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Abstract: Object-oriented programs are difficult to optimize class CartesianPoint : Point {
because they execute many dynamically-dispatched calls. Thes: float x, y;

calls cannot easily be eliminated because the compiler does no virtual float get_x() { return x; }
know which callee will be invoked at runtime. We have developed (other methods omitted)

a simple technique that feeds back type information from the }
runtime system to the compiler. With this type feedback, the
compiler can inline any dynamically-dispatched call. Our compiler
drastically reduces the call frequency of a suite of larye &ppli-

cations (by a factor of 3.6) and improves performance by a factor
of 1.7. We believe that type feedback could significantly reduce
call frequencies and improve performance for most other object- }
oriented languages (statically-typed or not) as well as for

languages with type-dependent operations such as generic arithSincep could refer to either €artesianPoint  or aPolar-
metic. Point instance at runtime, the compiler’s type information is not

precise enough to optimize the call: the compiler kn@/s
abstract type(i.e., the set of operations that can be invoked and
] their signatures) but not itoncrete typgi.e., the object’s size,
1. Introduction format, and the implementation of the operations).

Object-oriented programs are harder to optimize than programspure object-.orle.nted languages gxacerpate this problem because
written in languages like C or Fortran. There are two main reasons€Veryoperation involves a dynamically-dispatched message send.
for this. First, object-oriented programming encourages code FOr €xample, even very simple operations such as instance vari-
factoring and differential programming; as a result, procedures are@Ple accesses, integer addition, and array accesses conceptually
smaller and procedure calls more frequent. Second, it is hard tcnvolve message sends iaL$ [US87], the programming language
optimize calls because they udgnamic dispatchthe procedure used for this study. Consequently, a pure object-oriented language
invoked by the call is not known until runtime because it depends'!ke SELF offers an ideal test case fqr optimization techniques tack-
on the dynamic type of the receiver. Therefore, a compiler usually!ing the problem of frequent dynamically-dispatched calls.

cannot apply standard optimizations such as inline substitution orThe rest of this paper describes our experience with a new optimi-

class PolarPoint : Point {
float rho, theta;
virtual float get_x() {
return rho * cos(theta); }
(other methods omitted)

interprocedural analysis to these calls. zation tech_nique based type feedbackWith type feedback, our
Consider the following example (written in pidgin C++): new compiler runs largeEsF programs 1.7 times faster than
. without, and 1.5 times faster than the previoesFScompiler
class Point { . , which uses extensive compile-time type analysis instead of type
virtual float get_x(): /I get x coordinate feedback. Although we have implemented type feedback only for
virual float get y(); /i dittofory the pure dynamically-typed object-oriented languager,Sthe
virtual float distance(Point p); _ technique is language-independent and could be applied to stati-
} /I compute distance between receiver and p cally-typed, non-pure languages as well.
When the compiler encounters the expresgienget x()
where p’s declared type ifoint , it cannot optimize the call 2 Type Feedback

because it does not knows exact runtime type. For example, The key idea of type feedback is to extract type information from

there could be two subclassesPufint , one for Cartesian points  executing programs and feed it back to the compiler (Figure 1).
and one for polar points:
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Specifically, we use an instrumented version of a program to if (p->class != CartesianPoint) {

record the programtype profile i.e., a list of receiver types (and, goto uncommon_case;

optionally, their frequencies) for every single call site in the // branch to separate version of the code that handles
program. To obtain the type profile, the standard method dispatct // non-Cartesion points and never branches back
mechanism is extended in some way to record the desired informa // to this code

tion, e.g., by keeping a table of receiver types per call site. }

In the &LF system, no additional mechanism is needed to record - . .

receiver types since the system ugelymorphic inline cache® I |_nI|ne C.:arte5|anP0|nt get x()

speed up dynamic dispatch. As we have observed in [HCU91], X~ P=%

these caches record receiver types as a side-effect. Therefore, Now the code following this statement can be better optimized
program’s type profile is readily available, and collecting the type because the compiler know’s class, and thaget_x has no side-
feedback data does not incur any execution time overheadeffects.

