
JavaNow: A Framework for Parallel Computing on Networks of
Workstations

Shahzad A. Bhatti
Illinois Institute of Technology

Chicago, Illinois

Phillip M. Dickens
Illinois Institute of Technology

Chicago, Illinois

George K. Thiruvathukal
Loyola University

JHPC Research Group
Chicago, Illinois 60626

http://www.jhpc.org/george
thiruvathukal@acm.org

Abstract

Networks of workstations are becoming a
dominant force in the distributed computing
arena, this due primarily to the excellent price to
performance ratio of such systems when
compared to traditional massively parallel
architectures. It is therefore critical to develop
programming languages and environments that
can help harness the raw computational power
available on these systems. The JavaNow
(Network of Workstations) system, a Java based
framework for parallel programming on a
network of workstations, is one such project. It
creates a virtual parallel machine similar to the
PVM (Parallel Virtual Machine) model, and
provides distributed associative shared memory
similar to Linda memory model but with a
richer set of primitive operations.

JavaNow provides a simple yet powerful
framework for performing computation on
networks of workstations. In addition to the
Linda memory model, it provides for shared
objects, publisher/subscriber based event
notification, implicit multithreading, implicit
synchronization, object dataflow, and collective
communications similar to those defined in the
Message Passing Interface (MPI).

Keywords: parallel and distributed computing,
Java, Linda, and network of workstations.

1 Introduction
Java has been established as one of the preferred
languages for writing distributed applications
due to its many features which support
programming on distributed platforms. In
particular, Java provides automatic garbage
collection alleviating programmers from
memory management. Java provides compile
time and runtime security that can be used as the
basis for writing secure applications. Java has
inherent support for multithreading, and Java
1.2 supports kernel-level threads allowing the
overlapping of computation with communication
or I/O. Java can save the state of an object and
recreate that object on another machine,
supporting both persistent objects and object
migration. Probably the biggest benefit of Java is
its portability; a Java application can be run on
any machine with Java support without
recompilation.

While using a network of workstations as a
virtual parallel computer is not a new idea, there
are many features of JavaNow which make it
unique among its peers. In the remainder of this

2 The JavaNow Framework
In this section, we briefly explain the key tenets
of the JavaNow framework.

2.1 Model of Computation.
JavaNow provides a framework for building a
virtual parallel machine by connecting
workstations over a network. Similar to the
other tuple space systems based on Linda,
JavaNow spawns one daemon process per virtual
machine processor. These daemon processes
initialize the application processes and begin
their execution. Another similarity to other such
systems is the assumption of an SPMD model of
computation.

2.2. Distributed Associative Shared Memory

The application processes coordinate and
communicate through distributed associative
shared memory similar to the Linda memory
model [CAR92]. In JavaNow, the shared objects
are referred to as Entities and the repository
where these objects are stored is termed the
EntitySpace. Each Entity in the JavaNow system
consists of two components: the name of the
Entity and its value. It is important to note that
name and value both denote Java objects, which
unlike Linda objects, carry both state and
behavior information.

Unlike the Linda memory model where there is
a single repository, JavaNow permits multiple
EntitySpace objects. Similar to the Linda
memory model, JavaNow allows active Entity
objects that perform a computation and then
convert into passive Entity objects.

JavaNOW uses a simple load balancing scheme
to distribute the Entities belonging to a given
EntitySpace. In particular, JavaNow uses a
hashing function from the name of an Entity to
a machine ID. In the case where multiple
Entities are created with the same name, the
Entities are queued in FIFO order. In the case

JavaNow supports both blocking and non-
blocking retrieval from an EntitySpace. This is
in contrast to Linda where the retrieval
operation is blocking (that is, the process
performing the retrieval must block until the
tuple becomes available). JavaNow (and Linda)
support retrieval of an Entity/tuple based on
partial information (i.e. when the full name is
not known).

A key difference between JavaNow and Linda
(and many of its derivatives), is the
implementation of the distributed associative
shared memory. Most Linda implementations
have performed poorly because of the
distribution scheme used for tuple space
representation (a scheme based primarily on
replication), and the fact that Linda’s goal of
pure location transparency prevents several
optimizations. JavaNow also supports location
transparency, but (we believe) does so with an
implementation that is more efficient and allows
for more optimizations than most Linda
implementations. This issue will be discussed in
detail in the full paper.

2.3 Event Notification

JavaNow provides publisher/subscriber based
event notification for any changes to the state of
an EntitySpace. Thus a user can subscribe to
receive notification whenever a new Entity is
added to the EntitySpace, or when an Entity is
removed. Further, the user can specify an
interface that acts as a filter on the types of
events for which a process is informed.

