) >= 3 2621 1512 4386

Table 4: Comparison of CSPOT, Greengrass, and Azure IoT Edge deployments across the wide area. The statistics are computed
from 100 consecutive runs. esp8266 is the microcontroller, edge is NUC-VM, campus is the private cloud, and AWS is AWS EC2.

respectively. In these cases, because a cloud database is used for
persistence, the public clouds will make at least 3 replicas of each
datum. For reference, the current set of CSPOT applications that
we have deployed (including on-farm) as part of IoT settings (ap-
proximately 100 of them), use the esp8266->edge->campus->AWS
deployment configuration.

The performance of individual CSPOT abstractions is signifi-
cantly faster (i.e. an order of magnitude) end-to-end than current
IoT offerings from either AWS and Azure in these wide area de-
ployments. Moreover, the distribution capabilities of CSPOT make
it possible to develop replication strategies that are lower latency
with similar data durability characteristics. Finally, CSPOT runs the
same handler across all tiers precluding the need for recoding or for
use and management of disparate programming models, libraries,
and protocols that AWS and Azure require (e.g. FreeRTOS, SDKs,
MQTT, FaaS, etc.).

6.2 Implementing Replay and Data Repair
We next evaluate the extensibility of CSPOT by using it to imple-
ment distributed function replay. Dependency tracking is useful in
IoT settings to dynamically analyze, debug, simulate, and reason
about distributed and highly concurrent (e.g. FaaS-like, event trig-
gered) applications [1, 21, 22, 36, 48, 56, 60, 61]. Record and replay
and data repair is useful in IoT settings to analyze and recover from
data corruption in situ [55, 62]. Gathering data in one place repeat-
edly for analysis can consume significant power and resources, and
is thus infeasible in some IoT settings. Repair and replay enables us
to “move the analysis code to the data” instead of vice versa to save
both time and resources for resource-constrained and disconnected
IoT settings.

We refer to this CSPOT service as SansSouci. SansSouci scans
WooF append histories and their causal relationships in the CSPOT
log, and uses them to replay function invocations and repair data
structure versions. Similar in spirit to Retroactive Lambda [62]
but portable to all tiers, SansSouci is useful as a development and
debugging tool for IoT applications and deployments. If a developer
wishes to experiment with a new event-handler, she can install
the handler, and replay the event stream (from the oldest values
recorded in the application’s WooFs) to observe the effect of the
change. Restoring the old handler to reverse the experiment.

SansSouci uses specific causal dependencies (from the CSPOT
runtime system logs) to execute only those computations that are
needed to replace dependent data. For this reason, SansSouci can be
significantly more efficient than back-up and recovery in the case of

WooFPut WooFGet

Cloud 143.42us (2.57us) 142.94us (3.51us)
Cloud w/ SansSouci 143.72us (3.55us) 142.76us (3.45us)
Cloud during repair 185.40us (2.51us) 157.89us (1.10us)

RPi3 (edge) 504.62us (3.92us) 521.20us (8.84us)
RPi3 (edge) w/ SansSouci 506.24us (10.44us) 523.14us (5.61us)
RPi3 (edge) during repair 681.91us (11.81us) 519.75us (4.61us)

esp8266 26.07us (0.17us) 23.45us (0.15us)
esp8266 w/ SansSouci 26.45us (0.17us) 23.62us (0.13us)
esp8266 during repair 26.75us (0.19us) 29.9us (0.15us)

Table 5: Average Put and Get performance with and without
SansSouci in the cloud, at the edge, and on a device. Each av-
erage is over 1,000 back-to-back executions in a local names-
pace, the units aremicroseconds and the standard deviations
are shown in parentheses.

data corruption. For example, if a device fails and begins generating
faulty telemetry, and the developer wishes to replace the corrupted
values with some reasonable approximation (e.g. the average of
some set of similar readings), SansSouci will only re-initiate the
computations (events) downstream of the faulty device that are
dependent on its telemetry for input.

In Table 5 we show the overheads that SansSouci adds to CSPOT
both during normal operation (the common case) and during replay.
Each benchmark runs 1,000 CSPOT operations (either Put or Get)
back-to-back. The cloud and the device (microcontroller) are the
same as that listed in Table 1. However, in this experiment we use
a Raspberry Pi 3 Model B+ (RPi3) as the edge device. The RPi3 has
1 GB of RAM and a 1.4 GHz ARM Cortex CPU. The benchmark
source is identical for all three deployments.

The results show that SansSouci adds little overhead, regard-
less of the hosting tier when integrated into CSPOT. This lack of
overhead is especially important in the device tier where power
considerations and battery life must be optimized. This efficiency
illustrates the value of the CSPOT system architecture in that data
and events are automatically tracked as part of normal runtime
system operation (which is inherently efficient as illustrated in
Table 2).