However, the particular way in which type feedback information is Neither splitting nor uncommon branch elimination is necessary to
collected is not important here; all that matters is that the informa'imp|ement type feedback; we have presented them here mere|y as
tion contains a list of receiver types (and, optionally, invocation examples of optimizations that profit from opportunities created by
counts) for each call site. type feedback. TheeSr-93 compiler described below implements
The program'’s type profile is then fed back into the compiler to both optimizations.

generate optimized code. Using type feedback, the compiler carpredicting future receiver types based on past receiver types is
optimize any dynamically-dispatched call (if desired) by only an educated guess. Similar guesses are made by optimizing
predicting likely receiver types and inlining the call for these compilers that base decisions on execution profiles taken from

types. In the above example, the expresgion p—>get_x() previous runs [Wall91]. However, in our experience, type profiles
could be compiled as are more stable than time profiles—if a receiver type dominates a
if (p->class == CartesianPoint) { call site during one program execution, it also dominates during
// inline CartesianPoint case other executions. A recent study by Garrett et al. [G+94] that
X = p->X; measured the stability of type profiles iaL§ C++, and Cecil
}else { programs confirms our experience.
// don't inline PolarPoint case because method is too big
/I this branch also covers all other receiver types :
X = p->get_x(); /I dynamically-dispatched call 3. Type feedback in the 8LF SyStem
} This section describes the implementation of type feedback in

. . . . SELF; although our implementation makes extensive use of possi-
For CartesianPoint receivers, the above code sequence will pjities opened by dynamic compilation, we wish to emphasize that
execute significantly faster since the original virtual function call dynamic compilation is not needed to implement type feedback.
is reduced to a comparison and a simple load instruction. Inlining The reader who is not interested in the particular details of the
not only eliminates the calling overhead but also enables thegy ¢ implementation may safely skip this section and continue
com'piler to op_timize t_he inlined code using dataflow information \yith section 4. Section 5 discusses how type feedback could be
particular to this call site. implemented in a more conventional “batch-style” compilation
Some optimizations can enhance the benefits of inlir@plitting environment.
[CU90] copies code following thé  statement into the branches  gince g1F is dynamically-typed, it has no explicit notion of type.

of theif , where it can profit from the more precise dataflow (or However, the implementation maintains internal type descriptors

type) information that is specific to the branches of ifhe (called “maps”) that describe the exact format of each object (i.e.,
However, splitting is limited to cases where the improved informa- it storage layout, inheritance structure, etc.). In the remainder of

tion can be used to optimize code immediately following (or very this paper, we will use “type” to refer to these internal implementa-

close to) thef statement. If the code that could benefit is further o types. Translated into C++ parlance, “type” stands for “non-
away, all code between it and the statement must be duplicated, gpstract (concrete) class.”

and the cost of the code increase may outweigh the benefits of th

optimization. o 3.1  Dynamic recompilation

Another. optimization,uncommon .branch ellmlnatlons.more _ The SLF-93 system uses dynamic recompilation not only to take
aggressive and preserves the improved dataflow informationggyantage of type feedback but also to determine which parts of an

throughout the caller. Uncommon branch elimination was first 4ppjication should be optimized at all. Figure 2 shows an overview

suggested to us by John Maloney and was implemented in Chamgt the compilation process of the system. When a source method is
bers’ ELF-91 compiler [Cha92] and (in a somewhat different and

more aggressive form) in theei$-93 compiler described in the _ iFexecuted _
next section. The main idea is that the optimized code hamnlies rﬁgt“hfggs M"
the predicted cases. Of course, the code still has to test for the is first invoked if needed for
uncommon cases, but upon encountering such a case, it branche debugging [HCU92]

to a separate (less optimized) copy of the code which does no
merge back into the optimized version. Therefore, the optimized
version's dataflow information is not “polluted” by the pessimistic jnyoked for the first time, it is compiled quickly by a very simple,
alias andkill information caused by uncommon cases. completely non-optimizing compiler. If the method is executed
For example, if the type feedback information indicates that non- often, it is recompiled and optimized using type feedback. Some-
Cartesian points are almost never used, the expressiortimes, an optimized method is reoptimized to take advantage of
x = p->get_x() could be compiled as additional type information or to adapt it to changes in the
program’s type profile. Combining the optimizing compiler with
the fast non-optimizing compiler and dynamic recompilation

