
Data Repair for Distributed, Event-based IoT Applications
Wei-Tsung Lin, Fatih Bakir, Chandra Krintz,

Rich Wolski
{weitsung,bakir,ckrintz,rich}@cs.ucsb.edu

Computer Science Dept.
Univ. of California, Santa Barbara

Markus Mock
mock@haw-landshut.de
Dept. of Computer Science
Univ. of Applied Sciences

Landshut, Germany

ABSTRACT
Motivated by the growth of Internet of Things (IoT) technologies
and the volumes and velocity of data that they can and will pro-
duce, we investigate automated data repair for event-driven, IoT
applications. IoT devices are heterogeneous in their hardware archi-
tectures, software, size, cost, capacity, network capabilities, power
requirements, etc. They must execute in a wide range of operat-
ing environments where failures and degradations of service due
to hardware malfunction, software bugs, network partitions, etc.
cannot be immediately remediated. Further, many of these failure
modes cause corruption in the data that these devices produce and
in the computations “downstream” that depend on this data.

To “repair” corrupted data from its origin through its computa-
tional dependencies in a distributed IoT setting, we explore SANS-
SOUCI – a system for automatically tracking causal data depen-
dencies and re-initiating dependent computations in event-driven
IoT deployment frameworks. SANS-SOUCI presupposes an event-
driven programming model based on cloud functions, which we
extend for portable execution across IoT tiers (device, edge, cloud).
We add fast, persistent, append-only storage and versioning for ef-
ficient data robustness and durability. SANS-SOUCI records events
and their causal dependencies using a distributed event log and
repairs applications dynamically, across tiers via replay. We eval-
uate SANS-SOUCI using a portable, open source, distributed IoT
platform, example applications, and microbenchmarks. We find that
SANS-SOUCI is able to perform repair for both software (function)
and sensor produced data corruption with very low overhead.

CCS CONCEPTS
• Applied computing → Event-driven architectures; • Com-
puting methodologies→ Distributed computing methodologies;
• Computer systems organization→ Distributed architectures.
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1 INTRODUCTION
The Internet of Things (IoT) is a rapidly emerging set of technologies
that is fueling remarkable innovation in which ordinary physical
objects in our environment are equipped with Internet connectivity,
sensing, control, and computing capabilities. Because IoT devices
are vastly heterogeneous and execute in a wide range of remote
locations and operating conditions, they are subject to frequent
hardware and software errors and failures, performance degrada-
tions, network partitions, etc., which in many cases cannot be easily
or immediately remediated. Further, many of these failure modes
corrupt the data that these devices produce as well as the “down-
stream” computations that depend on this data. Data corruption
can mislead human and automated decision making, result in in-
accurate predictions and inferences, and compromise the security,
efficiency, and quality of service of data-driven IoT applications.

In this paper, we explore a new approach for repairing corrupted
data in distributed, IoT settings. Replay is a technique used in single-
host runtimes and distributed systems to fix errors in software
and data structures, for trace-based simulation and prediction, to
explore alternative application execution paths, and to perform post-
mortem program analysis. We investigate a new approach to repair
and replay, called SANS-SOUCI, which automatically tracks causal
data dependencies and replays dependent computations across
multi-tiered (device, edge, and cloud) IoT deployments. Unique to
SANS-SOUCI is the integration of a function-as-a-service (FaaS)1
programming model, append-only (versioned) data structures built
into the runtime that persist application state, and distributed and
causally-ordered event logging. To enable this, we extend an open
source, distributed, FaaS runtime system called CSPOT [20], which
executes over a wide range of devices – including microcontrollers,
single board computers, edge computing systems, and public clouds
– making portability and repair possible in a distributed IoT setting
and across heterogeneous devices.

FaaS (also known as cloud functions) is the event-driven pro-
gramming model and execution environment that underpins server-
less and lambda computing architectures [6, 9, 13, 15]. Serverless
systems based on FaaS were designed to simplify and automate the
development, deployment, and elastic execution of cloud comput-
ing applications2. Developers construct applications from arbitrary
functions, which they upload to cloud-hosted, serverless platforms.

1https://en.wikipedia.org/wiki/Function_as_a_service
2https://aws.amazon.com/lambda/, https://azure.microsoft.com/en-us/services/
functions/, https://cloud.google.com/functions/docs/, https://openwhisk.apache.org,
https://iron.io
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These platforms link functions to cloud services and trigger their
execution in response to service events (e.g. datastore updates, noti-
fications, queue posts, API requests, etc.). These frameworks do not
define specific storage abstractions for persisting state – instead
they enable event-driven execution, automatic scaling, and access
to cloud services (via programmatic interfaces exported via cloud
software development kits (SDKs)).

CSPOT integrates an append-only storage abstraction into the
FaaS platform for data durability and robustness, which functions
use to persist application state. SANS-SOUCI builds upon and ex-
tends this versioned storage abstraction to simplify and facilitate
data repair and replay. In particular, SANS-SOUCI couples this per-
sistent storage with distributed event logging to track events, func-
tion invocations, and causal dependencies among events in multi-
function serverless applications. Causal order is a partial order on
the events in a distributed application that can be induced from
observing internal events and messages between functions [8]. A
number of event logging and profiling services are provided by
serverless platforms [10, 11, 19]3.

SANS-SOUCI combines these features to maintain a history of
transactions (up to a programmer-specified or device capacity max-
imum), which it uses to repair persistent data structures and re-
initiate dependent computations. It uses this history to update
corrupted data structures with corrected values at the historical
point in time at which corruption occurred, and replays all causally
dependent computation from that point forward. For example, if
a network partition causes disruption in the production of sensor
data, an application might instead forward interpolated, repeated,
or error values (e.g. −1) to subscribers to mask the interruption.
Subscribers downstream might use the values for analysis (e.g. pre-
diction and classification). SANS-SOUCI can repair the historical
data for the sensor when it comes back online, and automatically
replay any dependent analysis functions.

For robustness in the presence of partial failures (common in
distributed systems), SANS-SOUCI is also unique in that it maintains
append-only semantics as it implements repair. That is, it does not
“update-in-place” corrupted data, but rather it generates a new set
of uncorrupted appends that occur (logically) after the corrupted
dependencies. After a repair is complete, however, an application
considering the most recent appends to a set of persistent data
structures will “see” only the repaired data.

We integrate SANS-SOUCI into CSPOT and evaluate it using
multi-tier IoT deployments, applications, and benchmarks. We find
that SANS-SOUCI is able to perform repair for corruption produced
by either software (function) or sensor data errors with very low
overhead. The contributions that we make with this work include

• a new robust and distributed programming capability that
allows data to be replaced at an arbitrary point in an appli-
cation’s state update history causing an automatic repair of
all dependent state,

• a description of the implementation of this capability that is
portable across all devices – from microcontrollers to public
clouds – in an IoT setting, and

• an evaluation of this capability that is based on a combination
of distributed IoT applications and microbenchmarks. Our

3https://aws.amazon.com/cloudwatch/, https://aws.amazon.com/xray/

results show that the SANS-SOUCI can achieve effective data
repair while introducing overheads typically less than 10%.