Event notification has been perfected with the
introduction of the Java programming language.
The most prominent example of event
notification in Java occurs, interestingly, in the
Abstract Windowing Toolkit (AWT) package,
where a design pattern called “listeners” is
supported for handling events. A prospective
listener implements a particular interface which

we have generalized it to work with workstation
clusters using JavaNow.

2.6. Implicit Multithreading

JavaNow creates a new thread to execute each of
the ActiveEntity objects. In JavaNow, these
threads are created and maintained by the
system without involvement from the user. Thus
the application can get the performance benefits
of thread-based computing without the difficulty
of managing the threads directly.

2.8 Implicit Synchronization

All accesses to Entity instances within the
EntitySpace are guaranteed to be mutually
exclusive, thus freeing the programmer from
concerns related to the synchronization of the
EntitySpace. The actual workings of the
synchronization and blocking semantics are no
more complicated than the workings of classic
synchronization problems such as the bounded
buffer or producer/consumer problems.

The (user-free) synchronization implementation
of an EntitySpace is based on an abstraction
called a shared directory of unordered queues, a
concept which has long been described in
operating systems textbooks. This principle is
explained in detail in a paper describing Memo
[CON94], a predecessor to the JavaNow system.
We will provide details in the full paper.

2.9 Collective Communication/Computation

JavaNow supports collective communication
operations on Entities in a manner similar to
those defined in MPI. All familiar MPI
collective communication operations are
supported, including broadcast, scatter/gather,
and reduce. These operations all work with
primitive types, arrays of primitive types, or
objects.

2.8. Data Flow

performance computing) such as suspended
evaluation, lazy evaluation, task graphs, and
many commonly used techniques used for high-
performance parallel and distributed computing.

2.10. Choice of Communication Providers

JavaNow is designed and implemented as a set
of Java interfaces, and it separates all
networking code from the rest of the
implementation code. This allows the use of
different providers for communication. Versions
of JavaNow have been built using Sockets,
Remote Method Invocation, and (soon) CORBA

3. FUTURE PLANS
Several applications are under development to
test JavaNow on a variety of platforms. We have
identified the following list of enhancements
that will increase JavaNow’s performance and
usability.

• Performance: The current release of
JavaNow is implemented primarily as a
proof of concept, and we have yet to pursue
any significant performance tuning.
Performance issues will be of paramount
importance in future releases.

• Dynamic resource management: The
current release of JavaNow requires that the
user statically specify the list of machines
on which the application will run. In the
next release, JavaNow will allow users to
add/delete machines dynamically.

• Dynamic load balancing: The current
release of JavaNow uses a simple hashing
scheme for load balancing. In the future,
JavaNow will provide dynamic load
balancing to more effectively share
computation and memory resources.

4. Related Work

Several other projects are using network of
workstations for building parallel applications.
The most significant work includes Linda
[CAR92] , PVM [SUN92] and MPI [LUS94].

As noted above, Linda provides a concurrent
programming model and an associative shared
memory based on the concept of a “Tuple
Space.” A Tuple is a sequence of fields, each of
which has a type and contains a value or a
variable. There are two kinds of Tuples, passive
Tuples and Active Tuples. Passive Tuples store
data, and active Tuples perform a computation.
Once an Active Tuple has finished its
execution, it turns into a passive Tuple.
JavaNow also uses associative shared memory
similar to the Linda model. However, and as
noted above, JavaNow distributes the Entities
across all of the processors in the virtual
machine, provides for non-blocking retrieval
and allows multiple EntitySpaces.

Other parallel frameworks based on Linda
include C-Linda [NAR90], Glenda [SEY],
Memo [CON94B], and JavaSpaces [SUN98]. C-
Linda is C based implementation of Linda,
Glenda is Linda implementation on top of PVM.
Memo is a C library that implements Linda like
data structures for storing associative shared
memory. JavaNow is distinguished from all of
these systems in that it is a Java based, rather
than a C based system. As noted above, there are
some significant advantages to using Java for
the development of distributed applications.

In contrast to the C-based Linda-like systems,
JavaSpaces [SUN98] is a Linda-based
framework written in Java. JavaSpaces uses a
server object to manage a space and users can
create multiple spaces. However, JavaSpaces
does not offer facilities for the creation of active
tuples and does not provide an infrastructure for
parallel programming. JavaSpaces is specifically

message passing based system and the other is a
shared memory based system. It has been argued
that writing applications for a shared memory
machine is easier than writing applications for
shared memory systems. It has also been argued
that shared memory code is smaller than
equivalent message passing code.