Figure 2. Compilation in the SELF-93 system



allows $LF-93 to achieve high performance while keeping compi- the new method is marked so it won't be considered for future
lation pauses in the sub-second range [H6194]. recompilations.

In the following sections, we will briefly discuss our implementa- o .

tion of dynamic recompilation; more details can be found in 3-4 Inlining strategies

[Ho194]. Although type feedback enables the compiler to inline any call in
_ the program, not all calls should be inlined. Deciding whether to
3.2 When to recompile inline a particular send is difficult for several reasons. First,

Any dynamic recomp”ation system needs to decide when toinlining one method may require cher methods to be inlined as.
recompile code. If the system recompiles too eagerly, compilationWell (e.g., to reduce closure creation overhead). Second, even if
time is wasted; if it recompiles too lazily, performance will suffer. the compiler could accurately estimate the local impact of inlining
SELF-93 uses invocation counts to drive recompilation. Each unop- @ send, the overall performance impact may depend on the result of
timized method has its own counter that is incremented in theOther inlining decisions. For example, inlining a send may be bene-
method prologue. When the counter exceeds a certain limit, theficial in one case but may hurt performance in another case
recompiler is invoked to decide which method (if any) should be pecause othgr inlined sends increase register pressure so much that
recompiled. If the method overflowing its counter isn't recom- important variables cannot be register-allocated.

piled, its counter is reset to zero. Counter values decay exponenThe current 8LF compiler uses a set of simple rules to guide the
tially with time (i.e., the system monitors invocation rates, not pure inlining process. Essentially, methods are inlined if they are small,
invocation counts). and if the estimated size of the caller (including all methods inlined
Originally, we envisioned counters as a first step, to be used 0n|ySO far) is nOt_tOO big. The latter condition avoids excessive inlining
until a better solution was found. However, in the course of our that could arise when many small methods are called.

experiments we came to realize that the trigger mechanismDetermining the “size” of an inlining candidate is harder nFS
(“when”) is much less important for good recompilation results than in more traditional languages: sin@FrSis a pure object-

than the selection mechanism (“what”). oriented language, it performs all computation via message
) sending, and thus virtually every source-code token represents a
3.3  What to recompile message send whose cost (both in terms of space and time) is

To find a “good” candidate for recompilation, the recompiler walks highly variable. To improve its estimates, thScompiler exam-

up the call chain and inspects the callers of the method triggeringin€s previously-compiled optimized code where available. Besides
the recompilation. A caller is recompiled if it performs many calls being more accurate than source-level size estimates, this approach
to unoptimized or small methods (the hope being that these callsalso has the advantage of considering a bigger picture: typically,
will be eliminated), or if it creates closure objectsL(Simple- the compiled method for a source method includes not only code
ments all control structures using message passing and closurefor the method itself but also that of inlined calls. By examining
when control structures are inlined, the closures can typically bePreviously-compiled code, the compiler can obtain a better esti-
eliminated.) A simpler recompilation strategy would always Mate of the ultimate space cost of an inlining decision.

recompile the method whose counter overflowed, since it obvi- .

ously was invoked often. But suppose that the method just returns3-5  Structure of the &LF-93 compiler

a constant. Optimizing this method would not gain much; rather, This section briefly describes the optimizingLi§93 compiler

the method should be inlined into its caller, and thus it is necessarywhich combines simplicity with good compilation speed and good
to inspect the callers before deciding what to recompile. code quality. The front end of the compiler performs a variety of