We next discuss the SANS-SOUCI design and use cases, and de-
scribe its abstract functionality with an example. We then overview
the CSPOT system, and discuss how we extend the system to facil-
itate data repair and replay (Section 3). We present our results in
Section 4, discuss related work (Section 5), and conclude (Section 6).

2 SANS-SOUCI
SANS-SOUCI is a new approach and system for repairing corrupted
data in distributed, IoT applications. It automatically tracks causal
data dependencies and replays dependent computations across
multi-tiered (device, edge, and cloud) IoT deployments. To enable
this, SANS-SOUCI combines functions-as-a-service (FaaS) for the
event-driven system, append only data structures for persisting
application state durably, and distributed, causal dependency track-
ing for efficient replay. Although each of these features are well
understood distributed systems concepts, their combination reveals
a rich set of design trade-offs that motivate this exploration.

In its typical form, FaaS is a programming, deployment, and
event-driven execution model in which developers construct appli-
cations from arbitrary functions and upload them to cloud-hosted
runtime systems. The model restricts function implementations to
facilitate simplicity, scale, and fine-grained, isolated multitenency.
In particular, functions are stateless, non-addressable, and must
execute within resource constraints (e.g. time and memory limits).
FaaS runtimes, referred to as serverless platforms, link functions to
other cloud services and trigger their execution in response to ser-
vice events (e.g. datastore updates, notifications, queue posts, API
requests, etc.). Functions communicate and share data with other
functions only through shared cloud services or via function call
arguments. Examples of FaaS frameworks and serverless platforms
include Amazon Web Services (AWS) Lambda Azure Functions,
Google Cloud Functions, IBM OpenWhisk, and Iron.io.

SANS-SOUCI combines FaaS with versioned persistent storage
and causal event tracking to simplify and expedite data repair and
function replay. Because most serverless platforms and FaaS frame-
works do not define specific storage abstractions for functions,
functions persist state via remote cloud services (e.g. AWS Simple
Storage Service (S3), AWS DynamoDB streams, OrpheusDB [7])
that are programmatically accessible via SDKs. Similarly, event
tracking (with and without causal dependencies) is also possible via
cloud services such as AWS Cloudwatch and XRay, GammaRay [11],
and Dapper [19], among others.

Although it is possible for SANS-SOUCI to use these services for
its implementation (e.g. by combining AWS Lambda, DynamoDB
Streams, Cloudwatch, and XRay), in this paper, we overlay SANS-
SOUCI on CSPOT, an open source FaaS framework, which we sketch
in section 3. CSPOT is a distributed FaaS system that executes over
heterogeneous devices and clouds, facilitating portable FaaS de-
ployment and support for IoT applications and settings. CSPOT
provides append-only persistent storage as built-in data structures
that functions access directly to manipulate application state. It
does so to ensure durability through eventually consistent replica-
tion. CSPOT also implements causal dependency tracking as part
of its distributed logging system.

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
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SANS-SOUCI uses the histories of persistent storage updates
and their causal relationships to update corrupted or approximated
data structures with corrected values at the historical point in an
applications state update sequence at which they occurred. It then
replays all dependent computation from that point forward. To
ensure robustness to partial failures, SANS-SOUCI performs this
update and replay (of causally dependent functions) using append-
only semantics (versus update-in-place).
2.1 Use Cases
We envision three primary use cases for such data repair capabilities
in IoT deployments. The first is to correct downstream historical
results when a faulty sensor or data source (that has been issuing
“bad” data) is repaired, and some data correction for the data that
has been produced is available. One such real-world example is a
misconfigured microclimate monitoring system, in which a subset
of temperature sensors are configured to report Celsius rather than
Fahrenheit as specified and required by the deployment. Such errors
are commonly detected post deployment, after the data has been
consumed by downstream analytics applications. SANS-SOUCI is
able to correct the misconfigured readings and the downstream
computations in situ – without stopping the deployment, gathering
the data to a centralized location, cleaning it, and then redeploying
it and the applications that use it.

The second use case is a debugging, exploration, and experimen-
tation utility for deployed IoT applications. In a tiered IoT setting in
which small sensor/actuator devices communicate with more pow-
erful edge computing and storage devices, private clouds, or public
clouds, computation and data are often distributed throughout the
deployment. To experiment with or debug new computational meth-
ods (e.g. improved analytics) it is often inconvenient (or impractical)
to create a parallel deployment. SANS-SOUCI uses replay to prop-
agate data repair throughout the deployment making it possible
to change specific computational components and then to observe
the results and also to roll back such changes.

The third use case is to manage the arrival of late, but correct,
data. As another real-world example, an IoT deployment might in-
corporate meteorological data from the CIMIS4 network of weather
stations. CIMIS publishes data on 5-minute intervals, but it does so
retroactively, once every hour. The deployment itself expects data
every 5 minutes. Existing applications generate an interpolation of
the previous hour’s CIMIS data every 5 minutes for the downstream
components of the application to use immediately. SANS-SOUCI
can “repair” the interpolations once the CIMIS data arrives at the
top of the next hour.

Thus, the “corruption” that SANS-SOUCI is designed to repair
covers several IoT use cases in which data gathered in the past can
be replaced with better or more useful data in the future. More-
over, SANS-SOUCI can propagate the effects of those replacements
throughout a distributed deployment.

2.2 SANS-SOUCI Data Repair
To effect a repair, SANS-SOUCI depends on the following properties.

• It must have access to all the program state that is used as
input by any function that is casually dependent on the target
of the repair at the time the target was initially produced.

4https://data.cnra.ca.gov/dataset/cimis-weather-station-data

Figure 1: Data repair example. Application state is stored in
persistent, append-only data structures (SENS, MODEL, and
PRED) on 1+ hosts; each version has a sequence number (Se-
qNo). (a) shows the state after the first sensor element ar-
rives; (b) shows the state after a second sensor element.

• It must be able to reproduce the order of execution (i.e. the
causal execution order) of the functions that take this state
as input.

• The functions must be side effect free so that their replay
depends only on the program state visible to SANS-SOUCI .

• The repair itself cannot overwrite any of the previous pro-
gram state that will be used as function input during replay
before it is used.

An Illustrative Example
We overview the repair process via an example of the first use
case above using a common prediction (or classification) streaming
workflow. The example applies a trained model to each new datum
that arrives from a sensor and produces a prediction. In the example,
the programmer (or automatic service on her behalf) identifies
an error in the model and produces a new version of it with the
error corrected. She/it then initiates a repair to update the previous
version and replay all previous predictions that depended upon the
original “bad” value.

The example application has three data structures called SENS,
MODEL, and PRED as depicted in Figure 1 (a). All data structure
is persistent and append-only (i.e. each has multiple versions); the
tail of each (i.e. the most recent version) holds the current state
of the structure. Each version is identified via a sequence number
(SeqNo). These data structures are persisted to disk and thus reside
on a particular host. Data structures that make up an application
can be on the same or different hosts. Functions access local data
structures directly and remote data structures via messaging.

Periodically, the application receives sensor data, which it ap-
pends to SENS. The append triggers a function, fSENS, which reads
from the tail of MODEL to retrieve themost recent predictionmodel.
The function applies the model to the newly arrived data and pro-
duces a result (a prediction), which it writes to PRED. We refer to
data structure reads as Gets and writes as Puts.

