
Inlining of Virtual Methods

David Detlefs and Ole Agesen

Sun Microsystems Laboratories?

1 Network Drive
Burlington, MA 01803-0902, USA

{david.detlefs,ole.agesen}@sun.com

Abstract. We discuss aspects of inlining of virtual method invocations.
First, we introduce a new method test to guard inlinings of such in-
vocations, with a different set of tradeoffs from the class-equality tests
proposed previously in the literature. Second, we consider the problem
of inlining virtual methods directly, with no guarding test, in dynamic
languages such as Self or the JavaTM programming language, whose se-
mantics prohibit a static identification of the complete set of modules
that comprise a program. In non-dynamic languages, a whole-program
analysis might prove the correctness of a direct virtual inlining. In dy-
namic languages, however, such analyses can be invalidated by later class
loading, and must therefore be treated as assumptions whose later viola-
tion must cause recompilation. In the past, such systems have required
an on-stack replacement mechanism to update currently-executing invo-
cations of methods containing invalidated inlinings. This paper presents
analyses that allow some virtual calls to be inlined directly, while ensur-
ing that invocations in progress may complete safely even if class loading
invalidates the inlining for future invocations. This provides the benefits
of direct inlining without the need for on-stack replacement, which can
be complicated and require space-consuming data structures.

1 Introduction

One of the most important jobs of a programming language is to provide good
semantic abstraction boundaries. One of the most important jobs of a program-
ming language implementation is to remove these abstraction boundaries to the
extent necessary to permit efficient execution. Methods, one of the distinguish-
ing characteristics of object-oriented languages, are a very important abstraction
mechanism. By encapsulating functionality in a method, a programmer leaves
open the possibility of reimplementation of the method, adding new functional-
ity without requiring changes at call sites. For example, consider a Point class
? Sun, Sun Microsystems, Java, and HotJava are trademarks or registered trademarks

of Sun Microsystems, Inc. in the United States and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems,
Inc.

Rachid Guerraoui (Ed.): ECOOP’99, LNCS 1628, pp. 258–277, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Inlining of Virtual Methods 259

whose Cartesian coordinates are given in publicly accessible x and y fields. In
some application it is found desirable to obtain the polar coordinates of points.
In extending Point to accommodate this requirement, we decide to cache the
result for efficiency, and only recompute it when the x or y coordinate changes.
Since the fields are public, this requires some editing everywhere x or y are mod-
ified. If, on the other hand, the fields had been private, and public uses had been
mediated by get and set methods, then the recomputation of the polar form
would be a simple local change to the Point class.

At present, many programmers recognize the wisdom of such observations,
but avoid the use of the extra abstraction. For immature programmers the reason
may be to avoid some typing, but even mature programmers may avoid abstrac-
tion because they are (legitimately) wary of extra cost. Thus, if we are to allow
programmers to write in the most modular and robust style without incurring a
performance penalty, we must ensure that simple methods execute as fast as if
the extra abstraction layer were not present. In practice, this dictates that such
methods be inlined.

The above remarks apply generally to most programming languages. Object-
oriented languages, such as Simula [3], C++ [26], Modula-3 [22], Smalltalk [14],
Eiffel [21], Trellis [24], CLOS [13], and the JavaTM programming language [15],
to name just a few, complicate inlining, because methods are usually virtual.
Virtual methods are defined in one class, but may be overridden in subclasses of
that class. The method actually invoked at a call site depends on the dynamic
type of the receiver object.

Inlining of virtual methods is difficult because a given call site may invoke
several different actual methods over the course of a program execution. Thus,
it may be impossible to uniquely identify code to inline. However, in many
programs some virtual call sites actually execute only one method, i.e., are
monomorphic rather than polymorphic. Some call sites are provably monomor-
phic; others are “almost monomorphic,” in that several methods might be exe-
cuted, but one is executed much more frequently than the others.

In the latter situation, a strategy that has been used previously in the liter-
ature is to select code to be inlined, then generate a test to guard the inlined
code to ensure that it is correct for the dynamic type of the current receiver.
If the test fails, the normal virtual call mechanism is used. The guard test is
usually a class test, verifying that the class of the receiver object matches a par-
ticular class. One contribution of this paper is to introduce an alternative test,
a method test that compares the address of the method inlined with the address
of the virtual method to be executed. This incurs the overhead of an extra load,
but is more robust, and in some ways more suited to dynamic compilation.

Most analyses that prove a call site monomorphic require interprocedural
techniques. Such analyses work best for languages where the full set of compo-
nents that comprise a program is known statically. Languages with more dynamic
semantics make such analyses more difficult. In the Java programming language,
for example, Class.forName finds and loads a class with a dynamically com-



260 D. Detlefs, O. Agesen

puted name. Use of this facility complicates interprocedural analyses, since new
classes and methods may be added at runtime.

This liability can turn into something of an asset. In an environment with
dynamic compilation, we have the freedom to make assumptions based on the
code that has been executed so far, and recompile when these assumptions are
violated. Thus, if some method invocation o.m2() in a calling method m1 can
be bound to a single implementation among the classes loaded at the time m1 is
compiled, we might choose to inline this invocation directly (i.e., without a guard
test), recording the fact that the compilation of m1 depends on this assumption
about m2. If some class that overrides m2 is loaded later, and an instance of
that class could become the receiver o in the invocation o.m2(), then we must
recompile the caller m1.

There is a fly in the ointment here: what if an invocation of m1 is being
executed when the assumption about m2 is violated? Concretely, consider m1 of
the form:

void m1() {
while (true) {

O o = getSomeO();
o.m2(); // Call site is inlined.

}
}

In the worst case, getSomeO could query the user for the name of a new subclass
of O, load that class, and create and return an instance. Such a class may of
course override m2, invalidating the inlining of m2.

