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ABSTRACT
In this paper, we overview our work on an open source,
hybrid cloud approach to agriculture analytics for enabling
sustainable farming practices. SmartFarm integrates dis-
parate environmental sensor technologies into an on-farm,
private cloud software infrastructure that provides farm-
ers with a secure, easy to use, low-cost data analysis sys-
tem. SmartFarm couples data from external cloud sources
(weather predictions, satellite imagery, state and national
datasets, etc) with farm-local statistics, provides an inter-
face into which custom analytics apps can be plugged, and
ensures that all private data remain under grower control.

1. INTRODUCTION
Ecological sustainability depends critically on the ability

of world food production to manage increasingly limited nat-
ural resources (e.g. arable land and water) with new tech-
niques that both enhance environmental stewardship and in-
crease farm productivity. We believe that the key to future
food security, food safety, and ecological sustainability lies in
the use of customized data analytics by individual growers,
agricultural workers, and food producers. For analytics to
become the farm implements of the twenty-first century, new
Information Technology (IT) developments that are acceler-
ating e-commerce (e.g. cloud computing, machine learning,
mobile client-server systems) must (i) be made inexpensive,
accessible to, and beneficial for, a vast diversity of the popu-
lation, (ii) address a number of disparate problems including
increasing yields, conserving water, and ensuring soil and
plant health, and (iii) facilitate new sustainable agriculture
science. Today smallholder agriculture and their commu-
nities (as opposed to the industrial-scale farming concerns)
are strikingly underserved by modern IT.

The goal of our research is to achieve these goals via a new
open source, IT system called UCSB SmartFarm. Smart-
Farm is hybrid cloud technology designed to enable small-
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holder growers and other agricultural (ag) professionals, re-
searchers, and students, to use analytics to improve envi-
ronmental sustainability and efficiencies in food production.
SmartFarm combines data aggregation for disparate ag-
related data sensors and sources, integrates multiple analyt-
ics technologies to facilitate a wide range of data inference,
prediction, and visualization, and gives growers full control
over the privacy, security, and sharing of their most valuable
farm asset: their data.

Although many precision farming and ag decision support
systems have emerged recently e.g. [8, 12, 18, 19, 21, 29], ex-
tant solutions have not received wide spread use to date.
The reasons for this, which we have discovered by work-
ing with multiple growers and ag technology vendors over
the past year, center around concerns related to data pri-
vacy, security, and control. First, extant solutions employ a
cloud model to facilitate scalable customer acquisition and
software maintenance. To use these solutions, growers must
transmit potentially vast amounts of data over expensive
and low bandwidth network links (for which the growers
pay) to a remote cloud application owned and controlled
by the vendor. Such connectivity can be very costly and is
infeasible in many rural communities.

Second, this model requires that growers reveal private in-
formation and relinquish ownership and control of their data
to vendors that supply their sensors, equipment, or other
ag products. Data from these technologies reveals private
and personal information about grower practices, crop input
(chemicals, fertilizers, pesticides), and farm implement use,
purchasing and sales details, water use, disease problems,
etc., that define a grower’s business and competitiveness.

The next issue concerns lock-in – vendors make it very dif-
ficult and in some cases impossible for growers to get data
out of these systems, e.g. to stop using a vendor’s service
or to move data to another vendor. In addition, vendors
increasingly charge a recurring fee to host and export ac-
cess to the data to growers (via their web browsers), and
in many cases, sell the data or advertising opportunities to
other companies and/or use the data to target marketing
and sales campaigns. Finally, the use of centralized, net-
worked systems for deployment of technologies makes grow-
ers vulnerable to security breaches, data loss, and interrup-
tion since they expose a large attack surface, introduce single
points of failure, and require continuous, high quality Inter-
net connectivity.

SmartFarm presents an alternative approach to ag an-
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Figure 1: SmartFarm Vision (left) and the SmartFarm Software Architecture (right)

alytics and decision support. It provides growers with a
hybrid, distributed architecture (hardware and software sys-
tem) that provides growers with an on-farm “analytics ap-
pliance”. SmartFarm aggregates data for growers and auto-
matically applies analysis algorithms to implement decision
support. If Internet connectivity is available, SmartFarm
can download data analytics and visualization applications
(apps) from an Ag App Store (otherwise apps can be in-
tegrated via DVD mailers). Thus, SmartFarm “moves the
code to the data” rather than “moving the data to the code”,
thereby significantly reducing network/mailer use.