Systems that use Java to enhance PVM include
JPVM [FER98], jPVM1 [THU96]. Like PVM,
these systems use message passing for processor
communication and coordination. This is in
contrast to JavaNow which provides distributed
associative shared memory.

MPI [LUS94] is a proposed standard library
specification for message passing systems. MPI
is available on most large-scale computers and
several implementations such as LAM [LAM]
are available for network of workstations. Java-
MPI [CHA97] is Java-based wrapper library for
MPI and uses standard MPI underneath. Java-
MPI thus provides a message passing rather
than shared memory communication model.

Other Java based projects that use the Internet
and Web for parallel computing include
JavaParty [PHI97], Javlin [CHR97], ParaWeb
[BRE96], JavaDC [CHE97], Bayanihan
[KAL96, KAL97], KnittingFactory [BAR98],
IceT [GRA97], and WebFlow [FOX97].

The major difference between these systems and
JavaNow is that most of the aforementioned
systems are targeted for Web based parallel
computing and are applet based. JavaNow is
targeted for workstation clusters, and is run as a
stand-alone application. Also, most of these
systems are essentially intended as a framework
for distributing tasks, and use paradigms such as
PVM, MPI, Linda and Charlotte as a separate
layer on top of those frameworks. JavaNow
offers a framework for both distributing and
coordinating parallel tasks. It also uses
associative shared memory for task

parallel, or data-flow style. Most competing
frameworks do not offer this kind of flexibility.

5. CONCLUSION
This paper describes the JavaNow framework
for developing parallel applications in Java for
execution on a network of workstations.
JavaNow offers a conceptually simple and easy
to use model for process communication and
coordination. Additionally, the architectural
neutrality of Java allows JavaNow to execute on
any machine with Java support without the need
for recompilation.

There are of course concerns related to the
performance of Java given that it is an
interpreted language. However, with the just-in-
time compilers and Java hot spot technology, the
speed of Java applications has been improving.
We will provide performance results for
JavaNow in the full paper.

REFERENCES
[AND95] T. E. Anderson, D. E. Culler, and D.
A. Patterson. A case for NOW. IEEE Micro,
February 1995.

[BAR98] Arash Baratloo, Mehmet Karaul,
Holger Karl, and Zvi Kedem. An Infrastructure
for Network Computing with Java Applets. In
Proceedings of ACM Workshop on Java for
Science and Engineering Computation, February
1998.

[BLU95] R. D. Blumofe, C. F. Joerg, B. C.
Kuszmaul, C. E. Leiserson, H. Randall, and Y.
Zhou. Cilk: An Efficient Multithreaded Runtime
System, in Proceedings of the 5th ACM
SIGPLAN Symposium on Principles of Parallel
Programming, 1995.

[CAR92] N. Carriero and D. Gelernter. How to
write parallel programs: 46, 1992.

[CAR98] Bryan Carpenter, Guansong Zhang,
Geoffrey Fox, Xinying Li, and Yuhong Wen.
HPJava: Data Parallel Extensions to Java. In
Proceedings of ACM Workshop on Java for
Science and Engineering Computation, February
1998.

[CHA97] Chang, Y-J., and Carpentar. MPI Java
Wrapper Download Page, March 27 1997.
http://www.npac.syr.edu/users/yjchang/javaMPI.

[CHE97] Zhikahi Chen, et al. Web Based
Framework for Distributed Computing. In
Proceedings of ACM Workshop on Java for
Science and Engineering Computation, Las
Vegas, NV, June 1997.

[CHR97] Bernd O. Christiansen, et al. Javlin:
Internet-Based Parallel Computing Using Java.
In Proceedings of ACM Workshop on Java for
Science and Engineering Computation, Las
Vegas, NV, June 1997.

[CON94] W. T. O'Connell, G. K.
Thiruvathukal, and T. W. Christopher.
Distributed Memo: A Heterogeneously Parallel
and Distributed Programming Environment. In
Proceedings of the 23rd International
Conference on Parallel Processing, August
1994.

[CON94B] O'Connell, Thiruvathukal and
Christopher. The Memo Programming
Language. Proceedings of the International
Conference on Parallel and Distributed
Computing Systems, October 1994.

[CRA93] Phyllis E. Crandall, Michael J. Quinn.
Data Partitioning for Networked Parallel
Processing. IEEE, 1993. pp. 376-379.

[DON93] Jack Dongarra, Al Geist, Robert
Manchek, and Vaidy Sunderam. Integrated
PVM Framework Supports Heterogeneous

Laboratory: A Web-Based Parallel
Programming Environment
Concurrency:Practice and Experience 9:485-
508, 1997.