In the Self system, which did much pioneering work in the field of dynamic
compilation [16], this complication is dealt with by a mechanism called on-stack
replacement [18]. In Self, there are deoptimization points within each method,
at which the source state of the method, the state of the method’s variables
as defined by the interpretation of the source code, can be recovered from the
machine state maintained by the compiled code. When a compilation assumption
is violated, any method currently in progress must be at such a deoptimization
point (or, in a multi-threaded system, reach one within bounded time). The
Self system then recovers the source state, recompiles the method without the
violated assumption, and also computes from the source state the corresponding
machine state at the deoptimization point for the new compilation (which may,
of course, have completely different machine state variables.) The new state
replaces the old state for the method “on the stack.”

There are several reasons to be cautious about such a system. In the Self
implementation, the compiler produces voluminous data structures to enable
deoptimization.1 Deoptimization points also introduce constraints on code mo-
tion: for example, if a deoptimization point separates two source code writes,

1 Though, in fairness, deoptimization was also used to enable debugging of optimized
code, and was made possible more frequently than would be required for the purposes
of this paper.



Inlining of Virtual Methods 261

then they can’t be reordered by a code scheduler. Finally, veterans of the Self
project recount how much of the complexity of the system is related to deopti-
mization and reoptimization.

This brings us, finally, to the second contribution of this paper. We present
a property of receiver expressions called preexistence. Virtual method invoca-
tions whose receivers have this property can be inlined directly, and no on-stack
replacement mechanism is needed to handle invocations in progress when the as-
sumptions on which the direct inlinings depend are broken. We present two static
analysis techniques that can prove preexistence in a significant number of cases.
We present measurements indicating the efficacy and costs of these analyses, and
the speedups they obtain in an actual Java virtual machine implementation.

2 Related Work

Several techniques have been used to implement virtual calls. The original “Blue
Book” implementation of Smalltalk [14] used a hash table mechanism to look
up method names at runtime. Object-oriented languages with more constrained
type systems were also developed; the type constraints allow more efficient vir-
tual method invocation, using what are called vtables in C++ [26]. With this
technique, each method is statically assigned an index that is constant across all
classes that implement the method. A virtual call jumps indirectly to the code
address in the vtable of its receiver object at the index corresponding to the
invoked method.

Smalltalk systems pioneered dynamic compilation techniques [8], increasing
the efficiency of execution. Thus, the relative cost of method lookup increased, so
inline cache techniques were developed to speed up calls. An inline cache records
the class of the last receiver object observed at the call site, and jumps directly
to the implementation of the method for that class. A method prologue validates
that the dynamic type of the receiver matches the expected type; if this test fails,
a slower method lookup forwards the call and rebinds the call site cache to the
class of the current receiver. Hölzle presents a generalized polymorphic form of
inline caches [17]. It turns out that on some modern architectures the high costs
of indirect calls make inline cache techniques attractive even for languages for
which vtables could be used [10].

Several systems perform analyses to statically bind virtual calls, allowing
them to be inlined or implemented with fast direct calls. Dean et al. use a class
hierarchy analysis to statically bind virtual calls [7] in the Vortex system [6].
Class hierarchy analysis is a fairly inexpensive process, that, given a complete
program, determines when the static type of a receiver implies that an invoked
method has only a single implementation in the set of classes used in the program.
More expensive type flow analyses attempt to tighten the static type constraint
on the receiver object, ideally to a set small enough to determine the invoked
method. Chambers et al. present such an analysis [1]. Fernandez [12] describes
a link-time optimization system, and Diwan et al. [9] describe WPO, a “Whole
Program Optimizer.” Both systems are for Modula-3 programs and perform both



262 D. Detlefs, O. Agesen

of kinds of analyses. In addition, several languages, such as Trellis, Dylan [11],
and the Java programming language, have linguistic mechanisms that allow the
programmer to declare a class sealed, that is, ineligible for further subclassing.
This enables static binding.

The Self system continues the Smalltalk research path of run-time compila-
tion, adding more aggressive optimization, including extensive method inlining
[16], whose correctness is often maintained by the previously mentioned on-stack
replacement mechanism. Dean’s thesis [4] describes several inlining techniques
that use class-based guard tests to ensure correctness. These techniques include
efficient subclass tests that offer some of the same benefits as the method test
of the present paper. Also, Dean defines the concept of the set of classes shar-
ing the same implementation of a method, but uses this concept only in static
analyses, not dynamically to implement a guard test. Vitek, Krall, and Horspool
[27] describe data structures that support time- and space-efficient implemen-
tations of subtype tests. Some of these techniques require potentially expensive
recomputation when new classes are added to the system.

The current work uses contributions from these research directions. The sys-
tem in which we did our experiments speeds virtual calls with inline caches. The
work on different kinds of inlining guards extends the previous work on inlin-
ing in dynamic systems. The work on direct inlining of virtuals combines a new
static analysis with dynamic recompilation in a novel way.

Another line of related work which the current paper does not explore is
specialization. The idea is that methods of a class are cloned, so that if method
foo, invoked on some object of class C, calls method bar on the same object,
it may call the clone of method bar for C directly, rather than indirectly, and
may possibly inline the call. In a variation, a compiler may introduce type tests
early in a method, creating two versions of downstream code, one of which
assumes the test. Plevyak and Chien [23] describe a whole-program analysis
that employs specialization to improve the precision of type-flow analysis. This
enables the computation of a precise global control-flow graph from which most
method calls can be statically bound. Chambers and Ungar [2] describe the use
of customization (i.e., specialization on the type of the receiver object) in an
early version of Self. Another example of specialization is described by Dean et
al. [5]. Specialization is an interesting area of research, but one where a number
of competing concerns (execution speed vs. code size, for example) must be
balanced, and we did not explore it.