Because SmartFarm runs on-farm (but can interoperate
with remote data sources if necessary), we have designed it
to be very easy to use and to operate autonomously with or
without Internet connectivity. Moreover, the system ensures
that no private data is leaked and provides robustness and
security via its distributed black-box design. In the sections
that follow, we overview the design and implementation of
SmartFarm. We then overview our multiple design choices
and their implications. Finally, we show how SmartFarm
can be used to extract actionable insights for precision har-
vesting and root cause analysis.

2. UCSB SMARTFARM
A depiction of our overarching vision for SmartFarm is

shown in Figure 1 (left). SmartFarm integrates disparate
environmental sensor technologies into an on-premise, pri-
vate cloud software infrastructure that provides farmers with
a secure, easy to use, low-cost data analysis system. Smart-
Farm couples data from external sources (if/when available)
with farm-local statistics, provides an interface into which
custom analytics tools can be plugged and automatically
deployed, and ensures that all data and analyses remain un-
der the control of farmers. SmartFarm enables farmers to
extract actionable insights from their data, to quantify the
impact of their decisions and environmental changes, and to
identify opportunities for increasing farm productivity.

Figure 1 (right) presents the SmartFarm software archi-
tecture. SmartFarm extends open source technologies from
the domains of cloud computing, big data analytics, and
IoT. While these freely available software technologies are

powerful, they are designed for use primarily in commercial
e-commerce and Information Technology (IT) settings. As a
result, they are robust but cannot be easily used off-the-shelf
because they require significant expertise, IT support, and
expensive staffing to setup, manage, and maintain – which
are not available to smallholder farming concerns. Smart-
Farm integrates and leverages these technologies to con-
struct an open source data appliance specifically designed to
enable individual growers to practice precision agriculture.

To enable this, SmartFarm leverages the AppScale cloud
platform (PaaS) and the Eucalyptus cloud infrastructure
(IaaS) to provide portability across clouds and autonomous
IT management. Both of these systems are commercial-
grade platforms in wide-spread enterprise use today. App-
Scale is an open source distributed runtime system that
makes it very easy to write and deploy network-accessible
applications (including mobile device back-ends) in high-
level languages. AppScale is commercially supported, freely
available, and is API-compatible with Google’s cloud plat-
form App Engine. This means that applications that run on
App Engine, also run on AppScale and thus SmartFarm,
without modification. AppScale runs on public cloud infras-
tructures (Amazon Elastic Compute Cloud (EC2), Google
Compute Engine, Microsoft Azure) or on local cluster re-
sources within virtual machine instances over Eucalyptus.
Eucalyptus is an open source cloud infrastructure that runs
on local cluster resources and provides highly available, fault
tolerant virtual machine management. Eucalyptus is API-
compatible with Amazon EC2 and Simple Storage Service
(S3) so that any EC2 instance/service can run on Euca-
lyptus without modification. AppScale and Eucalyptus to-
gether in SmartFarm provide us with a production-ready,
highly available private cloud system and our users with a
vast ecosystem of freely available cloud software from Google
and Amazon.

Our software architecture for SmartFarm extends this
private cloud system in multiple ways. First it integrates
popular, open source analytics engines from the “Big Data”
community. In particular, the SmartFarm platform sup-
ports Spark [5], Hadoop [13], Cassandra [6], postgreSQL [20],
MatLab [17], and R [9]. We integrate these disparate tech-
nologies into a single distributed system in order to permit



Figure 2: Prototype SmartFarm appliance for on-farm de-
ployment. Top half contains compute elements running
SmartFarm software stack. Bottom half contains network
switch and uninterruptable power supply (UPS).

a wide variety of applications to be executed over Smart-
Farm. That is, we envision a model in which developers, re-
searchers, and industry vendors develop analytics and data
visualization “apps” that rely on these technologies for their
implementation. Growers then download the apps from an
“App Store” (for free or for a fee) and execute them on the
SmartFarm appliance using data owned and controlled by
the grower. There are numerous such apps available to-
day for general purpose (non-ag) data analysis, visualiza-
tion, and machine learning [4, 14–16,23,26].