If a recompilee is found, it is (re)optimized, and the old version is Optimizations that are necessary to achieve good performance with
discarded. During the compilation, the compiler marks the restartpure object-oriented languages—inlining (based on type feed-
point (i.e., the point where execution will be resumed) and tries to Pack), customization [CUL89], and splitting [CU90]—and gener-
compute the contents of all live registers at that point. If this is ates a graph of intermediate code nodes. The back end performs
successful, the reoptimized method replaces the corresponding only very few optimizations on the intermediate code before
unoptimized methods on the stack, possibly replacing severalgenerating machine code. In particular, the compiler does not
unoptimized activation records with a single optimized activation perform full-fledged dataflow analysis or coloring register alloca-
record. (This process is the reverse of dynamic deoptimization astion because we considered these techniques to be too expensive in
described in [HCU92]; that paper also describes how the compilerterms of compilation speed.

represents the source-level state of optimized code.) After computing the definitions and uses of each pseudo register,
The system tries to optimize an entire call chain from the top the compiler performs the following optimizations:

recompilee down to the current execution point. (Usually, the <« Closure analysisletermines which closures can be eliminated
recompiled call chain is only one or two compiled methods deep.) because they are not needed as actual runtime objects.

ThUS, |fthe neWIy Optlmlzed method isn't at the tOp of the StaCk, . Copy propagatiorpropagates pseudo registers within basic
recompilation continues with the method’s callee. If the old blocks, and singly-assigned pseudo registers globally. (These

method cannot be replaced on the stack, it is left to finish its propagations can be performed without computing full
current activation(s), but subsequent invocations will always use dataflow information.)

the new, optimized version. . ~« Dead code eliminationliscards nodes whose results are no
Finally, the recompilation system also checks to see if recompila- longer needed.

tion was effective, i.e., if it actually improved the code. If the
previous and new compiled methods have exactly the same non
inlined calls, recompilation did not really gain anything, and thus

A simple usage-count based register allocator computes the

register assignments, and the final machine code is generated in a
single pass over the intermediate graph.

The main differences betweerL8-93 and the 8 F-91 compiler

T The compiler cannot always describe the register contents in source-levedescribed by Chambers [Cha92] are that we have substituted type
terms since it does not track the effects of all optimizations in order to keepfeedback for iterative type analysis, and that our back end is less

the compiler simple. However, it can always detect such situations andampitious. As a result,E5F-93 is considerably simpler (11,000 vs.
signal them to the recompilation system. ' '




26,000 lines of C++). However, compared miS91, ELF-93 has 4.1 Methodology

several shortcomings: To accurately measure execution times, the programs were run
« Inferior local code qualityThe compiler does not fill delay under a SPARC simulator based on the Spa [Irl91] and Shade
slots except within fixed code patterns. Also, code often [CK93] tracing tools and the Dinero cache simulator [Hill87]. The
contains branches that branch to other (unconditional) branchsimulator models the Cypress CY7C601 implementation of the
instructions instead of directly branching to the final target. SPARC™ architecture, i.e., the chip used in the SPARCstation-2™
Finally, values may be repeatedly loaded from memory, even workstation.

within the same basic block. This is especially inefficient if the The simulator also accurately models the memory system of a
loaded value is an uplevel-accessed variable since an entirgpaRCstation-2, with the exception of the cache organization.
sequence of loads (following the lexical chain) is repeated in |nstead of the unified direct-mapped 64K cache of the SPARCsta-
this case. tion-2, we simulate a machine with a 32K 2-way associative

* Inferior register allocation The register allocator is very instruction cache and a 32K 2-way associative data cache using
simple and can cause unnecessary register moves or spills. write-allocate with subblock placement. “Write-allocate with