3 Method Tests and Class Tests.

As mentioned in the introduction, most systems that use virtual inlining have
guarded the inlined code with a class test verifying that the receiver has a par-
ticular class. In pseudo-machine code, the code generated at such an inlined call
site could be:



Inlining of Virtual Methods 263

r0 := <receiver object>
r1 := load(r0 + <offset-of-class-in-object>)
if (r1 == <address-of-expected-class>) {

<method inlining>
} else {

r2 := load(r1 + <offset-of-method-in-class>);
call r2

}

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

C D
m

E
m

B

F

A
m

Fig. 1. An inheritance hierarchy

The basic problem with the class test is that it sometimes forces the non-
inlined path to be taken unnecessarily. Assume we have the classes shown in
figure 1. Class A defines a method m, classes B and C each extend A without
overriding m, class F extends C still without overriding m, and classes D and E
extend A and do override m. Consider a call site that invokes the method m on a
receiver whose static type is A. We might wish to inline such an invocation. The
inlined code for A.m is appropriate when the dynamic type of the receiver is any
of A, B, C, or F, but incorrect if the dynamic type is D or E. A single class test
will cover only one of the permitted classes A, B, C or F. One could convert the
test into a disjunction of these possibilities, but only at some cost in speed and
code density.

To solve this problem, we have invented an alternate test, called the method
test, to guard inlined virtual methods. The class test imposes the reasonable
requirement that each object contain a pointer to its class information. The
method test imposes a further assumption, that the class information includes a
vtable. A call site inlined with a method test guard will look like the following:



264 D. Detlefs, O. Agesen

r0 := <receiver object>
r1 := load(r0 + <offset-of-class-in-object>)
r2 := load(r1 + <offset-of-method-in-class>)
if (r2 == <address-of-inlined-method>) {

<method inlining>
} else {

call r2
}

The method test obtains a pointer to the class information from the object,
and then loads, from the class’ vtable, the address of the code that would be
invoked by an ordinary virtual call. The test compares this code address with the
address of the method that was inlined. If they match, it is obviously permissible
to execute the inlining. A method test can be used to good effect in the situation
described previously. Suppose we decide to inline A.m because only classes A, B,
and C, which share a single implementation of method m, are loaded when the
caller is compiled. We can guard the inlining with a method test that covers
all three receiver classes. If the overriding classes D and E are loaded later, the
method test correctly chooses not to execute the inlined code for these receiver
classes. Further, if the non-overriding class F is loaded later, the inlining will be
executed for this receiver class. It is hard to see how this could be accomplished
using class tests. Thus, the method test has two advantages over class tests:
an efficiency advantage, in cases where one method test succinctly represents
the results of several class tests, and a robustness advantage, in cases where a
method test generated when only some of the classes in the program have been
loaded stays effective as more classes are loaded.

The method test has another advantage in the particular case of the Java
platform. It is a perhaps seldom-recognized property of the Java virtual ma-
chine’s bytecode instruction set that a method invocation names the definition
of the method that is invoked; the static type of the receiver expression, which
may be more specific than the class that defines the method, is not apparent in
the bytecodes. Consider the following situation:

class A { void m() { ... }; }

class B extends A { // Overrides m.
void m() { ... };

}

class C extends A { ... } // Does not override m

class X {
void y(C c) { ... c.m(); ... }

}

The bytecodes of the method X.y indicate only that the invocation c.m() invokes
the method A.m; the more specific type C of the receiver can be recovered through



Inlining of Virtual Methods 265

an abstract interpretation similar to that performed in the bytecode verification
process [19]. While it may be argued that excellent compilation of JVM bytecodes
will have to recover this information, some JIT compilers will want to optimize
speed of compilation over quality of code produced, and this analysis will impose
some cost.

The missing type information is relevant to the comparison of method tests
and class tests because it makes implementation of a useful class test problem-
atical. In the situation above, use of a class test to guard an inlining of c.m()
would be worse than useless unless we knew the most precise static type of the
receiver: a test against A would always fail! In systems that do not implement a
type-recovery pass, including the system we use, the method test may be used
profitably where the class test cannot.

The imprecise type information may also lead to missed inlining opportuni-
ties. In the example above, if the compiler knows only that the receiver of m is
an A, it would conclude that two methods might be invoked, and possibly reject
the invocation c.m() as a candidate for inlining. However, if the precise static
type of the receiver were known, the compiler would know that the invocation
c.m() always invokes A’s definition of m, and would consider the call site a better
candidate for inlining.

The method test has one obvious disadvantage when compared to the class
test: an extra dependent load on the fast path. Our colleague Alex Garthwaite
notes that instruction scheduling might ameliorate this problem. If several argu-
ments to a method are being computed and moved into argument registers, the
two loads required by the method test can often be separated.

3.1 Method and Class Test Measurements

We now present some measurements of the efficacy of virtual inlining in our
system. Our experiments were performed in a version of the Sun Java r©2 SDK
for the SolarisTM operating system. This environment includes a JIT compiler
that performs inlining. Table 1 shows the programs for which we report measure-
ments. For each benchmark, we report lines of source code (including comments
and other non-code, excluding class libraries), and give a brief description. The
first seven benchmarks constitute the SPECjvm98 suite [25], and the next three
benchmarks were candidates considered for inclusion in SPECjvm98, but were
not chosen for the final suite. The last two benchmarks are derived from real
applications. The VolanoMark benchmark (volano in the tables) consists of
a version of Volano LLC’s VolanoChat internet chat server [20], and a client
program that provides a simulated workload. We ran the client and server on
the same machine, and added together measurements for both programs. The
portBOB benchmark was created by IBM to predict the performance of object
databases written in the Java language. We modified this program to make it
run deterministically.

The measurements are performed on a Sun UltraTM 1 Creator 3D desktop,
which has a 167 MHz UltraSPARCTM processor and 512 megabytes of memory.