Figure 2 shows a picture of an on-farm prototype appli-
ance. The SmartFarm software implementation (the soft-
ware “stack”) runs on a set of small, durable computing
“bricks.” Each brick, in this example, contains an 3.1 GHz
Intel i7 dual core CPU, 16GB of memory, and 250GB of SSD
storage, an 802.11 wireless interface, and a 1 Gb CAT-V eth-
ernet interface. The bricks are “headless” meaning that they
can operate without an attached console or keyboard. They
communicate with each other using the wired network via
a switch (located in the bottom half of the appliance) and
all components are plugged into an uninterruptable power
supply (UPS) also located in the bottow half.

Because these components can operate at relatively high
temperatures (120 degree F or more) and they contain no
moving parts, they are well suited to deployment on-farm in
an out building or office where there is 120V AC and wire-
less connectivity. Its firewall enables growers to control fully
what data, if any, they share with remote entities. More-
over, SmartFarm apps can be used to anonymize shared
data according to the growers’ needs and interests. Finally,
SmartFarm employs a private wired or wireless network for
connectivity to on-farm sensors, for full isolation from web
accessibility if required.

Our experience with this early SmartFarm prototype
shows that it is feasible to integrate these technologies effi-
ciently and effectively and that it is possible to operate this
combination effectively both at the large scale for which it
was defined and, more interestingly, at the small scale which
will be typical of on-farm deployments. Thus SmartFarm
essentially provides a universal, user-controlled cloud plat-
form capable of leveraging the predominant public cloud and
popular analytics technologies and applications.

3. DATA INGRESS
We use the term sensor herein to describe any device or

system that serves as a data source for the analytics or vi-
sualization apps executing in a SmartFarm deployment.
Sensors under this definition include physical devices that

measure environmental phenomena or record events and ac-
tivities of farm agents (human, animal, computer, or me-
chanical) that are germane to precision farming. Addition-
ally, “files” that have been gathered by the grower, extant
databases, and Internet accessible web services (e.g. weather
data sites) that can provide measurements are modeled and
treated as “sensors” by the SmartFarm system.

Our goal with SmartFarm is to support as“farm sensors”
a variety of data sources including historical records (hand
written and digital), sensing devices, the Internet (if/when
available), and imagery data. Historical records include
those for input (pesticides, water, fertilizers) applications,
disease, crop variability and yields, animal health and wel-
fare, and manual information extraction (BRIX tests – sugar
content in solution), Anthocyanin (pigment), pressure cham-
bers (plant water status), among others. The sensing de-
vices include those that measure water pump performance/-
pressure, irrigation processes, and soil moisture/quality as
well as weather stations, energy meters (e.g. GreenBut-
ton [10]), and devices that collect farm implement (planters,
harvesters, etc.) activity and animal behavior. Internet data
is data that is made available via web APIs and include those
from social networks, area weather stations (e.g. CIMIS [7],
WeatherUnderground), and web services such as those for
geo-location, news, and stock reports. Finally, imagery data
include multi-spectral (that reveal plant health, disease, ani-
mal activity, water use, etc.) video and still images collected
on-farm manually or via UAVs, e.g. [3, 22, 28], and off-farm
via fixed-wing aircraft [27] and satellites [11,24].

No extant system today provides such unified data ag-
gregation. The challenges in doing so include configuring
and deploying (i.e. interoperating with) such a diversity of
options. Moreover, many vendors hold their sensor device
API as proprietary for commercial purposes. In addition,
individual vendors are not commercially incentivized or in-
terested in providing a unifying data integration service that
works with the devices of their competitors. Thus, such an
infrastructure and feature set must come from the research
and open source communities.

The most mature step in this direction is with the an open
source middleware for the Internet-of-Things (IoT) called
Global Sensor Network [1, 2] (GSN). As such, we have in-
tegrated GSN into SmartFarm and have extended it with
customized support for agriculture settings. GSN is a ro-
bust, widely used technology for deploying sensor networks
and processing data produced by them in a distributed set-
ting. Because GSN is a general purpose system, it provides
mechanisms for integrating arbitrary sensors. It does so by
defining a “virtual sensor” in software that represents and
interoprates with one or more physical sensing (data pro-
ducing) devices. The GSN community has contributed a
number of different virtual sensor specifications and imple-
mentations for popular IoT devices (home monitoring de-
vices, photographs, weather stations, and others).