6.3 AWS Lambda Compatibility
To test the versatility of CSPOT as a low-level runtime system, we
next implement a service that is interface-compatible with AWS
Lambda and S3.The services allows users to execute AWS Lambda
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AWS Lambda rec/sec CSPOT -Lambda rec/sec

1 Client 7.87 7.23
2 Clients 15.84 13.49
4 Clients 30.57 26.22

Table 6: Throughput (requests per second) for AWS Lambda
and CSPOT Lambda when executing a Python Lambda func-
tion with 100 millisecond duration.

functions written in Python on CSPOT, without modification. The
CSPOT Lambda and S3 services use only WooFs and handlers for
their implementation. Thus, subject to the availability of a Python
interpreter, this service makes AWS Lambda functions (invoked
via the AWS Lambda API or via S3 updates) portable across all
platforms (at all scales) on which CSPOT runs.

Table 6 shows a scaling comparison (in requests per second (re-
q/sec)) between AWS Lambda and CSPOT Lambda when hosted
in AWS. In this experiment, separate clients running in the same
VM make concurrent Lambda function invocations using the AWS
Lambda SDK/API for Python (each one executing for 100 millisec-
onds, which is the minimum charge duration for AWS Lambda)
back-to-back. We run all experiments in the AWS us-west-1 region.
We host CSPOT in in a c4.xlarge instance which has 4 virtual CPUs
and 7.5 GB of RAM. Each datum is the average number of requests
per second over 100 repeated invocations.

CSPOT Lambda and AWS Lambda compare favorably in that
both achieve nearly linear scaling up to four clients. This result is
somewhat startling because the CSPOT Lambda implementation
uses only append-only WooFs (some with 16 KB payloads) to imple-
ment all of its data structures (including those needed to implement
the AWS Lambda and S3 APIs). The CSPOT service consists of two
separate Linux processes (both written in a mix of C and C++) that
make native CSPOT API calls through the C interface for CSPOT. To
track objects within S3 buckets requires accessing several internal
data structures that are mapped to WooFs for persistent storage.
Clearly this implementation cannot achieve the scaling of AWS
Lambda. However, at small scales (i.e. scales that occur at the de-
vice and edge tiers) CSPOT is comparable even when run in the AWS
public cloud.

6.4 Virtualization Performance Impact
Our CSPOT implementation is sufficiently new and different to ex-
pose previously undocumented performance interactions between
the various virtualization technologies that it comprises. Specif-
ically, while benchmarking CSPOT for this study, we noticed an
unexpected performance characteristic for CSPOT when executed
on a cloud. To illuminate it, we repeat the latency probe we use to
generate the data in Table 2 using successively larger “put” sizes.
We do so as a way of measuring the throughput CSPOT can sustain.

Figure 4 shows themaximum throughput (y-axis) associatedwith
successively larger put-payload sizes (x-axis) for CSPOT running
on the edge cloud (blue), campus cloud (amber), and in AWS (green).
In addition, we deployed CSPOT on the edge cloud natively without
virtualization (red).

This data indicates that operating system virtualization cuts
maximum throughput by a factor of two (the results are similar for
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Figure 4: Comparison of maximum throughput rates as a
function of payload size across edge and cloud platforms.
Red features are for unvirtualized edge (NUC) execution,
blue is virtualized NUC (edge cloud (NUC-VM)), amber is for
campus private cloud, and green is AWS.

average throughput but are omitted for brevity). Also, these max-
imum throughput graphs show smoothly increasing throughput
as a function of payload size up to some host-specific maximum.
Curiously, all of the virtualized deployments show a sharp drop in
maximum throughput, with the unvirtualized deployment showing
an increase, when the payload size exceeds 32M bytes.

Recall that CSPOT runs all handlers as processes within a Docker
(v18.09) container associated with a namespace on Linux hosts. In
clouds, running Docker in a VM is commonplace to implement
Linux namespace [58] and cgroup [57] isolation between applica-
tions using the VM. However, because CSPOT applications are lim-
ited to FaaS computational semantics andWooF storage, this double
layer of isolation (Linux container and VM) may not be necessary,
especially if it carries a substantial performance penalty. Docker is
heavily used in clouds but despite its popularity, we are unaware of
literature documenting this level of performance degradation. Thus,
it may be that CSPOT ’s use of mapped virtual memory to implement
fast append-only semantics is exposing a rare interplay between
Docker container and VM isolation mechanisms. Clearly, CSPOT is
“stressing” well-used and mature virtualization technologies in new
ways. However, because of this obvious difference, as part of our
future work, we plan to study whether CSPOT is sufficient to serve
as its own virtualization technology for edge devices or whether
it requires a hypervisor for additional isolation and configuration
support.