266 D. Detlefs, O. Agesen

benchmark lines of code description

mtrt 3799 Multi-threaded image rendering
jess 10579 Version of NASA’s CLIPS expert system shell
db 1028 Search and modify a database
jack 8194 Parser generator generating itself
mpegaudio n/a Decompress audio file
javac 25211 Source to bytecode compiler
compress 927 LZW compression and decompression

richards 3637 Threads running five versions of OS simulator
tsgp 894 Genetic program for traveling salesman problem
si 1707 Interpreter for a simple language

volano 13811 Internet chat server
portBOB n/a Transaction processing benchmark

Table 1. Descriptions of Benchmark Programs.

The compiler only inlines methods that have straight-line control flow, con-
tain no exception handlers or try...finally constructs, and are shorter than
some maximum length (15 bytecode instructions). Recursive inlining halves the
length limit to bound code expansion. Inlining of virtual method invocations fur-
ther requires the call site to be monomorphic with respect to the classes loaded
at the time of compilation. We currently do not use on- or off-line profile infor-
mation to determine when one method dominates at a polymorphic call site. We
also do not inline invocations of methods of interface types, though this would
be a straightforward extension.

We measured three system configurations for each program. The first, our
baseline system, does no inlining of virtual methods. It uses an inline cache
scheme to speed up virtual invocations, so this configuration is no straw man.
The second configuration uses the method test. The third hybrid configuration
combines method tests and class tests: a virtual invocation o.m() is inlined with
a class test when the defining class of m is a leaf class, one with no subclasses (at
the time of compilation), and with a method test otherwise. If no subclasses of the
defining class are loaded later, the class test should be as accurate as a method
test and somewhat cheaper. However, if subclasses are loaded later, the test may
become inaccurate. This hybrid configuration gives us some efficiency/accuracy
comparison of class and method tests.

For each benchmark program, table 2 details the number of virtual call sites
inlined, the fraction that were inlined with a class test in hybrid mode, the
number of executions of all inlined call sites, and the number of invocations
that took the non-inline path using the pure method test and using the hybrid
strategy. The benchmarks are ordered by number of executions of inlined virtual
call sites.

We can make several remarks about the data in table 2. First, the number
of inlined virtual sites varies considerably, by more than an order of magnitude,
from program to program, but the number of executions of those sites varies



Inlining of Virtual Methods 267

benchmark inlined virtual hybrid executions method-test hybrid
call sites class-test % millions non-inline non-inline

execs execs

mtrt 781 30.9 235 0 0

richards 244 41.8 232 0 0

portBOB 359 39.0 18.7 0 2

tsgp 58 51.7 13.2 0 0

jess 211 46.9 8.8 0 0

si 63 54.0 6.3 0 0

db 69 37.7 5.8 0 0

jack 148 27.0 4.3 0 0

mpegaudio 73 31.5 3.2 0 0

volano 329 53.8 2.0 0 6

javac 315 19.0 1.8 412 412

compress 55 47.3 0.001 0 0

Table 2. Comparison of class and method tests for virtual inlining.

much more, by six orders of magnitude. The importance of the efficiency of
virtual inlining tests is magnified by this second number, so we expect to see
larger effects for the programs at the top of this table. Second, the fraction of
call sites at which the class test is used in hybrid mode varies, averaging a little
less than half of inlined call sites for these programs. Third, both kinds of tests
are very accurate for these programs. The hybrid test failed a handful of times
in portBOB and volano; the method test failed only in javac, and the hybrid
test failed identically for that program.

Table 3 gives the performance results for the three configurations. For each
benchmark and configuration we give user time and instruction count. The for-
mer is measured by the operating system, and the latter by accessing on-chip
performance counters. For each of these measurements, we give the percentage
difference with respect to no virtual inlining for the two virtual inlining modes.
Finally, we also measure JIT compilation time and resulting code size. We omit
compilation time for volano, since the server and client processes were running
concurrently, distorting this measurement. The user time measurements should
be treated with some skepticism, since they can vary significantly from run to
run because of random factors such as instruction cache placement. Instruction
counts are usually, if not always, a good predictor of elapsed time, and have the
virtue of being highly repeatable, so that small differences indicate real effects.

The most important conclusion to draw from table 3 is that virtual inlining
with either flavor of test is sometimes quite effective, and in no case decreases
performance. Again, the benchmarks are ordered by frequency of execution of
inlined virtual call sites. As one might expect, the performance improvement
correlates well with this measure. Virtual inlining adds some compilation cost
in most cases, but nothing we consider extreme. Similarly, virtual inlining adds
a small increment in compiled code footprint. Since the previous measurements



268 D. Detlefs, O. Agesen

indicated high accuracy for both tests, one would expect the hybrid test, which
is less expensive when the class test is used, to perform better. This expectation
is borne out by the measurements, but the magnitude of the difference is fairly
small.

benchmark virtual user time percent instructions percent compilation code size
inlining (sec) diff. (millions) diff. (ms) (KBytes)

mtrt none 52.8 5731 631 352
method 43.4 -17.8 4595 -19.8 797 384
hybrid 41.8 -20.8 4439 -22.5 749 382

richards none 92.2 9645 846 377
method 72.0 -21.9 9829 -8.4 688 371
hybrid 69.6 -24.5 8697 -9.8 837 370

portBOB none 76.5 6156 899 510
method 76.9 0.5 6122 -0.6 946 515
hybrid 76.6 0.1 6093 -1.0 930 514

tsgp none 209.2 29408 434 244
method 208.4 -0.4 29305 -0.3 432 246
hybrid 208.1 -0.5 29279 -0.4 435 246

jess none 39.1 4072 758 410
method 36.4 -6.9 4034 -0.9 769 416
hybrid 36.3 -7.2 4031 -1.0 768 416