+ Redundant type testSince the compiler does not perform subblock placement” caches allocate a cache line when a store
type analysis or full dataflow analysis, a value may be testedinstruction references a location not currently residing in the cache.
repeatedly for its type even though only the first test is This organization is used in current workstations (e.g., the DECsta-

necessary. tion 5000™ series) and has been shown to be effective for
It is hard to estimate the performance impact of these shortcom-Programs with intensive heap allocation [KLS92], [Rei93],
ings. However, based on Chambers’ analysis of ther-$1 [DTM94].

compiler [Cha92] and an inspection of the compiled code of We do not use the original SPARCstation-2 cache configuration
several programs, we believe that they slow down the large object-because it suffers from large variations in cache miss ratios caused
oriented programs measured in this study by at least 10%. (Foiby small differences in code and data positioning (we have
programs with small integer loops, the overhead can be muchobserved variations of up to 15% of total execution time). With the
higher.) Therefore, the performance of type feedback as reported irchanged cache configuration, these variations become much
the next section is probably a conservative indication of what asmaller (on the order of 2% of execution time) so that the perfor-
fully optimizing SELF compiler with type feedback could achieve. mance of two systems can be more accurately comi5ared.
The execution times for theeS- programs reflect the performance

4 Results of (re-)optimized code, i.e., they do not include com_pile time. For

. the recompiling system, the programs were run until performance
To evaluate the performance of theL§93 compiler and the stabilized, and the next run not involving compilations was used.
contribution of type feedback, we measured the runtime perfor- (The impact of dynamic recompilation on interactive performance
mance of several largeES programs (see Table A-1 in the IS beyond the scope of this paper and will be the subject of a sepa-
appendix for a short description of the benchmarks). With the rate study.) 8.F-91 and &LF-93-nofeedback do not use recompi-
exception of the Richards benchmark, all programs are real appli-lation, so we used the second run for our measurements.
cations that were not written for benchmarking purposes. Table 1 . .
lists the systems used in our study. 4.2 Impact of type feedback on execution time

To evaluate the performance impact of type feedback, we

- compared the three versions of theLiSsystem mentioned in
System Description Table 1. Figure 3 on the next page shows the results (Table A-2 in

the appendix contains detailed data). Compariagr-83 with
SELF-93 The current BLF system using dynamic recompilatio SELF-93-nofeedback shows that type feedback significantly
and type feedback; methods are compiled by a fast improves the quality of the generated code, resulting in a speedup
Phoenz)ort)itrlTr]ril;Zit!]ngCi)OrTr]nplller'fﬂrSty then recompiled with of 1.7 (geometric mean) even thoughLi$93-nofeedback always

P 9 prier i necessary. optimizes all code whereas1$-93 optimizes only parts of the

=]

SELF-93 Same as 8.F-93, but without type feedback and code. (Sections 4.4 and 4.5 will analyze the reasons for the
nofeedback | recompilation; all methods are always optimized from  increased performance o£i$-93 in more detail.) &F-93 also
the beginning. outperforms 8LF-91 by a considerable margin, with a speedup of
1.5. Apparently, the better back end and iterative type analysis are
SELF-91 Chambers’ BLF compiler [Cha92] using iterative type not enough for & F-91 to compensate for the wealth of type infor-
analysis; all methods are always optimized from the mation provided by type feedback. In fact| €91 is only margin-

beginning. This compiler has been shown to achieve  g|ly faster than B.F-93-nofeedback which does not use any type
excellent performance for smaller programs. analysis. In other words,ES~91’s type analysis appears to be

Smalltalk-80 | ParcPlace Smalltalk-80™ release 4.0, generally largely ineffective for the programs we measured.