Taken together, these results indicate that CSPOT achieves very
low latencies compared to AWS Lambda (cf Table 2) but the com-
bination of hypervisor virtualization and Linux containers (used
by Docker) has a dramatic effect on throughput. Specifically, vir-
tualized deployment of CSPOT appears to experience significantly
greater variability in throughput compared to an unvirtualized
deployment (with similar tenancy competition). Moreover, the max-
imum throughput appears almost halved when CSPOT is deployed
in any cloud setting relative to an unvirtualized deployment on a
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Algorithm Sign ms (stdev) Verify ms (stdev)
PKCS1 (2048 bit) 3280 (190) 187 (4)
PKCS1 (4096 bit) 31580 (190) 9190 (9)
ECDSA (256 bit) 214 (1) 4340 (216)
HMAC (64 bit) 0.37 (0) 0.37 (0)
HMAC (128 bit) 0.37 (0) 0.37 (0)
3-level Derived
Capability (64 bit) 0.77 (0) 1 (0)
5-level Derived
Capability (64 bit) 1.18 (0.04) 1.3 (0)

Table 7: Comparison of cryptographic algorithms for sign-
ing and verifying a 32 byte message on the esp8266. Average
execution time and standard deviation (in parenthesis) are
shown. The last 2 rows show the performance when CSPOT
performs two (3-level Derived) and four (5-level Derived) at-
tenuations on the capability.

small, portable system (i.e. the Intel NUC used in this study). These
results indicate that, perhaps, the currently-popular cloud isolation
technologies are imposing a significant latency penalty when the
runtime system is lightweight – a result that warrants further study.

6.5 Security Performance
To illustrate the performance impact of CSPOT ’s capability-based
security mechanisms, we next benchmark different signing mecha-
nisms when a CSPOT server is running on an esp8266 microcon-
troller using its built-in WiFi wireless network. We show signing
times (needed for capability generation and attenuation) and veri-
fication times on the microcontroller. In each experiment the mi-
crocontroller is communicating with an Intel NUC attached to the
same wireless network which is acting as an edge device.

Table 7 shows the comparison of the execution times in mil-
liseconds for various cryptographic techniques when used to sign
(column 2) and verify (column 3) messages on the microcontroller.
The table shows the times for RSA (using PKCS1) for two differ-
ent key lengths, ECDSA (an Elliptic Curve Cryptography – ECC
– method popular in many IoT applications [43]), and the HMAC-
based scheme that we employ in CSPOT for two key lengths. Below
the double lines we also show the performance of a 3-level capability
derivation (2 attenuations) and a 5-level derivation (4 attenuations)
on the device, which represent the setting in which clients attenuate
their capabilities multiple times.

Clearly, an HMAC-based approach is considerably less compu-
tationally intensive than either of the competitive, widely-used
approaches. Indeed, even the attenuated capability timings are bet-
ter for a 3-level derivation than for a single capability verification
using either of the other schemes.

6.6 Reliability
Finally, our experience with CSPOT is that it has proven to be
remarkably reliable. At the time of this writing, we have been using
CSPOT as the data acquisition and stream processing infrastructure
for two long-lived IoT deployments in agricultural settings. The first
monitors soil moisture readings in an almond orchard located in
Fresno, California and the second is the basis for the frost prediction
and prevention system (described in Section 5) located in a citrus

orchard in Exeter, California. CSPOT is running unattended in
these locations, both virtualized and unvirtualized, as well as on
multiple edge devices and campus private cloud. These production
CSPOT deployments have been operational since August 1, 2017
(although the deployment has grown steadily since then) and has
fired approximately 6.8 million handlers (averaging one every 6
seconds) during this period without a detected software failure. By
way of comparison, the campus networking infrastructure (staffed
24/7) experienced one major and two minor outages during the
same period.

This reliability is surprising, given the novel interaction between
containers, memory mapped files, threads, and Linux processes that
theCSPOT runtime requires. Indeed, especially given the speedwith
which CSPOT is able to invoke a handler within a container, our
expectation is that it would expose synchronization or file-system
reliability issues in Linux, which it has not to date.