si none 93.0 9805 510 290
method 90.1 -3.1 9776 -0.3 518 291
hybrid 89.5 -3.8 9764 -0.4 512 290

db none 144.8 8475 449 263
method 142.3 -1.7 8473 0.0 453 264
hybrid 141.8 -2.1 8473 0.0 454 264

jack none 40.9 4161 793 470
method 41.5 1.5 4141 -0.5 800 476
hybrid 41.4 1.2 4141 -0.5 799 476

mpegaudio none 100.7 13155 647 332
method 106.3 5.6 13146 -0.1 633 333
hybrid 108.6 7.8 13146 -0.1 632 333

volano none 296.7 16861 n/a 756
method 295.5 -0.7 16861 0.0 n/a 758
hybrid 297.2 0.2 16849 -0.1 n/a 757

javac none 70.5 8143 1424 793
method 72.4 2.7 8129 -0.2 1453 815
hybrid 72.0 2.1 8128 -0.2 1456 814

compress none 81.4 10268 448 258
method 77.4 -4.9 10267 0.0 450 258
hybrid 77.5 -4.8 10268 0.0 450 258

Table 3. Performance comparison of class and method tests for virtual inlining

A question is raised by these measurements: if the hybrid test performs better
than the method test, is the “method” part actually responsible for any benefit?
That is, could we get the same performance improvements from a purely class-
test-based system? We can run the system in two class test configurations to
help answer this. In the first, class-def, we inline all virtual sites with a class
test on the class that defines the method. This test will fail when the receiver
class is a subclass of the defining class. In the second, class-leaf, we inline the
virtual site with a class test only if the defining class has no subclasses (at the
time of compilation). This test will fail less often, but fewer sites will be inlined.



Inlining of Virtual Methods 269

We run these configurations on four of the benchmarks: mtrt, richards, and
portBOB, because they are most affected by virtual inlining, and javac, which
had some failed tests. Table 4 is similar to table 2. It records the number of call
sites inlined, the number of executions of these call sites, and the percentage
of failed tests for each configuration. We see that quite a substantial fraction
of class tests fail when the class-def configuration is used, and many fewer sites
are inlined when class-leaf is used. For concurrent programs such as richards,
behavior can vary from run to run; for example, the number of inlined call sites
differs slightly from the number in table 2.

benchmark inlining inlined virtual executions failed
mode call sites millions tests

mtrt class-def 781 243 27.1 %
class-leaf 241 76.9 0.0%

richards class-def 250 232 73.7%
class-leaf 102 64.9 0.0%

portBOB class-def 359 18.7 76.5%
class-leaf 140 4.4 0.0%

javac class-def 315 1.9 54.6%
class-leaf 60 0.3 0.0%

Table 4. Two class tests for virtual inlining.

Table 5 is similar to table 3, and compares the performance of these two class
test configurations with the baseline of no virtual inlining at all. For mtrt, the
class-def configuration does almost as well as the method or hybrid tests (see
table 3), but the class-leaf configuration does substantially worse. For richards,
both configurations do poorly; in fact, class-def, because of the high failure rate
of the test, does worse (in instruction counts) than no inlining at all.

These measurements show that class tests can obtain a significant fraction
of the potential performance increase from inlining virtuals for some programs
(like mtrt), but for others (like richards), the inaccuracy of such tests makes
at least some method tests necessary to get significant benefit.

It might seem that the data we have presented argues unequivocally for the
hybrid test. However, that is not so clear: whenever a call site is inlined with a
class test, future class loading may render the test inaccurate in cases where the
method test would continue to execute the inlined code.

4 Possible Benefit of Direct Virtual Inlining

The measurements in the last section indicate that inlining of selected virtual
calls with a method test guard can have significant benefits for some programs.
They also suggest an experiment. For all programs except javac, the method



270 D. Detlefs, O. Agesen

benchmark virtual user time percent instructions percent
inlining (sec) diff. (millions) diff.

mtrt none 52.6 5626
class-def 43.9 -16.5 4752 -15.5
class-leaf 50.0 -4.9 5169 -8.1

richards none 93.7 9644
class-def 88.3 -5.8 9741 1.0
class-leaf 89.5 -4.5 9184 -4.8

portBOB none 76.7 6173
class-def 75.6 -1.4 6161 -0.2
class-leaf 75.0 -2.2 6107 -1.1

javac none 70.9 8142
class-def 72.3 2.0 8149 0.1
class-leaf 71.1 0.3 8146 0.0

Table 5. Performance comparison of class tests for virtual inlining

test never failed, so we altered the compiler to directly inline virtual calls. While
incorrect in general, this altered compiler produces code that executes correctly
for these programs. This experiment determines an upper bound on how much
further efficiency can be gained by schemes that inline virtual invocations di-
rectly. Table 6 shows the results of this experiment, for the four benchmarks out
of the set where direct inlining results in a noticeable improvement. We ran each
benchmark twice, once using the method test, and once inlining virtual calls
directly. For each run, we show user time, instruction count, and percentage
differences between the two runs.

benchmark virtual user time percent instructions percent
inlining (sec) diff. (millions) diff.

mtrt method 43.7 4693
direct 27.5 -38.7 2280 -51.4

richards method 71.4 8829
direct 62.1 -13.0 6838 -22.6

portBOB method 76.0 6095
direct 73.1 -3.8 5944 -2.5

jess method 36.5 4034
direct 37.0 1.4 3956 -1.9

Table 6. Potential benefit of direct virtual inlining

The comparison in table 6 shows that there are programs for which direct
virtual inlining yields significantly better performance. Direct inlining both elim-
inates the overhead of a guard test and enables additional optimizations because



Inlining of Virtual Methods 271

the inlined code can be assumed always executed, instead of just possibly exe-
cuted.