Each GSN virtual sensor consists of a component that in-
terfaces to the physical sensor or group of sensors and a com-
ponent that collects and persists the data from the sensor
in the data management layer of SmartFarm . These com-
ponents are implemented as part of the GSN virtual sensor
software stack consists of a sensor descriptor, data process-
ing logic, and a software wrapper that communicates with
one or more instances of a physical sensor. This interface
is sufficiently abstract to support a wide range of different



sensor types (including GSN itself to link multiple GSN de-
ployments if necessary).

To date we have developed GSN virtual sensors for lo-
cal multiple soil moisture sensors, local temperature sen-
sors, and local records including multi-spectral imagery and
comma separated value (CSV) files. We store images in a
bucket store and their metadata in GSN. In addition we
have developed virtual sensors for remote (web/cloud appli-
cation programming interfaces (APIs)) data sources (when
available). The technologies that we have integrated include
those from GreenButton (electricity use), CIMIS (weather
and irrigation-related data), WeatherUnderground (commu-
nity weather stations), PowWow Energy (imagery), Tule
(evapotranspiration), Irrometer (soil moisture and temper-
ature), as well as DropBox and Box (generic image/CSV
file storage). We have also extended GSN with support for
direct JSON queries (only vanilla SQL was supported pre-
viously). In addition, we have developed multiple tools that
automate virtual sensor specification and GSN deployment.
Our extensions simplify sensor development and GSN use
to make GSN more accessible to non-experts. In addition,
they enable GSN users to ingress a wide variety of disparate
datasets from a vast diversity of physical sensors and data
sources. All of our extensions and tools are available via
GitHub at https://github.com/UCSB-CS-RACELab/gsn.

In all settings, deployed sensor data is automatically in-
gressed by GSN and stored in SQL database tables. GSN
provides visualization tools to visualize the data over time
and SmartFarm apps access the data via SQL queries or
by transforming the data to HDFS for access via Hadoop
and Spark analytics and NoSQL for large scale distributed
range queries.

4. DATA EGRESS AND ANALYSIS
Our goal with SmartFarm is to help farmers and ranchers

improve environmental stewardship, while increasing yields,
profitability, and animal welfare. To enable this, we make
SmartFarm available as open source to researchers and
software developers to investigate new sustainability science
and engineering in the areas of precision agriculture, agro-
nomics, and bio-resource and agriculture engineering in the
form of SmartFarm applications (apps). The SmartFarm
platform exports a set of APIs and tools that simplify app
deployment and once running, automatically manages their
execution. The platform is also able to communicate and
control farm-local sensors and equipment based on the out-
come of app analytics.

As an example, we have developed a SmartFarm app
for wine grape growers called RootRApp. Our foundation
RootRApp employs anthocyanin sampling via Near Infrared
(NIR) sensing in combination with Ordinary Kriging to im-
plement automated differential harvesting [25]. This use of
sampling and Kriging constitutes an example of statistical
analytics used as a control mechanism since the harvester
uses the Kriging interpolations to separate grapes as it picks
them into two different quality batches automatically.

SmartFarm makes it possible to use the same data set
with different analytics also to implement decision support
for the grower. RootRApp uses samples of anthocyanin (col-
lected for the original study) and attempts to find a“point of
origin” for a potential root cause associated with the grapes
that had fruit readings lower than 0.87mg/g (low quality).

Figure 3 (a) reproduces the map in our original work with

respect to anthocyanin readings. In the original study, the
grower selected a threshold value of 0.87 to differentiate be-
tween grape qualities. The figure shows regions where the
harvester used a value interpolated from the sample to de-
cide whether the grapes were Quality A (dark red regions)
or Quality B (yellow regions).