regarded as the fastest commercial Smalltalk syste

3

(based on techniques described in [DS84]) 4.3 Impact of type feedback on call frequency
- ‘ _ Type feedback drastically reduces the number of calls executed by
C/C++ GNU C and C++ compilers, version 2.4.5, using -O2  the benchmark programs. Figure 4 shows the number of calls rela-
optimization tive to unoptimized &F, where each message send is imple-
Lisp Sun CommonLisp 4.0™ using full optimization mented as a dynamically-dispatched call (with the exception of
Table 1: Systems used for benchmarking T To ensure that our choice of cache organization did not distort the results,

we measured different cache organizations, including 32K and 64K direct-
mapped caches. While absolute execution times varied, the resulting
performance ratios (e.g.ES-93 vs. &LF-93-nofeedback) were within
10% of the ratios presented here.
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Whereas 10-25% of the original calls remain #aF$91 and &LF-

93-nofeedback, & F-93 reduces the call frequency to about 5% of
the unoptimized system. Compared to tlEerFSsystems without

type feedback, calls are reduced by a factor of 3.6. Sinceds-
nofeedback performs about the same number of callgLas93,
we can also assume that compariegr®3 to &LF-91 is fair, i.e.,

that the reduction in call frequency and execution time is entirely
due to type feedback and cannot be attributed other differences
(such as more aggressive inlining). As with performance, the
sophisticated type analysis igL$-91 fails to give it an advantage

over ELrF-93-nofeedback when it comes to eliminating calls.

4.4  Type testing overhead

Since type feedback transforms dynamically-dispatched calls into
type tests followed by inlined methods, it is interesting to look at
the characteristics of these type tests. B0F93, type tests are

used in two situations: for sends inlined by type feedbatik€d

testy, and for the dispatch of non-inlined sendsgatch tesis

The latter are used because in dynamically-typed languages it is
harder (but not impossible [Dri93]) to use indirect function calls
for dynamically-dispatched calls. InsteadLSusesPolymorphic

Inline Caches [HCU91] which implement a dynamically-
dispatched call as a typecase statement (to determine the receiver
type) followed by a direct call. This implementation of dynamic
dispatch can compete well with the indirect-call implementation
typically used by C++ systems: on the SPARCstationeRr-83

uses an average of 12 cycles per dispatched call (including cache
effects) for the programs measured, whereas a C++ virtual call
uses 10 cycles (excluding cache effects).

The average number of type tests executed per send (i.e., the
number of branches in the statement testing for the expected
types) is very small. Figure 5 shows the distribution of the per-
benchmark averages forei$-93-nofeedback (left boxes) and
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Figure 5. Number of type tests per dispatched send

Box charts show the range of data (vertical lines) as well as
the 25% and 75% percentiles (end of the boxes) and the me-
dian (horizontal lines). Where the median and mean differ
significantly, we indicate the mean with a dot ().

SELF-93 (right boxes). Since we are interested in the work done per
type test sequence, the data excludes sends requiring no type test,
i.e. sends whose receiver type was known with certainty.

SeLF-93-nofeedback executes some inlined type tests because it
uses static type prediction [DS84] to predict the receiver type of
certain very frequent messages. Static type prediction always
predicts for a single type, except for sends to boolean receivers
(true and false are two different types iaL§. Thus, the low
average of 1.2 tests per send igLFS93-nofeedback is not
surprising. What is surprising, however, is that type feedback
reduces this average even more, to 1.08 tests per send. In other
words, the vast majority of inlined type tests need only one
comparison to find its target. Apparently, most sends optimized
with type feedback have only one receiver type or are dominated
by a single receiver type.

For non-inlined sends, type feedback pushes up the median
number of type tests per send from 1.35 to 1.7 tests per send. Type
feedback does not actually increase the degree of polymorphism of
sends; however, since the compiler does not inline highly polymor-
phic sends (with 5 or more receiver types) but at the same time
eliminates many of the other sends, the distribution of the
remaining sends is skewed towards higher polymorphism, and thus
the average number of type tests per send increases.