7 RELATEDWORK
The utility of serverless computing for different workloads has
been studied recently for various application types [17, 33, 41, 50,
51, 69, 85]. In [41], the authors identify key weaknesses in existing
serverless implementations which we believe we are the first to
attempt to overcome. These weaknesses are the overhead imposed
by the requirement that FaaS functions communicate via slow (ver-
sus point to point networking), remote, location-concealed services.
CSPOT introduces persistent, append-only (i.e. versioned) storage
abstractions and namespace to the serverless model to significantly
improve performance and to facilitate co-location of related code
and data. At the same time, these abstractions enable storage to
be geo-distributed and replicated for durability and robustness,
and dependent events to be tracked for use as a concurrent pro-
gramming aid. The authors of [62] investigate adding retroactive
programming (i.e. support for reprogramming application histories
via event and state-update tracking) to serverless. CSPOT provides a
runtime system over which retroactive programming can be imple-
mented (by combining its persistent, append-only data structures
data dependencies, and event logs).

From a technological perspective, the most closely related work
to CSPOT is AWS Greengrass [2] and Microsoft Azure IoT Edge [65]
over IoT Hub [66]. These commercial systems are relatively mature
offerings designed to allow edge systems to act as intermediaries
between devices and their respective public cloud services. CSPOT
differs from these systems in that it couples FaaS function invo-
cation with persistent storage wherever it runs – on a device, at
the edge, in a private cloud, or in a public cloud. CSPOT micro-
controller support also differs in that uses the same programming
model and runtime system across IoT tiers. Azure and AWS require
a combination of potentially conflicting and confusing technologies
to be integrated, deployed, and managed by applications develop-
ers (MQTT, FaaS services, and disparate libraries, authentication
mechanisms, and configuration). Finally, CSPOT is open source and
works across clouds.

CSPOT is designed for a multi-tiered “device-edge-cloud” archi-
tecture like that described in [29] and [67]. Like the authors of these
works, we hypothesize that IoT will require a hierarchical set of
computational, storage, and network resources. Uniquely, however,
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CSPOT defines portable, high-performance FaaS abstractions and
enables code and data mobility without modification throughout
the complete hierarchy.

In that vein, CSPOT shares conceptual firmament with Open-
Whisk [18], OpenFaaS [75] and OpenLambda [42]. These systems
are open source and implement the FaaS paradigm using containers
for isolation. In addition, OpenFaaS uses Linux processes and bina-
ries as the execution mechanism within a container, as does CSPOT.
These efforts are distinct however, in that they are not designed for
device or edge computing in general, and IoT in particular. Further,
CSPOT defines specific low-level abstractions that are intended to
support a variety of higher level language and distributed systems
technologies. These other technologies are designed to implement
FaaS as a language-level platform.

In [26] and [71] the authors review many of the full-stack chal-
lenges that must be overcome to realize “The Internet of Things”
as a society-serving technology. While these top-down approaches
clearly frame the issues and offer possible avenues of exploration, in
contrast, our work is best classified as “bottom up.” CSPOT starts by
defining a set of low-level abstractions that can then be composed to
create higher-level functionality. While eliding a complete architec-
ture for “The Internet of Things,” we validate CSPOT functionality
with working IoT applications that serve non-expert users.

Because of its bottom up approach, CSPOT is similar to [5],
which constructs a logical architecture for IoT applications as a
composition of individually developed technologies and services.
It provides reference implementations for these services and val-
idates its results empirically. CSPOT is far less broad in its scope
and could easily serve as a single component within the system
described in [5]. It is, in the same way, portable, high performance,
and empirically validated while, at the same time, leveraging cloud
technologies (e.g. FaaS) at a variety of execution scales.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we present CSPOT, a FaaS platform for IoT application
development and deployment. CSPOT provides a low-level imple-
mentation and APIs that facilitate application portability across
IoT tiers, tracking of causal dependencies across a distributed ap-
plication, extensibility for easy integration of new IoT services,
and low-latency response for IoT applications. We detail CSPOT ’s
abstractions as well as its novel programming, memory, and persis-
tence models that together enable these features.

We also provide examples for the CSPOT APIs and applications,
and empirically evaluate it using heterogeneous systems and mul-
tiple performance metrics. In addition, we empirically evaluate
novel services (i) for persistent data repair and function replay,
(ii) for AWS Lambda and S3 Python compatibility, and (iii) for
capability-based security. Our results show that, relative to extant
FaaS systems, CSPOT improves the response time and facilitates
low-overhead end-to-end performance for IoT benchmarks and
applications across IoT tiers/scales.

As part of future work, we are extending CSPOT to other popular
microcontroller systems, supporting functions in high-level lan-
guages, and investigating novel runtime extensions that facilitate
large scale deployment debugging, and that optimize performance,
energy use, and cost (of public cloud use) across tiers. We are also

investigating support for scalable service/device discovery and
virtualization, privacy preservation, and robust and transparent
disconnected operation.
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