5 Avoiding On-Stack Replacement: Preexistence

Section 4 presented an experiment that quantified the potential benefits of direct
inlining of virtual calls, using a system known to be incorrect in general but safely
applicable to the particular programs tested. In the next sections, we discuss
techniques for safe direct inlining of virtual calls, without requiring an on-stack
replacement mechanism.

Assume that we only inline virtual invocations directly when the called
method has only a single implementation at the time of compilation of the
caller. Assume further that we record a dependency of the caller on this single-
implementation assumption, as is done in Self. It is easy to guarantee that any
such assumptions made by a method are true on entry to the method—we simply
recompile the method without performing the direct inlining, and thus without
the assumption, before we allow the assumption to be violated. In the case
of direct inlining, the associated single-implementation assumption is violated
by the loading of a class that provides a second implementation of the inlined
method. Thus, we augment the class loading process to detect violations of
single-implementation assumptions, and to recompile the effected methods, or
revert them to interpretation, before making the loaded class available.

The problem remains that even when a single-implementation assumption
is satisfied on entry to a method, it could become invalid during the method’s
execution. This problem prompted the invention of on-stack replacement. Now
we propose an alternative solution.

Consider a method m1 that contains a method invocation o.m2(). We say
that the receiver expression o is preexisting in m1 when the object denoted by o
was allocated before execution of the calling method m1 began. (When m1 is clear
from context, we will simply say that o is preexisting.) Because o is allocated
prior to the start of an execution of m1, the dynamic type of o is clearly in the set
S of classes extant in the system at the start of m1. If a single-implementation
assumption about m2 is true over the classes in S, and the dynamic type of o
is in S, then even as the total set of classes in the system grows, the type of
the preexisting receiver o remains in the set S for the duration of the execution
of m1. Thus, if m2 has a single implementation in S, it can be inlined directly
without a guard test.

If we directly inline virtual calls only when the receiver is preexisting, then
when some class loading operation provides a second implementation of m2 that
necessitates a recompilation of m1, as described above, we can allow any in-
progress invocations of the original compilation of m1 to continue to execute the
original code without risking incorrect behavior.



272 D. Detlefs, O. Agesen

6 Proving Preexistence

The concept of preexistence is useful only if it is possible to prove that receiver
expressions denote preexisting objects at a significant fraction of call sites, and do
so at low cost (always an issue in dynamic compilation systems). Our experience
shows that this is possible. We present two analyses for proving preexistence.
The first is quite simple, and gets a surprisingly large fraction of the possible
benefit. The second is more complicated, and adds little benefit in the programs
we tried; still, it illustrates the generality of the approach, and it may be that
other programs benefit significantly.

6.1 Invariant Argument Analysis

The first technique, invariant argument analysis, examines a method to identify
input arguments to which no assignments are made. Clearly, such constant ar-
guments refer to objects that were allocated before the method began executing,
i.e., are preexisting. A slightly more ambitious analysis tracks the values of such
arguments, rather than simply pattern matching on their textual occurrences,
to prove that the receiver expression in

void m1(Foo f) {
Foo f2;
...
f2 = f;
f2.m2(); // f2 is preexisting.

}

is preexisting.2

In many object-oriented languages, the receiver argument of a method is
passed with a different syntax than is used for other arguments to the method,
e.g., o.m(...) instead of m(o, ...), and members of the current object may
be accessed with a syntax different from that used to access members of other
objects. All such syntactic sugars are irrelevant to this analysis.

6.2 Effectiveness of Invariant Argument Analysis

We augmented the compiler in our system to prove preexistence using invariant
argument analysis. As before, a virtual call site with a single implementation may
be inlined, but now, when the receiver is preexisting, the call is inlined directly.
The compiler records a dependency linking the validity of the compiled code

2 Note that this observation could be extended to the clone operation of the Java
programming language: if we clone an object we can prove preexisting through other
means, we obtain an object which, while not preexisting as defined in this paper,
still has a dynamic type that is a member of the set of classes extant at the start of
the calling method, which is what direct inlining requires.



Inlining of Virtual Methods 273

to the assumption of single implementation of the called method, as discussed
previously.

Table 7 shows the fraction of inlined virtual call sites at which invariant
argument analysis proves the receiver to be preexisting, as well as the number of
recompilations caused by dependency violations over the course of the run. Table
8 compares the performance of the system using this analysis with method-test
virtual inlining. In both tables, we present results for the four benchmarks of
table 6, the ones for which direct virtual inlining has a potential benefit. We also
include javac, which, because it had method test failures, could not be included
in table 6. Finally, table 7 includes a run of the HotJavaTM browser accessing
the ECOOP home page. Unlike the SPEC benchmarks, this is an interactive
program, and compiles considerably more code. The interactive nature of this
program complicates performance measurements, but we include it here to see
if recompilation will be a more significant issue for interactive programs, which
use the deeper class hierarchies common to user-interface toolkits.

benchmark inlined virtual sites with preexisting percentage recompilations
call sites receiver

mtrt 784 324 41.3 0

richards 246 154 62.5 0

portBOB 359 166 46.2 0

jess 211 54 25.6 0

javac 323 218 67.5 1

hotjava 1548 723 46.7 40

Table 7. Effectiveness of invariant argument analysis, by call sites

benchmark virtual user time percent instructions percent compilation code size
inlining (sec) diff. (millions) diff. (ms) (KBytes)

mtrt method 43.6 4697 893 383
preexist 32.2 -26.1 3227 -31.3 684 364

richards method 72.0 8829 795 371
preexist 62.4 -13.3 7279 -17.6 619 362

portBOB method 76.7 6115 983 515
preexist 75.4 -1.7 5978 -2.2 920 505

jess method 36.5 4034 810 417
preexist 37.7 3.3 4010 -0.6 775 413

javac method 72.2 8129 1461 815
preexist 72.6 0.6 8114 -0.2 1469 801

Table 8. Performance of direct virtual inlining via invariant argument analysis

Table 7 shows that, for these programs, approximately half of virtual call
sites are proven to have preexisting receivers by invariant argument analysis.