Dependent events are written to a local log as part of execution
of the application. SANS-SOUCI records when data is appended,
when the tail of the data structure is accessed, and when functions
are executed (fired). It also records the causal dependencies with
sequence numbers. In this case, there are two such dependencies

https://data.cnra.ca.gov/dataset/ cimis- weather- station- data
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Figure 2: During repair SANS-SOUCI constructs shadows for
dependent data structures to perform the repair. MODEL Se-
qNo 1 is repaired directly; its dependencies (marked in red)
are repaired via replay.

(sequence numbers are specified in parentheses): (i) SENS(1) Get
MODEL(1), and (ii) SENS(1) Put PRED(1).

When the programmer realizes that the MODEL has a bug, she
appends the new model to the MODEL data structure. The next
time a SENS value arrives, it will use the new MODEL as shown
in (b) in the figure. The updates in the system that result from this
event are shown in green. The new dependencies appended to the
log are (i) SENS(2) Get MODEL(2), and (ii) SENS(2) Put PRED(2).

The programmer then also initiates a repair to fix PRED(1) via the
SANS-SOUCI API, passing in the new value and sequence number
of the version in need of repair (SeqNo 1 in this case). To effect
the repair, SANS-SOUCI first requests the logs from all hosts and
merges them into a total order. SANS-SOUCI uses this merged log
to identify

• the chains of data dependencies (i.e. Puts and Gets) rooted
at the target that must be updated, and

• a correct execution order of functions that will be “replayed”
to generate these updates.

We refer to the dependency tree rooted at the repair as the “repair
graph.” For current commercial cloud functions implementations
such as AWS Lambda, Azure Functions, andGoogle Cloud Functions
(and also for CSPOT ), each function has exactly one antecedent
in a causal ordering. As a result, the current implementation of
SANS-SOUCI generates repair graphs that are trees. We discuss
relaxing this restriction in Section 3.2. SANS-SOUCI generates the
repair graph via a scan of the merged log.

SANS-SOUCI creates a shadow data structure for each data struc-
ture impacted by the repair as depicted in Figure 2. Versions in red
are those marked as dependent in the repair graph. It then copies
elements from the original structure to the shadow from the first
element up through the element prior to the start of the repair. It
then appends the repaired values that the user has passed in. As
part of this append, SANS-SOUCI retriggers any functions (fSENS in
this case) that implement dependent Gets. Note that SANS-SOUCI
only re-fires functions that also perform writes (i.e. Puts) on per-
sistent data structures (i.e. perform state updates) because those
without writes have no impact on global, shared state. This process
continues as SANS-SOUCI traverses the repair graph.

The Puts and Gets in replayed functions use the shadow versions
of the data structures and the sequence numbers passed in by SANS-
SOUCI. To enable this, SANS-SOUCI replaces API calls that read
data structures with those that read specific sequence numbers, and
those that read and write data structures with those that that target
a shadow data structure during replay. The application functions
execute concurrently with the repair without interruption using
the original data structures.

SANS-SOUCI copies any remaining values (those independent
of the repair), after (or interleaved with) the repair, from the origi-
nal to the shadow. It then synchronizes the shadow and original
(pausing the application briefly) and performs a rename so that the
application uses the shadow (i.e. the shadow becomes the original,
for use by applications and the next repair, if any) and the original
is garbage collected. We next describe the details of this process
and provide the intuition behind our design decisions.

3 IMPLEMENTATION
To evaluate SANS-SOUCI, we have developed an implementation for
CSPOT – a portable serverless application platform. In this section,
we describe this first implementation of SANS-SOUCI in terms of
CSPOT ’s features and modifications to CSPOT that SANS-SOUCI
requires. We believe that this exposition helps to illustrate both the
advantages of FaaS and serverless systems in an IoT setting and
some of the challenges that future systems (and future implemen-
tations of SANS-SOUCI ) may encounter.

3.1 Background: CSPOT Implementation
CSPOT implements a set of lightweight abstractions specifically to
support “Functions-as-a-Service” across a spectrum of device scales.
Thus, it is possible to run the same CSPOT application code, without
modification, on microcontrollers, edge devices and edge clouds,
private clouds, and public clouds. It is also designed to support
distributed FaaS applications in which application components
may trigger functions on remote hosts that are running CSPOT
as well. Finally, CSPOT is similar to other serverless application
platforms in that the functions are triggered by events and run
(when triggered) in isolated Linux “containers”5 (on hosts where
containers are available). On microcontrollers without support for
memory isolation, all CSPOT functions must belong to the same
trust domain.

To support distributed FaaS applications, CSPOT defines an in-
trinsic, low-level append-only data structure termed a WooF –
Wide-area Object Of Functions. To aid with application robust-
ness and data integrity, computations (which must be executed
in CSPOT functions) can only be initiated as “handlers” that are
triggered by an append operation to some WooF. WooFs are per-
sistent with respect to system power down and handlers must be
stateless. Thus, at any given moment in a CSPOT application execu-
tion, it is possible to restart an CSPOT application using the current
application state stored in the application’s WooFs.

There are three abstractions in CSPOT :

• Namespaces which separates the storage and functions in
an application. A namespace contains the hostname and the
path to the directory where data is stored and functions are
executed.

• Wide Area Objects of Functions (WooFs) which are per-
sistent, append-only memory objects for data persistence
and

• Handlers which are stateless functions that are triggered
when data elements are appended to WooF.

5https://en.wikipedia.org/wiki/LXC, https://linuxcontainers.org, https://www.docker.
com
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An CSPOT application can be hosted on multiple physical or vir-
tual hosts. Each host contains one or more namespaces. All CSPOT
objects are addressed by URI (Universal Resource Identifier). In
the case where accesses are within a single namespace, the CSPOT
runtime system implements them directly. When accesses cross
namespaces, the access is implemented via network Remote Proce-
dure Call. Thus, an CSPOT programmer can implement both locality
(by co-locating WooFs and handlers in the same namespace) and
distribution (by siting namespaces on separate machines). However
the CSPOT APIs are consistent throughout the application.

Currently, CSPOT exposes four such APIs;
• WooFCreate(woof_name, element_size, history_size)
which creates a WooF append-only storage within a names-
pace,

• WooFPut(woof_name, handler_name, element) which
puts an element to a WooF. If an optional handler_name is
specified, the host of WooF will trigger the function handler
after the element is put.

• WooFGet(woof_name, element, seq_no) which gets the
element corresponding to the sequence number.

• WooFGetLatestSeqno(woof_name)which returns the lat-
est sequence number of the WooF.

The parameter woof_name in these APIs is a URI that encodes
the network addressable location of a namespace and an object
within that namespace. A WooFCreate() call creates a WooF with
finite number of elements each having a fixed element_size. Either
an external application client or CSPOT handlers use WooFPut()
to append new elements to one or more WooFs and WooFGet()
to get an element (that was previously appended) from a WooF.
Each element in a WooF is assigned a sequence number when
successfully appended. The sequence number is unique in a WooF.
WooFGetLatestSeqno() returns the latest successfully appended
element’s sequence number from aWooF. While sequence numbers
increase indefinitely, the space occupied by a WooF is managed as
a circular buffer of finite size (specified when the WooF is created).
Thus only a fixed history of data values (indexed by sequence
numbers that do not reset) are available at any given moment.