[GEI92] G. A. Geist and V. S. Sunderam.
Network Based Concurrent Computing on the
PVM System. Journal of Concurrency: Practice
and Experience, 4, 4, pp 293--311, June, 1992.

[GEI93] G.A. Geist and V.S. Sunderam, The
Evolution of the PVM Concurrent Computing
System, Proceedings - 26th IEEE Compcon
Symposium, pp. 471-478, San Fransisco,
February 1993.

[GEL85] Gelernter, David, Generative
Communication in Linda, ACM TOPLAS, 7:1,
Jan. 1985.

[GRA97] Paul A. Gray and Vaidy S. Sunderam.
IceT: Distributed Computing and Java. In
Proceedings of ACM Workshop on Java for
Science and Engineering Computation, June
1997.

[KAL96] L. V. Kale and Joshua M. Yelon.
Threads for Interoperable Parallel
Programming. Proceedings of the conference on
Languages and Compilers for Parallel
Computing, 1996.

[KAL97] L. V. Kale, Milind Bhandarkar, and
Terry Wilmarth. Design and Implementation of
Parallel Java with Global Object Space.
Proceedings of Conf. on Parallel and Distributed
Processing Technology and Applications, Las
Vegas, Nevada, 1997.

[KAL98] L. V. Kale, Milind Bhandarkar,
Robert Brunner and Joshua Yelon.
Multiparadigm, Multilingual Interoperability:
Experience with Converse. Second Workshop on
Runtime Systems for Parallel Programming
(RTSPP), March 1998.

[KAR98] Holger Karl. Bridging the Gape

[LUS94] Gropp, Lusk and Skjellum. Using
MPI: Portable Parallel Programming with the
Entity-Passing Interface, 1994.

 [NAR90] James Narem. An Informal
Operational Semantics of C-Linda V2.3.5.
Technical Report 839, Yale University
Department of Computer Science, Dec. 1990.

[OTT95] S. W. Otto, M. Snir, and D. Walker.
An Introduction to the MPI Standard, J.
Dongarra, CS-95-274, January 1995.

[PHI97] Michael Philippsen and Mathias
Zenger. JavaParty: Transparent Remote Objects
in Java. In Proceedings of the ACM PpoPP
Workshop on on Java for Science and
Engineering Computation, Las Vegas, NV, June
1997.

[SAR98] Luis Sarmenta, Satoshi Hirano, and
Stephen Ward. Towards Bayanihan: Building
an Extensible Framework for Volunteer
Computing Using Java. In Proceedings of the
2nd Intl. Conference on Worldwide Computing
and its Applications, Tsukuba, Japan, March
1998. http://www.cag.lcs.mit.edu/bayanihan.

[SEM98] Yelick, Semenzato, Pike, Miyamoto,
Liblit, Krishnamurthy, Hilfinger, Graham, Gay,
Colella, Aiken. Titanium: A High-Performance
Java Dialect. ACM 1998 Workshop on Java for
High-Performance Network Computing,
Stanford, California, February 1998.

[SEY] Ray Seyfarth, Jerry Bickham and Suma
Arumugham. Glenda.
http://sushi.st.usm.edu/~seyfarth/research/glend
a.html

[SIN93] Amitabh B. Sinha and Laxmikant V.
Kale. A Load Balancing Strategy For
Prioritized Execution of Tasks. International
Symposium on Parallel Processing, Newport
Beach, CA, April 1993.

[SUD86] Ahuja, Sudhir, Nicholas Carriero, and

Concurrency: Practice and Experience, 2(4), pp.
315-339, December 1990.

[SUN92] G.A. Geist and V.S. Sunderam,
Network Based Concurrent Computing on the
PVM System, Journal of Concurrency: Practice
and Experience, (4), pp. 293-311, June 1992.

[SUN94] V. Sunderam, J. Dongarra, A. Geist,
and R Manchek. The PVM Concurrent
Computing System: Evolution, Experiences, and
Trends. Parallel Computing, Vol. 20, No. 4,
April 1994, pp 531-547.

[SUN98] Sun MicroSystems, Inc. JavaSpaces
Specification, July 1998.
http://java.sun.com/products/javaspaces/

[THU96] David A. Thurman. JavaPVM: The
Java to PVM Interface, Decmeber 1996.
http://www.isye.gatech.edu/chmsr/jPVM.

6. [YU97] Weimin Yu and Alan Cox.
Java/DSM: A Platform for Heterogeneous
Computing. In Proceedings of ACM
Workshop on Java for Science and
Engineering Computation, Las Vegas, NV,
June 1997.