274 D. Detlefs, O. Agesen

(The average over the complete benchmark set is 40.9%.) The javac benchmark
is the only SPEC benchmark that performs recompilations, and performs just
one. The HotJava browser performed 40 recompilations, but it compiled 2269
methods in total, so this is a relatively small fraction.

A comparison of table 6 and table 8 shows that a surprisingly large fraction
of the potential performance gains from direct virtual inlining can be obtained
by using invariant argument analysis to prove receiver object preexistence. In the
case of mtrt, we obtained (roughly) a 30% speedup out of a possible 50%. Thus,
with the caveat that we are extrapolating from a small number of benchmarks,
it seems possible to obtain many the benefits of direct virtual inlining without
making “closed-world” assumptions, and without implementing an on-stack re-
placement mechanism. Further, the dependency mechanism does not seem to
trigger an excessive number of recompilations.

6.3 Immutable Field Analysis

To understand the second technique for proving preexistence, consider a virtual
method invocation of the form o.f.m(). That is, the receiver expression is of
the form o.f, where o is an expression of static type O, and f is a field of
that class. Call a field f immutable if it is assigned to only in constructors. If
f is proven immutable, and one has access to a fully-constructed instance of a
class in which the field f appears, then one can assume that f will not change
subsequently.3 Consequently, preexistence of o.f follows from preexistence of o
and immutability of f. (We assume that “o is preexisting” is taken to mean
not only that o is allocated, but also that it is constructed—this is an easy
consequence of the rules of the C++ and Java programming languages.)

In our implementation, we attempt to prove immutability only of private
fields of classes, fields that cannot be accessed by methods of other classes. In
this case, the analysis is easy and efficient: each method of the class that declares
the private field is searched for assignments to that field; the field is immutable
if such assignments are found only in constructors. (A refinement of this analysis
identifies private methods that are called only from constructors, and treats field
assignments in such methods as if they occur in constructors.)

It is easy to see why immutable field analysis for non-private fields would
not be useful for proving preexistence. The proof that the preexistence of o.f
follows from the preexistence of o and the immutability of f requires a proof of
both of the latter properties, not an assumption that might later be violated.
In systems that cannot make closed-world assumptions, even if one examines all
the classes extant to determine that a non-private field f is immutable “so far,”
a class might be loaded later that writes to f. Thus, even if an expression o is
preexisting and a non-private field f is immutable “so far,” modifications to f
by methods loaded later may make o.f denote a non-preexisting value.

It is sometimes suggested that the reflection API of the Java platform inval-
idates this analysis, by allowing classes to modify private fields of other classes.

3 At least in languages in which constructors are executed only once on a given object.



Inlining of Virtual Methods 275

We believe that the most current specification of the reflection API allows an
implementation to prevent such modifications by enforcing access constraints.
An implementation whose compiler uses immutable field analysis would have to
implement reflection in this manner. The Java Native Interface, on the other
hand, does allow such uncontrolled updating. Our view is that since native code
can do anything, authors of native code are on their honor to respect access
constraints. Even if native code respects privacy, the inability to analyze native
code requires immutable field analysis to assume that native methods update all
private fields of their class.

6.4 Effectiveness of Immutable Field Analysis

We have implemented immutable field analysis, but will only summarize perfor-
mance results. There are a noticeable number of call sites at which immutable
field analysis can prove preexistence but invariant argument analysis cannot.
The fraction of such call sites varies from 1.2% to 21.3% of all inlined virtual
call sites, averaging 9.5%. However, this increase in the number of call sites di-
rectly inlined does not translate, at least for these benchmarks, into significantly
better performance. The mtrt benchmark’s instruction count decreases by 1.4%,
and portBOB’s by 0.4%, but no other benchmark’s performance changes ap-
preciably. Compilation time does not increase noticeably from the cost of the
analysis. Despite these somewhat disappointing end-to-end results, the increase
in the fraction of call sites inlined causes us to believe that immutable field anal-
ysis may be important for some programs; if immutable field analysis enables
direct inlining in a frequently-executed inner loop of some program, it could have
a large effect on that program.

7 Conclusions and Future Work

There are two main contributions in this paper. First, we presented an alternative
test for guarding inlining of virtual invocations. This method test is less efficient
than a class test when there is only one possible receiver type, but more efficient
when several possible receiver types can be covered in a single test. It may also
be more robust than class tests, since a method test allows execution of inlined
code even for receiver types that weren’t loaded when the test was generated.
Finally, method tests may be more convenient to generate in some some systems,
such as just-in-time compilers for Java virtual machines.

The second contribution allows the direct inlining of some virtual calls with-
out an on-stack replacement mechanism. The scheme restricts direct inlining
to call sites whose receivers have a preexistence property, and records single-
implementation assumptions on which correctness of the inlining depends. Callers
must be recompiled when these assumptions are invalidated, but currently-
executing invocations of such callers may continue, by virtue of the preexistence
restriction. We described two analyses, with different cost/precision tradeoffs,
that prove preexistence.



276 D. Detlefs, O. Agesen

We presented several measurements. Even though the base system against
which comparisons were made included an inline cache mechanism to speed
up virtual calls, inlining of virtuals with a method test guard offers significant
improvements for programs that execute inlined virtual calls frequently. We de-
termined an upper bound on the speedup available by inlining all eligible vir-
tual calls directly. Our simplest analysis, invariant argument analysis, allowed
sufficient direct inlining to realize a large fraction of this potential speedup. Im-
mutable field analysis increased the fraction of call sites inlined directly, but did
not improve the overall performance significantly for the programs measured.