As indicated previously, only a call to WooFPut() (either by an
external client or a handler) which appends a data item to a WooF
history, can trigger a subsequent handler computation. The current
release of CSPOT supports both C-language and Python bindings.
In this work, we use the C-language bindings to implement SANS-
SOUCI and to evaluate its performance (cf Section 4).

The CSPOT runtime system also maintains an internal append-
only event log in each namespace6. The namespace log is used
directly to record state updates (WooF appends) and to trigger
handlers. That is, when a call to WooFPut() creates a state update
that specifies a handler to trigger, the caller appends the event to
the end of the namespace log. Threads running within containers
associated with the namespace synchronize on the tail of the log
and race to “claim”, and then execute, a newly added handler.

In the current release of CSPOT, only events describing handler
triggers, and their eventual claims by container threads are logged.

6Note that the namespace log is logically a WooF with elements that describe events
but because CSPOT uses the namespace log to implement handlers for WooFs the log
is implemented separately to avoid a circular dependence.

Figure 3: CSPOT namespace log events from the Sensor re-
pair example.

SANS-SOUCI modifies this CSPOT implementation to include addi-
tional log event types for its dependencies (e.g. Put and Get).

All CSPOT namespace log events carry identifiers for the names-
pace, the object within the namespace, the “cause” namespace that
originates the event, and the object within the cause namespace
(implemented as hashes). Thus, within a namespace, the namespace
log directly records causal order. This log-based runtime system
organization is in contrast with commercial FaaS and serverless
platforms where event logging relies on a statistical sampling of
CPU program counter values (e.g. AWS X-ray7). In CSPOT, the
causal ordering is directly recorded and not reconstructed after
the fact via sampling. Because it is not generated from samples,
SANS-SOUCI can use the CSPOT runtime log to implement correct
application replay.

When a WooFPut() is called with handler_name specified, the
namespace logs a TRIGGER event. If the WooFPut() call does not
have handler_name specified, a SANS-SOUCI APPEND event is
logged instead. When WooFGet() is called, a SANS-SOUCI READ
event is logged and when aWooFGetLatestSeqno() is called, a SANS-
SOUCI LATEST_SEQNO event is logged. The CSPOT API requires
the programmer to implement a read of the current tail of a WooF
as a call to WooFGetLatestSeqno() that returns a sequence number
followed by a call to WooFGet() specifying the element from the
WooF to retrieve. In this way, it is possible to implement applica-
tions that do not require strong consistency. Finally, when a thread
claims a TRIGGER event, it appends a TRIGGER_FIRING event
(atomically). Thus, each thread within a namespace container can
determine which handlers have yet to be claimed.

On systems supporting virtual memory, the CSPOT namespace
log and all WooFs are implemented using memory-mapped files.
Thus, the system is capable of very low latency function dispatch
compared to commercial counterparts.

7https://aws.amazon.com/xray/
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Listing 1: Log merging algorithm
merge_log ( l o g s ) :

pending = [ ]
ev en t s = [ ]
g l o b a l _ l o g = [ ]
f o r l og in l o g s :

f o r even t in l og :
append ( event s , even t )

whi l e ! empty ( e v en t s ) and ! empty ( pending ) :
f o r even t in ev en t s :

i f c au s e_even t ( even t ) i n g l o b a l _ l o g :
append ( g l o b a l _ l o g , even t )

e l s e :
append ( pending , even t )

remove ( event s , even t )
f o r even t in pending :

i f c au s e_even t ( even t ) i n g l o b a l _ l o g :
append ( g l o b a l _ l o g , even t )
remove ( pending , even t )

c au s e_even t ( even t ) :
r e t u r n event −>cause_hos t ,

event −>cause_seqno

3.2 SANS-SOUCI Implementation for CSPOT
An CSPOT log is only local to its namespace. SANS-SOUCI imple-
ments a system for gathering and merging the runtime logs from
all namespaces used by an application, preserving the causal de-
pendencies globally. Listing 1 shows the log merging algorithm.
The algorithm isO(n × loдn) in the total number of events; it keeps
event lists in search trees to facilitate causal dependency lookup.

SANS-SOUCI ’s global log, once generated, contains a correct
total order of all application events that have occurred and the
storage locations (in WooFs) that are associated with the triggering
of those events. The size of the CSPOT logs, which is a tunable
parameter, determines the length of this global history. Consider
the application shown in Figure 1, for example, and assume that
MODEL, SENS, and PRED are implemented as three separate CSPOT
WooFs hosted in three different namespaces. When a new element
SENS(2) is put into WooF SENS, CSPOT logs a TRIGGER event and
triggers the handler function (fSENS) to calculate the prediction.
The handler first calls WooFGetLatestSeqno() to get the latest se-
quence number of WooF MODEL, and then calls WooFGet() to get
the latest model parameters with that sequence number. Finally,
the handler uses these model parameters to calculate the prediction
and puts PRED(2) to the PRED WooF without triggering a handler.
This process generates five events, as shown in Figure 3.

Note that SANS-SOUCI only uses a global log to build a repair
graph when applications are distributed (e.g. when the application
comprises WooFs from more than one namespace). Otherwise, it
uses the local namespace log for the namespace containing the
application state. In either case it uses the CSPOT TRIGGER and
APPEND events to identify Put dependencies, it adds READ events
to identify Get dependencies, and LATEST_SEQNO events to cap-
ture accesses to WooF tails. We refer to this latter event as a Sync
dependency.

Using either the global log (or the local log in case of a single
namespace), SANS-SOUCI creates shadow WooFs for all WooFs that
contain data that is causally dependent on the data being repaired.
SANS-SOUCI copies all the previous values from these original

Figure 4: An example of a shadowWooF

WooFs (up to the length of the preserved history) that occur before
the target of a repair to the shadow. The repaired value is then
inserted with the correct sequence number by replaying the event
handler used in the original put with the shadow as the target.

Figure 4 shows a simple example of shadow construction. In
the example, Original(3) is the target of repair and Original(5) is
a downstream put caused by Original(3). To repair the history,
SANS-SOUCI first creates a shadow with the same capacity of the
original WooF. All the elements from the earliest sequence number
in the original WooF history to the last element before Original(3)
are copied to the shadow, and then SANS-SOUCI waits for the
arrival of the new value of Original(3). After the new element to
replaceOriginal(3) is appended, SANS-SOUCI copies the intervening
element Original(4) up to the next downstream element Original(5)
from the original WooF. Once the intervening element is copied, the
value of Original(5) which is produced by the function consuming
Original(3) as input is appended at the correct place in the shadow
history. Finally, after all elements are repaired and the remaining
elements are copied from the original WooF, the shadow replaces
the original WooF (via a rename) and the repair is complete.

Space Optimization
SANS-SOUCI replays Put and Get dependencies directly when con-
structing a shadow. However, when a Sync dependency is identified,
SANS-SOUCI creates a separate mapping of the event’s seq_no and
the correct sequence number in the history that was returned when
the application used the “current” latest sequence number in its
original execution.