Using the same dataset, RootRApp also computes the
α = 0.01 confidence region for the Quality B grapes based
on an assumption of bivariate normality. If the reason for
quality difference has a point of origin then a bivariate Nor-
mal distribution (as a function of distance) is a reasonable
first-order model to investigate as a dispersion model. Fig-
ure 3 (b) shows the results of this preliminary investigation.
Observing the data, it is possible to discern (based on the
proximity to the tree and water derrick marked in each)
where the likely point-of-origin is located. From these two
figures it appears that such a point would lie in the interior
of the yellow region shown in the center of Figure 3 (a).

SmartFarm makes it easy to extract or egress data from
the system so that it can be used by online tools and hybrid
cloud services. In this example, we use Google Earth to en-
able the growers to zoom in and out of SmartFarm data
(i.e. “fly” through the annotated image) in real time. Multi-
ple levels of detail combined with analytics calculation allow
the grower to pinpoint the exact region in which a point-of-
origin is likely to occur. By storing the data and performing
the analysis locally, SmartFarm provides growers with the
same outcome that public cloud solutions provide while con-
serving both bandwidth and Internet data plan charges and
preserving grower privacy.

In particular, no information about the farm (other than
the GPS locations of the samples) is shared with Google, i.e.
no information about anthocyanin or BRIX (which indicate
potential productivity for the plot) is shared. RootRApp
precludes the need to upload these latter measurements to
Google when producing the map for the grower. In this way,
an adversary gaining access to Google’s infrastructure might
learn that a grower is interested in a particular plot of land
(based on latitude and longitude) but could not discern what
information beyond that were part of the analysis. Because
the app is customized to a specific growing region, it is also
possible to determine whether a datum falls within the lat-
itude and longitude under study and if it does not, block it
from being egressed.

Notice also that RootRApp is purely an analytics calcu-
lation. The root cause could be lack of plant stress, disease,
insect infestation, soil contamination, etc. That is, we can
apply it to a wide range of problem sets and sensor data
types. The analytics combined with high-quality and inter-
active imaging allow the grower to focus his or her efforts
to investigate specific plants and areas in the vineyard. For
example, if the grower wishes to investigate whether the rea-
son for the lower levels of anthocyanin were due to a water
leak that reduced plant stress, the level of detail provided
by the interactive capability provided by Google Earth com-
bined with the analytics calculation showing the confidence
region provides a useful guide on where to look for the leak.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we overview the vision, software architec-

ture, and our on-going work surrounding UCSB Smart-
Farm. In addition, we describe a new SmartFarm applica-
tion (app), called RootRApp, that makes use of farm sensor



(a) (b)
Figure 3: Example SmartFarm app: Harvester control and origin analysis using the same data and hybrid cloud (local analysis
and Google Earth). Figure (a) is an interpolated anthocyanin map from [25]. Points indicate vines that were sampled. Dark
red regions indicate anthocyanin readings > 0.87 (Quality A grapes) and yellow regions corresponds to readings <= 0.87
(Quality B grapes). Figure (b) shows the anthocyanin samples (red points) from [25] and point-of-origin using the bivariate
Normal for probability 0.99. The white ellipse delineates the α = 0.01 confidence region.

data to perform root cause analysis for wine grape quality
differences. RootRApp, summarizes and anonymizes data
so that it can be shared and visualized with a cloud geo-
spatial mapping service (Google Earth) running locally or
at Google.

As part of future work, we are developing techniques that
will enable autonomous management of the SmartFarm
private cloud (greater than 1 year) by leveraging the product-
ion-quality mechanisms for high availability that Eucalyptus
provides. We are also working on SmartFarm data models
and HDFS interoperation to facilitate efficient data query
and processing (via the analytics engines). Finally, we are
investigating a wide range of SmartFarm apps for frost
damage mitigation, irrigation scheduling, and yield predic-
tion as well as a number of new farm sensor technologies.
We hope that SmartFarm enables growers to ask “what if”
questions like the point-of-origin question dynamically, in
real time, using the data they have harvested locally – at a
much greater frequency and efficacy than is possible today.
Closing the loop between grower experience, data gathering,
and data analysis will enable growers to leverage their own
data assets to improve yields more sustainably.

This work is funded in part by NSF (CCF-1539586, CNS-
1218808, CNS-0905237, ACI-0751315), NIH (1R01EB014877-
01), ONR NEEC (N00174-16-C-0020), Huawei Technologies,
and the California Energy Commission (PON-14-304).
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