In future work, we hope to eliminate some of the restrictions our compiler
imposes on what may be inlined. The resulting increase in inlining opportunities
may extend the benefits of virtual inlining to more programs. We also hope to
investigate the application of preexistence to other assumptions that compilers
may make to enable optimizations.

Acknowledgments

We would like to thank Christine Flood and Steve Heller for careful readings
of the paper. Craig Chambers and Jeff Dean helped clarify the relationship
between their work and our’s. Thanks also to the anonymous referees for helpful
comments.

References

1. Craig Chambers, David Grove, Greg DeFouw, and Jeffrey Dean. Call graph con-
struction in object-oriented languages. ACM SIGPLAN Notices, 32(10):108–124,
October 1997.

2. Craig Chambers and David Ungar. Customization: Optimizing compiler technology
for SELF, a dynamically-typed object-oriented programming language. In Bruce
Knobe, editor, Proceedings of the SIGPLAN 1989 Conference on Programming
Language Design and Implementation, pages 146–160, Portland, OR, USA, June
1989. ACM Press.

3. Ole-Johan Dahl, Bjørn Myrhaug, and Kristen Nygaard. Simula common base
language. Technical Report S-22, Norwegian Computing Center, Oslo, Norway,
1970.

4. Jeffrey Dean. Whole-Program Optimization of Object-Oriented Languages. PhD
thesis, University of Washington, Seattle, Washington, 1996.

5. Jeffrey Dean, Craig Chambers, and David Grove. Selective specialization for
object-oriented languages. ACM SIGPLAN Notices, 30(6):93–102, June 1995.

6. Jeffrey Dean, Greg DeFouw, David Grove, Vassily Livinov, and Craig Chambers.
Vortex: an optimizing compiler for object-oriented languages. ACM SIGPLAN
Notices, 31(10):83–100, October 1996.

7. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Walter G. Olthoff, editor, Pro-
ceedings of the Ninth European Conference on Object-Oriented Programming, vol-
ume 952 of Lecture Notes in Computer Science, pages 77–101, Århus, Denmark,
7–11 August 1995. Springer-Verlag.



Inlining of Virtual Methods 277

8. L. Peter Deutsch and Allan Schiffman. Efficient implementation of a Smalltalk-80
system. In Proceedings of the 11th Symposium on the Principles of Programming
Languages, pages 297–302, Salt Lake City, 1984. ACM SIGPLAN.

9. Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley. Simple and effective
analysis of statically-typed object-oriented programs. In Proceedings of the 1996
Conference on Object-Oriented Programs, Systems, Languages, and Applications,
pages 292–305. ACM SIGPLAN, October 1996.

10. Karel Driesen and Urs Hölzle. Accurate indirect branch prediction. In Proceedings
of the 25th Annual International Symposium on Computer Architecture (ISCA-
98), volume 26,3 of ACM Computer Architecture News, pages 167–178, New York,
June 27–July 1 1998. ACM Press.

11. Neal Feinberg, Sonya E. Keene, Robert O. Mathews, and P. Tucker Withington.
The Dylan Programming Book. Addison-Wesley Longman, Reading, Mass., 1997.

12. Mary F. Fernandez. Simple and effective link-time optimization of Modula-3 pro-
grams. ACM SIGPLAN Notices, 30(6):103–115, June 1995.

13. Richard Gabriel, Jon White, and Daniel Bobrow. CLOS: Integrating object-
oriented and functional programming. CACM: Communications of the ACM, 34,
1991.

14. Adele Goldberg and David Robson. Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley, Reading, MA, 1983.

15. James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Specification. The
Java Series. Addison-Wesley, 1.0 edition, August 1996.

16. Urs Hölzle. Adaptive optimization for SELF: Reconciling high performance with
exploratory programming. Ph.D. Thesis CS-TR-94-1520, Stanford University, De-
partment of Computer Science, August 1994.

17. Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In P. America, editor,
Proceedings of the 1991 European Conference on Object-oriented Programming,
LNCS 512, pages 21–38, Geneva, Switzerland, July 1991. Springer-Verlag.

18. Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with
dynamic deoptimization. In Christopher W. Fraser, editor, Proceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design and Implementation,
pages 32–43, San Francisco, CA, June 1992. ACM Press.

19. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, 1996.

20. Volano LLC. Volanomark benchmark. http://www.volano.com/benchmarks.html,
Mar. 1999.

21. Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.
22. Greg Nelson, editor. Systems Programming in Modula-3. Prentice-Hall, Englewood

Cliffs, NJ, 1991.
23. John Plevyak and Andrew A. Chien. Precise concrete type inference for object-

oriented languages. In Proceedings of the Ninth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 324–324, Oc-
tober 1994.

24. Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis object-based environ-
ment language reference manual. DEC-TR 372, Digital Equipment Corp., Object-
Based Systems Group, Hudson, Massachusetts, Nov. 1985.

25. SPEC. SPECjvm98 benchmarks. http://www.spec.org/osg/jvm98, August 1998.
26. Bjarne Stroustrup. The C++ Programming Language: Second Edition. Addison-

Wesley, Reading, Massachusetts, 1991.
27. Jan Vitek, Nigel R. Horspool, and Andreas Krall. Efficient type inclusion tests.

In Proceedings of the 1997 Conference on Object-Oriented Programming Systems,
Languages, and Applications, Atlanta, GA, October 1997. ACM Press.


	Introduction
	Related Work
	Method Tests and Class Tests.
	Method and Class Test Measurements

	Possible Benefit of Direct Virtual Inlining
	Avoiding On-Stack Replacement: Preexistence
	Proving Preexistence
	Invariant Argument Analysis
	Effectiveness of Invariant Argument Analysis
	Immutable Field Analysis
	Effectiveness of Immutable Field Analysis

	Conclusions and Future Work