This contextualization is necessary to effect a space-saving opti-
mization. SANS-SOUCI constructs the shadow in one pass without
making a complete copy of all program state. Instead, it shadows
only the state that is causally dependent on the data being repaired.
Thus, it builds the shadow only by appending data that is dependent
on either data occurring previously in the shadow or state that is
unshadowed (i.e. state that contains no appends that are causally
dependent on the data being repaired).
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In either case, a Get dependency is correctly satisfied because it
is identified by WooF and sequence number (either in the shadow
or in the uncopied state). The “latest” sequence number is likewise
correct if it refers to the shadow. However when a put to the shadow
depends on the latest sequence number in state that does not require
repair (is unshadowed) this latest sequence number is current to the
application and not with respect to the application’s history. Thus,
the Sync dependency represents a space-saving optimization op-
portunity because it allows SANS-SOUCI to avoid a complete copy
of all previous program state into a shadow. However it requires
extra “bookkeeping” to ensure the correct contextualization.

Total versus Causal Ordering During Replay
Note that the current SANS-SOUCI implementation generates a
correct causal ordering in the repaired WooFs even though each
namespace log records a specific total order of events in its names-
pace. It is possible, within a single namespace, to reproduce the
total order that occurred, but we elected to forego this additional
level of replay accuracy for two reasons.

First, it is only possible to make a total order guarantee within
the context of a single namespace (i.e. as recorded by a single log).
For applications spanning namespaces, no such guarantee is possi-
ble because CSPOT does not use a centralized log in a distributed
deployment. However, it may be possible to make such a guarantee
in a future implementation that uses a system such as Chariots [17]
to implement external consistency.

Secondly, even within the context of a single log (e.g. a single
namespace) preserving the total order would not permit handler
replay directly. That is, the current implementation of SANS-SOUCI
literally refires CSPOT handlers during replay without further syn-
chronization. It is possible that during the original program’s exe-
cution, events generated by a single handler may have interleaved
with events generated by other unrelated (but concurrently exe-
cuting) handlers in the namespace. The namespace log correctly
captures this interleaving but to reproduce it, each WooFPut() call
in a handler would need to be synchronized with unrelated events
in the log. The replay algorithm would need to pause (logically)
after every put in every replayed handler, and determine whether
non-dependent state (to reproduce the total order exactly) should
be copied into the shadow prior to the next put. Because this addi-
tional synchronization would only be warranted for applications
without cross-namespace dependencies, we felt it to be unnecessary
overhead in an implementation of SANS-SOUCI for CSPOT .

Nonetheless, it is clear from our experience with the initial imple-
mentation of SANS-SOUCI that it may be possible to make stronger
ordering guarantees when we consider implementing it for other
FaaS platforms and runtime systems. The utility of such guarantees
is the subject of our ongoing and future work.

Additional Challenges for SANS-SOUCI and IoT
This initial implementation of SANS-SOUCI for CSPOT exposes
some important challenges for replay in an IoT setting. First, as
described previously, CSPOT is like commercial FaaS systems in
that it implements a model in which each state update has exactly
one cause (each update is attributable to a single handler). This
design feature makes causal ordering unambiguous and facilitates
dependency tracking, but it is restrictive and can be cumbersome

for the programmer. Often, one event is logically triggered either
by any one or more antecedent events (the logical “or” of input
dependencies) or by a complete set of input dependencies (the
logical “and”). In an CSPOT application, the hapless programmer
must encode these relationships explicitly in the handler logic rather
than expressing them as a series of “guards” on handler triggers.
However, more generally, this prototype of SANS-SOUCI does not
need to address “joins” in the repair graph because CSPOT does not
encode them (by design) in the application execution flow.

The careful reader will also notice that the current implementa-
tion logically may require a pause in application execution. First, if
the application continues to execute while repair is taking place,
it may trigger functions that create new dependencies on repaired
data that is not captured in the current repair graph. If the im-
plementation simply copies the state updates generated by these
functions from the original to the shadow, the shadow will contain
unrepaired dependencies. Thus, the implementation must lock the
namespace and make a final “check” to determine if new state, de-
pendent on repaired state, has been added by the application since
the repair graph was generated. If it has, the repair can either com-
plete while the namespace is locked, or the repair can be abandoned
and retried thereby including the newly arrived dependencies in the
repair graph. Also, if any of the original WooFs “wrap around” the
circular storage abstraction, thereby overwriting needed history,
the SANS-SOUCI repair will fail. There is also a moment at which
the repaired shadow WooF must replace the original atomically.
Lastly, while SANS-SOUCI uses append-only data structures itself,
if the system fails during a repair these structures must be parsed
so that the repair can continue from the point where it left off.

The prototype implementation does not address some of these
synchronization issues. It does synchronize the replacement of the
original WooFs with their shadows by locking the entire namespace
during the rename. However it abandons the repair, unlocks, and
retries if it detects dependencies that were not part of the repair
graph at the start of the repair. Also it does not pause the application
when it detects a wrap-around in the WooF or log storage space
nor does it check to determine whether the state necessary to effect
a repair is available before repair begins. Instead, it recognizes
whether the needed sequence numbers are available “on the fly”
and if it encounters needed-but-missing history, it correctly fails
the repair without causing the application to fail. Thus, a replay
could be indefinitely postponed in the prototype implementation.

Moreover, while it could continue a repair aftermid-repair failure,
we have not yet implemented the logic necessary to effect such a
recovery. Thus, it removes all shadow state and restarts the entire
repair process if it fails mid-repair. Finally, replay is eventually
consistent across namespaces. It is possible to implement strong
consistency but SANS-SOUCI will require a distributed commit
protocol to replace WooFs with their shadows as a distributed
transaction.

Note, also, that the SANS-SOUCI prototype generates each shadow
using append-only updates in the same way that the original WooFs
were constructed. As an alternative, it is possible to first copy all
the unaffected elements from the original WooFs to the appropriate
place in each shadow and then to “fill in the holes” using replay.
We chose to preserve append-only semantics in the first prototype
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of SANS-SOUCI for durability reasons, but we plan to explore the
alternative as a possible optimization.

We do not, as yet, have enough experience with SANS-SOUCI
“in the wild” to be able to judge the effects of these implementation
properties or profitable optimizations. For example, as a debugging
aid (e.g. to experiment with handler replacement using historical
data) preserving the total order of event replay (at the expense of
resiliency) may be warranted whereas in a data integrity setting
the specific order of unrepaired data in WooF may not matter. The
current SANS-SOUCI implementation for CSPOT will serve as a
vehicle for investigating these questions in our future work.

4 EVALUATION
We evaluate SANS-SOUCI using two serverless applications orig-
inally developed for CSPOT. We use these applications to show
SANS-SOUCI ’s capability to repair the application history and to
compare the performancewith andwithout SANS-SOUCI integrated
with CSPOT. These applications are designed to run on edge and
cloud resources that relatively well-provisioned memory, disk, and
operating system capabilities. In particular, they require numerical
libraries that are not available or are too large to be hosted across a
spectrum of device scales.

Thus, we also implemented a set of micro-benchmarks that are
more portable than the IoT applications to further investigate the
performance overhead introduced to each CSPOT API call by SANS-
SOUCI across device scales. We first overview our experimental
methodology along with the applications and micro-benchmarks,
and present our empirical results.