Finally, the last category of Figure 5 shows that the overall number
of type tests per send is reduced by type feedback. Does this mean
that programs optimized by type feedback perfdewer type
tests? Figure 6 shows that this is indeed the case: on avezage, S
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. 38%) but also show the largest variation. For one benchmark, the
Mango ] contribution is actually negative, i.e., slows down execution. Some
j of the possible reasons for the slowdown are inferior register allo-

Typeinf | cation (because of increased register pressure), or higher instruc-
Uil tion cache misses. (All of the above measurements include cache
y effects.)

uis | To summarize, the measurements in Figure 7 show that the perfor-

Geom. — ‘ ‘ ‘ mance improvement obtained by using type feedback is by no
mean 1 w — T means dominated by the decreased call overhead. In most bench-

0% 20%  40%  60%  80%  100% marks, factors other than call overhead dominate the savings in

Figure 6. Number of type tests relative to 8L.F-93-nofeedbak execution time. Inlining based on type feedback is an enabling

(upper bars: SELF-93-nofeedback, lower bars: BLF-93) optimization that allows other optimizations to work better, thus

) . creating indirect performance benefits in addition to the direct
93 programs execute 27% fewer type tests. At first sight, such Ebenefitg obtained [t))y eliminating calls.

reduction seems impossible: since dispatch is implemented as i
type test followed by a call, and type feedback just transforms thisy g code growth
sequence into a type test followed by inlined code, it would seem
that the total number of type tests should remain exactly the same
since type feedback merely turns dispatch tests into inlined tests
(Figure 6 confirms that many dispatch tests are indeed transforme
into inlined tests.)

Type feedback can reduce the number of type tests because tr B
compiler may statically know the types of the arguments of a send
inlined via type feedback. For example, suppose that a metiwod [7] unoptimized code
called with a constant argument. If this send is not inlined, each
send inm to the argument will require a type test since the argu-
ment’s type is not known statically. However, afterhas been
inlined using type feedback, constant propagation can reach all SELF-93 |

uses of the constant argument and eliminate the type tests. Thus nofeedback |
by inserting one type feedback test, the compiler has eliminated SELF-93 | |
other type tests and has reduced the overall number of type tests. | ‘ ‘ ‘ ‘ ‘ ‘ ‘
the benchmarks we measured, each type feedback test removed O

other type tests on average, even though the compiler perform: 0% 20% 40% 60% 80% 100% 120% 140%
only very rudimentary dataflow analysis. With a more sophisti- Figure 8. Size of compiled code relative toesrF-91
cated analysis, this “bonus” might be even higher.

Exponential code growth is a well-known potential problem of
procedure inlining. However, the additional inlining performed by
SELF-93 does not increase code size much over the systems not
using type feedback (Figure 8). On average, compiled code is only

optimized code

SELF-91 |

25% larger in 8LF-93 than in &LF-91; comparing 8.F-93-

45  Analvsis of speed nofeedback to 8F91 shows that part of the code size increase
: ysSIS ot sp up may be caused by the inferioEl$-93 back end. For some
Why does type feedback speed up programs? One reason for thorograms, the resulting code actually becomes smaller. This

increased speed is the reduced call overhead, but how much of thhehavior suggests that previousLS systems could not inline
speedup is obtained by just eliminating call overhead, and howmany attractive inlining candidates (i.e., very small methods), so

much is due to other factors? Figure 7 shows that the sources othat type feedback can reduce the call frequency by a factor of 3.6
improved performance can vary widely from benchmark to bench- with a code growth of only 15-25%.

mark. (The data assumes a savings of 10 cycles per eliminated ca

since we could not measure the exact savings per call.) Dependin4.7  Performance relative to other systems

on the benchmark, the reduced call overhead represents betwee-l-0 provide some context aboutL®'s performance, we measured
6% and 63% of the total savings in execution time, with a median, o sions of the DeltaBlue and Richards benchmarks written in C++
of 13% and an arithmetic mean of 25% (geometric mean: 18%). 54 smajltalk, as well as a Lisp version of Richards. (See Table 1
The reduced number of type tests contributes oalmost as much t¢q - qetails about the C++ and Smalltalk systems, and Table A-5 in
th% speedup, with a median contribution of 17% and a mean Ofyhe Appendix for detailed performance data; none of the other
19%, as does the reduced number of closure creations. benchmarks are available in other languages.) Since it was not
Other effects (such as standard optimizations that perform betteipossible to run Smalltalk or Lisp with the simulator, we could only
with the increased size of compiled methods) make the greateSmeasure SPARCstation-2 CPU times. Simulated timeseoE S
contribution to the speedup (with a median of 45% and a mean olprograms usually are between 5 and 25% lower than measured