Our results focus on the overheads introduced by SANS-SOUCI
with respect to application functions rather than end-to-end appli-
cation performance to avoid an overly optimistic assessment. For
example, the Temperature application (described below) executes
on a 5-minute duty cycle when deployed for production use. In
one deployment, it has been in continuous operation for almost 18
months. During that period, there have been several outages where
SANS-SOUCI could have effected a repair. Had it been available,
the total time required to repair these outages would have been
approximately 50 seconds over the entire 18 month time period.
The long-lived nature of the IoT applications implemented using
CSPOT, characterized by possibly intensive computations executed
on relatively long duty cycles could obscure the true “costs” as-
sociated with SANS-SOUCI. Thus, we study the overheads on an
application component basis rather than as a fraction of end-to-end
execution performance.

4.1 Experimental Methodology
We use a cloud environment, a Raspberry Pi device (representing
an edge computing device), and an ESP8266 microcontroller to eval-
uate the SANS-SOUCI implementation. To evaluate the applications,
CSPOT is installed on a campus-level private cloud (approximately
1500 cores) managed using Eucalyptus 4.2.28. We use a m3.2xlarge
instance type having 4 CPUs (each 2.8 GHz) and 4GB of memory
and Eucalyptus is configured to use KVM and Virtio for VM host-
ing. The instances are located in the same availability zone which
interconnects physical hosts using switched 10Gb Ethernet. Each
8http://www.eucalyptus.cloud

Figure 5: The Temperature prediction application structure

VM instance runs CentOS 7.6 and Docker 18.09 as the container
engine. The portable micro-benchmarks run on the same cloud
environment and a Raspberry Pi 3 Model B+ device. The device
has Raspbian 9 installed and has an ARM Cortex-A53 1.4GHz CPU
and 1GB SRAM. To host serverless platform, we modified CSPOT
version 1.0 to include necessary logging to implement SANS-SOUCI.
We also run the benchmarks on the ESP8266 microcontroller which
has an 80 MHz RISC CPU with 80 KB of memory and 4 MB of
flash storage. The microcontroller runs CSPOT as a native operat-
ing system. The source code for CSPOT, SANS-SOUCI, the sample
applications, and the micro-benchmarks are open sourced 9.

The first sample application implements a “virtual” meteorolog-
ical temperature prediction sensor using the on-board CPU ther-
mometer. To avoid the need for an additional external thermometer
(thereby freeing an I/O port on simple IoT devices) the applica-
tion monitors internal CPU temperature and regresses it against
temperature readings (employing a number of data conditioning
techniques to improve the regression) taken from a weather station
or remote thermometer (shared among all IoT devices in a deploy-
ment). In this paper, we use a Raspberry Pi as the IoT controller to
aid in instrumentation and debugging and an externally connected
DHT 10 humidity and temperature sensor as “ground truth.” 11

The data conditioning and regression are numerically and memory
intensive computations. Thus, the typical application deployment
sends CPU temperature measurements either to an edge cloud (e.g.
a small x86 cluster running private cloud software) sited in an out
building, a private cloud, or a public cloud.

Figure 5 shows the structure of the application. To evaluate
SANS-SOUCI, we use two VM instances to host the application in
the private cloud. One instance stores the CPU temperature read-
ings and generates and stores the “virtual” sensor values (i.e. uses
the regression coefficients to produce a “predicted” outdoor tem-
perature using CPU temperature as the explanatory variable). The
other instance stores the DHT sensor readings and computes and
stores the regression coefficients when ever a new “ground truth”
reading is available. The application uses the CSPOT WooF storage
abstractions and event handler mechanisms described previously
in Section 3.2.

When a new CPU temperature reading is put to the CPUWooF, it
triggers a prediction handler. The handler gets the latest regression
coefficients (erroring out if there are none yet), generates a pre-
dicted outdoor temperature, puts the result to the prediction WooF.
Asynchronously, when the DHT sensor reports a temperature read-
ing, a thread running on the sensor puts the reading to the DHT

9https://github.ucsb.edu/rich/cspot
10https://www.adafruit.com/product/393
11This sensor synthesis application is used in the field, but when deployed in a non-
experimental setting, the sensor controllers are microcontrollers and not small Linux
platforms.

http://www.eucalyptus.cloud
https://github.ucsb.edu/rich/cspot
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Figure 6: The CPU temperature and DHT sensor readings

Figure 7: The prediction error before and after repair

WooF, thereby triggering the regression handler. The regression
handler uses the latest CPU temperature and DHT sensor readings
to generate new regression coefficients (based on the latest data)
and puts it to the model WooF.

We placed a Raspberry Pi in an outdoor environment and col-
lected four days worth of data to run the application. It sends its
CPU temperature to a private cloud triggering a CSPOT handler
there. The collected data consists of 1152 CPU temperature read-
ings and 1152 DHT sensor readings (one reading every 5 minutes
over four consecutive days). Each run of the application generates
79,316 log events in total. To demonstrate SANS-SOUCI ’s ability to
repair application history, we simulate data blackout (a frequent
occurrence in the real deployments where the microcontroller uses
Xbee 12 radios to communicate) by manually replacing one day of
CPU temperature readings with stale data, as shown in Figure 6.
After feeding the application with the data with the blackout period,
we then use the correct CPU readings that were removed earlier to
repair the application history. Figure 7 shows the prediction errors
before and after the repair. Because of the stale CPU reading, the
error before repair spikes to a maximum of 25 degree Fahrenheit
during the data blackout. However, after repaired, the application
manages to generate predictions with an error within 2 degrees
Fahrenheit. While this test is contrived so that we could run it in a
12https://en.wikipedia.org/wiki/XBee

Figure 8: The Runs Test application structure

controlled environment, it reflects the types of outages that the ap-
plication experiences in its various non-experimental deployments.
Indeed, drop out caused by “late” data delivery in this application
served as one of the motivations for this work.

The second sample application is a CSPOT programming exam-
ple that implements the Wald-Wolfowitz Runs Test13 for pseudo-
random number generators. Its true function is as a CSPOT exem-
plar, illustrating a strategy for translating multi-threaded programs
to the event-driven abstractions implemented by CSPOT, but it also
correctly implements the Runs Test.

Figure 8 shows the structure of the application. The application
consists of three handlers: a handler to generate a stream of random
numbers (denoted R-handler in the figure), a handler to generate
the Wald-Wolfowitz Runs Test statistic (denoted S-handler), and a
handler to generate Kolmogorov-Smirnov14 test statistic comparing
a sample of Runs Test statistics to a sample from a Normal distribu-
tion having the same sample mean and variance (denoted KS test).
This application uses only a single instance in our experiments
although the WooFs and handlers can be distributed. Further, the
pseudo-random number generator we test in this application is the
Mersenne Twister 15 which is known to have good randomness
properties. Thus, “ground truth” is a KS statistic that is less than a
KS critical value comparing the distribution of Runs Test statistics
(over a sample of runs) to a sample from a Normal distribution (hav-
ing the same mean and standard deviation) for significance level
α = 0.05. That is, with a Mersenne Twister pseudo-random number
generator, we’d expect a KS test comparing a sample of Runs test
statistics to a Normal to fail to show a difference at α = 0.05 if the
test is working correctly.

The application is initialized with the sample size and number of
samples to use. When initiated, it triggers the R-handler to generate
a new random number which it puts to a sample WooF. It also
triggers another R-handler, passing an iteration count, by putting
the modified argument structure to the generator WooF.

The R-handler triggers a put to the S-handler when it has accu-
mulated enough data in the sample WooF. The S-handler gets the
values from the sample WooF and computes a Runs Test statistic
which it puts to the Runs-test WooF. After all iterations (each one
producing a Runs Test statistic from a full sample) are finished, the
S-handler triggers the K-handler to get the values from the Runs-
test WooF, generate an empirical sample from a Normal distribution
having the same sample mean and variance as that computed from

13https://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
14https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
15https://en.wikipedia.org/wiki/Mersenne_Twister

https://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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Table 1: Kolmogorov-Smirnov test result

KS stat Critical value

Before repair 0.31 0.192065
After repair 0.15 0.192065

Table 2: Applications average elapsed time in seconds
with and without SANS-SOUCIover 10 separate experiments.
Standard deviations are shown in parentheses.

Temp. App. Runs Test App.

Cloud w/o extra events 115.98s (1.63s) 2.84s (0.12s)
Cloud w/ extra events 118.56s (0.97s) 2.94s (0.09s)
Cloud w/ SANS-SOUCI 118.97s (1.46s) 3.12s (0.15s)

Total replay overhead (time) 2.99s 0.28s
Total replay overhead (%) 2% 10%

the Runs-test WooF values, and to generate a KS test statistic com-
paring the sample from the Normal to the Runs-test WooF values.

For the purposes of evaluation, we use this application exemplar
in two ways. As with the “virtual” temperature sensor application,
we show that SANS-SOUCI is able to repair application history
by replaying dependent events with new data. We also show how
SANS-SOUCI can also be used as a development or debugging aid
by replaying application execution after replacing a handler with
a different version. To demonstrate this ability, we intentionally
“broke” the random number generating function in the R-handler
by having it replace every fourth value with zero in the stream
of values it produces. Then, we fixed the R-handler, and use the
same arguments to replay the application again. By comparing
the output before and after the repair, we can see the different KS-
test results of the numbers generated by two versions of random
number generator.

Table 1 shows the KS-test before and after the repair. Before
repair (i.e. with the broken generator), the KS statistics correctly
shows that the sample of Runs test statistics differs from a Normal
at significance level α = 0.05. However, after the repair, the KS
stat becomes 0.15, which is less than the critical value, i.e., the “fix”
repaired the application.

4.2 Replay Overhead
To evaluate replay overhead, we inserted timers at the entry and
exit of all handlers that are triggered to time the application. Each
application was executed 10 times on the campus private cloud
with correct data input and working handler. After each run, the
sum of all handler execution time was recorded.

Table 2 shows the average execution time with SANS-SOUCI and
without SANS-SOUCI. The original CSPOT does not log PUT events
that do not require a handler, GET, and LATEST_SEQNO events
(these are needed by SANS-SOUCI for dependency tracking but
not by CSPOT to implement handler activation). We separate the
overhead introduced by SANS-SOUCI into the overhead associated
with the necessary additional logging and the overheads associated
with SANS-SOUCI processing during replay.

For the temperature prediction application, each run takes 115.98
seconds on average with the unmodified version of CSPOT. After
adding the logging of handlerless PUT, GET, and LATEST_SEQNO

Table 3: Average execution time in milliseconds over 10 ex-
periments for each task in repair request. Standard devia-
tions are shown in parentheses.

Task Execution time

Dependency discovery 2632ms (76ms)
Merging global log 1426ms (61ms)

events, the average time increases to 118.56 seconds. With SANS-
SOUCI fully implemented, each run takes 118.97 seconds on average,
that is 2.57% of execution overhead. This overhead mainly comes
from the additional logging required by SANS-SOUCI. If compared
to the CSPOT version which logs these events (but does not im-
plement other SANS-SOUCI functionality), the overhead is merely
0.35%. For the random number generator application, each run takes
2.84 seconds in average without extra logging and 2.94 seconds
with extra logging. With SANS-SOUCI fully implemented, each run
takes 3.12 seconds on average, which translates to 3.52% of logging
overhead and 6.12% of SANS-SOUCI execution overhead.

For the Runs Test application, the overheads are lower in absolute
terms but higher as a percentage (approximately 10% on average).
Its computational intensity is significantly less than for the Tem-
perature application meaning the overheads associated with the
runtime environment are a larger fraction of overall execution time.

4.3 Log Processing Overhead
In this section, we describe the overhead associated with generating
the repair graph necessary to enable replay. To generate the graph,
SANS-SOUCI must “discover” the causal dependencies associated
with the “root” of each repair. If the application uses only a single
namespace, these dependencies are recorded in the log associated
with the namespace. However, when the application spans names-
paces, SANS-SOUCI first gathers the logs for all the namespaces and
merges them into a global log to create a total order of application
events that preserves causal order. It then uses the global log to
identify the causal dependencies associated with each “root.”

To understand the performance of dependency discovery and
log merging, we run the Temperature application on the campus
cloud described in the previous section and time the repair request
10 times. Table 3 shows the recorded time for each task.

Recall that with SANS-SOUCI enabled the Temperature appli-
cation generates 79,316 logged events (which CSPOT stores in ap-
proximately in 55 megabytes) each run covering four days of mea-
surement history. Parsing this event log to discover and build the
repair graph requires approximately 2.6 seconds on average. If the
application uses two separate name spaces (one containing CPU
measurements and the predicted CPU values and the other con-
taining all other WooFs) then average time to merge the logs from
these namespaces is 1.4 seconds. These results are both application
and deployment specific. That is, the complexity of the repair graph
and also the distribution of WooFs among namespaces will affect
both the discovery and merge times. However as an example, they
indicate that the overhead associated with a repair is low.

Specifically, from Table 2, a SANS-SOUCI replay adds approxi-
mately 3 seconds to a 115 second execution time to the Temperature
application when using unmodified CSPOT . Each repair will then
impose an additional 2.6 seconds to parse the log and, if spanning
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Table 4: Micro-benchmarks

Name Description

Put Put 1,000 elements to the WooF
Get Randomly get 1,000 elements from the WooF
GetLatestSeqno Get the latest sequence number 1,000 times

Replication Replicate a 4k data object from edge device
to cloud

namespaces, a further 1.4 seconds to gather and sequence the global
log. Even when a repair is effected, the overall additional overhead
introduced by SANS-SOUCI is under 10% for this application.

4.4 Micro-benchmarks
To better understand the overhead imposed by SANS-SOUCI on
each CSPOT API call along with the SANS-SOUCI performance
during the repair, we implemented a set of micro-benchmarks as
listed in Table 4. We ran these micro-benchmarks 100 times (each
consisting of a batch of 1000 invocations) and recorded the average
with three versions of CSPOT : the original version without extra
dependency events logged, with the additional events needed by
SANS-SOUCI logged, and with the SANS-SOUCI fully integrated.
We also ran the micro-benchmarks, repaired the entire benchmark
data history using the same input, and timed the operations during
the full repair. In each micro-benchmark, we insert timers at entry
and exit of the each application function. We present the average
execution times and standard deviations in microseconds (us) in
Table 5 for each micro-benchmark. Note that no additional PUT
events are required by SANS-SOUCI for the Put benchmark making
the timings with and without these events the same.

On the cloud, adding SANS-SOUCI events introduces roughly
6us, on average. On the Raspberry Pi, adding extra logging adds
roughly 15us, on average, while on the microcontroller the addition
overhead due to logging is 16us, on average. SANS-SOUCI doesn’t
seem to introduce any overhead to WooFPut and WooFGet, mainly
because SANS-SOUCI only needs to check whether the WooF is in
repair mode (i.e. a boolean test). If so, the put and get request will be
redirected to the shadow WooF. If the WooF is not being repaired,
there’s no additional performance overhead introduced. However,
if the WooF is being repaired, CSPOT needs to open the shadow
WooF and redirect the request to it, hence the overhead. For each
WooFPut request, the overhead during repair is 42us on the cloud,
176us on Raspberry Pi, but we did not measure any noticeable
overhead on the microcontroller. For each WooFGet request, the
overhead is 16us on the cloud, and 6us on the microcontroller, but
we did not observe overhead on Raspberry Pi.

For WooFGetLatestSeqno request, since it needs to record the
mapping between the callerWooF’s sequence number and the callee
WooF’s latest sequence number, even if the callee WooF is not in
repair mode, there is a slight overhead introduced. During repair,
WooFGetLatestSeqno also needs to find the latest sequence number
in the mapping corresponding to the caller WooF’s sequence num-
ber, introducing more overhead. In the cloud environment, to im-
plement SANS-SOUCI, each WooFGetLatestSeqno request requires
an additional 10us. During repair, the overhead doubles to 20us. On
the microcontroller, we have not yet implemented the sequence

number mapping for the Sync dependency, so the overhead for
WooFGetLatestSeqno is left out. That is, the current SANS-SOUCI
implementation for the microcontroller stops the application during
repair, making the Sync dependency superfluous. Again, we did not
observe any overhead on Raspberry Pi and are still investigating
the reason why SANS-SOUCI does not seem to introduce overhead
to WooFGet and WooFGetLatestSeqno on this platform.

Finally, we also evaluate the end-to-end overhead from edge de-
vice to a private cloud. In the “Replication” benchmark, we installed
CSPOT on a Raspberry Pi located in a research laboratory located
on the same university campus hosting the private cloud. The net-
work interface attached to the Raspberry Pi is a 1 Gb/sec Ethernet
and all traffic between this edge device and an instance in the cloud
running CSPOT traversed the shared campus network. Both edge
and cloud systems use NTP 16 to synchronize their internal clocks
using a campus NTP server.

The benchmark first puts an object with 4 kilobyte payload to
the Raspberry Pi, triggering a handler which reads the local clock
to generate a timestamp that it embeds in the 4K payload. It then
forwards the object to the private cloud instance. Upon its arrival,
a handler is triggered on the cloud instance which takes another
timestamp. We then record the difference of the timestamps as
the end-to-end latency to replicate a 4K data object from the edge
device to the private cloud.

We ran the benchmark, requested a repair, and then ran it again
to evaluate the overhead SANS-SOUCI introduces to a simple cross-
network replication. We repeated the process 100 times and show
the average in Table 6. It takes 39.32 milliseconds to replicate a data
object from edge to cloud, on average. To replay the replication
and repair the WooF requires 40.27 milliseconds. That is, for a
simple replication task which is not computationally intensive,
SANS-SOUCI introduces additional 0.95milliseconds, which equates
to 2.4% of overhead.

5 RELATEDWORK
Our work builds upon and extends a large body of related work on
causal dependency tracking and record/replay. Causal dependency
tracking is useful for a wide variety of applications including debug-
ging, provenance tracking, auditing, speculation, and accounting,
among others [10, 11, 14, 18, 19]. [11] provides such support for
serverless applications through cloud services and across cloud re-
gions and public cloud deployments. [14] combines causal tracing
with dynamic instrumentation for user-guided, low-overhead ap-
plication monitoring. We combine it with append-only, persistent
data structures, and the FaaS programming model, to enable fast
data repair and replay in distributed, heterogeneous settings.

Some record/replay systems leverage causal relationships to facil-
itate distributed debugging and exploration [1–4], and deterministic
replay and simulation [5, 12, 16]. The authors in [12] checkpoint
applications and intercept system/API calls to facilitate simulated
and deterministically reproduced runs of a program. Determinism
is captured using a logical clock inserted into messages. The au-
thors of [16] investigate retroactive programming – support for
reprogramming application histories. They combine the use of FaaS
and causal event capture but change the FaaS programming model

16http://www.ntp.org
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Table 5: Average Micro-benchmarks performance per 1,000 requests. The number shown represents the time for each CSPOT
call. The units are microseconds and the standard deviations are shown in parentheses.

Put Get GetLatestSeqno

Cloud w/o extra events 143.42us (2.57us) 136.50us (2.56us) 17.53us (1.72us)
Cloud w/ extra exents - 142.94us (3.51us) 23.32us (1.66us)
Cloud w/ SANS-SOUCI 143.72us (3.55us) 142.76us (3.45us) 29.73us (2.34us)
Cloud during repair 185.40us (2.51us) 157.89us (1.10us) 38.42us (7.72us)

Rpi w/o extra events 504.62us (3.92us) 507.28us (4.49us) 103.18us (2.14us)
Rpi w/ extra events - 521.20us (8.84us) 118.49us (2.71us)
Rpi w/ SANS-SOUCI 506.24us (10.44us) 523.14us (5.61us) 118.51us (2.61us)
Rpi during repair 681.91us (11.81us) 519.75us (4.61us) 116.19us (2.03us)

ucontroller w/o extra events 26.07us (0.17us) 7.64us (0.01us) -
ucontroller w/ extra events - 23.45us (0.15us) -
ucontroller w/ SANS-SOUCI 26.45us (0.17us) 23.62us (0.13us) -
ucontroller during repair 26.75us (0.19us) 29.9us (0.15us) -

Table 6: Average elapsed time inmilliseconds (over 100 runs)
to replicate a 4k data object from an edge device to a private
cloud. Standard deviations are shown in parentheses.

Replication time

Normal run 39.32ms (3.16ms)
Replay 40.27ms (3.46ms)

by integrating Command Query Responsibility Segregation at the
function level. Function types are partitioned into those that update
state, view state, perform retrospection, and perform retroaction.
SANS-SOUCI in contrast, focuses only on distributed data structure
repair (and dependency replay) and so is significantly simpler, does
not change the FaaS programming model, is fully distributed, and
can be overlayed on any serverless system that supports causal
event logging and state updates via versioned data service APIs.

6 CONCLUSION
We explore a new methodology for implementing data repair in
IoT applications that use the “Functions as a Service” (FaaS) pro-
gramming model and/or computing infrastructure. We describe the
process of repair in situ, taking advantage of stateless function exe-
cution to “replay” an application from the point in its state update
history where a faulty data item is to be replaced. To do so, the
methodology relies on the availability of causal event tracking and
versioned state updates in the underlying infrastructure.

We evaluate a prototype implementation of SANS-SOUCI using
a portable FaaS infrastructure specifically designed for distributed
IoT applications. It implements append-only state update semantics
(which SANS-SOUCI treats as a history of application state updates)
and causal event tracking (to facilitate debugging of a highly con-
current distributed IoT applications). Our results show that the
SANS-SOUCI can achieve effective data repair while introducing
overheads typically less than 10%.
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