execution times on a SPARCstation-2 since the simulation models

o X Self-91
a better cache organization and does not include OS overheac [ se
Therefore, for comparison withe§- and C++, we reduced the bigger W Self-93
measured Smalltalk and Lisp execution times by a conservative >
25%. Figure 10 shows the results. [1] C++
] Lisp Richards M Lisp
[] Smalltalk-80 B
W selr93 DeltaBlue F
faster ‘ ‘ ‘ ‘ ‘ ‘
> 7 Il virtual
7 ++ (all virtuals) 0%  100% 200% 300% 400% 500% 600%
] CHt Figure 10. Code size relative to GNU C++
DeltaBlue
7, y Figure 9 shows that for Richards and DeltaBlue, the additional

_ inlining performed by 8.F-93 actually decreases code size rela-
tive to ELF-91 (see Table A-6 in the appendix for absolute data).
Richards % But compared to GNU C++ the code is larger, especially for
DeltaBlue where several methods defined for constraints are
] customized to the three constraint types. In this particular case, the
T T T T compiler actually overcustomizes—not all of the customization is
0% 50%  100% 150%  200%  250% necessary to get good performance. Thus, the code increase is not a
Figure 9. Execution speed (8.F-93 = 100%) result of type feedback but of overcustomization (type feedback
actually decreases DeltaBlue’s code stlégxrtunately, our experi-
For DeltaBlue and Richardsgi$-93 runs 2.2 and 3.3 times faster  ence with larger applications suggests that DeltaBlue is a patholog-
than ParcPlace Smalltalk (generally regarded as the fastesjcal case rather than the norm.
commercially available Smalltalk system) even thoughr'S
language model is purer and thus harder to implement efficiently . .
[Cha92]. For Richards, E87-93 runs 2.6 times faster than an 5.  Applicability to other systems
equivalent CommonLisp program compiled with maximum opti-
mization and minimum safety (i.e., the Lisp code would not detect
some runtime errors). In conclusion, for these two programs S
93 runs two to three times faster than languages with roughly
comparable semantics.
Comparing &LF and C++ is harder since the two languages have 51  Type feedback and static compilation
very different language modelsEi$ provides code reuse and Type feedback is in no way dependent on the “exotic” implementa-
safety by basing the language on extensible control structures; - techniques used iNEG-93 (e.g., dynamic compilation or
p_ointer _safety,_ bounds and overflow check_ing, generic and exten'dynamic recompilation). If anythihgi: these techniques make it
sible arllthmetlc, and pure message passing. On. the otheri han(harder to optimize programs: using dynamic compilation in an
C++ omits these features (with the exception of virtual functions) interactive system places high demands on compile speed and

in its questhfor h'%h. perfformance. C_:onsziqluz.ant_lt);,] theh CH+ space efficiency. For these reasons, #e-83 implementation of
programmer has a choiCe ol programming style: either she use‘type feedback has to cope with incomplete information (i.e., partial
virtual functions liberally to get more flexibility, reusability, and

maintainability, or she minimizes virtual function usage to get type profiles and inexact invocation counts) and must refrain from
h ! performing some optimizations to achieve good compilation
maximum performance. speed.

We have measured both extremes in order to commare93's

performance against C++. If the two C++ programs are hand-opti- source instrumented
mized to make minimal usage of virtual calls, C++ is 2.3 times | program @ program

faster than 8.F-93. If all C++ functions are declared “virtual,”
however, C++ is only 10% to 40% faster tha#LFS93 despite type feedback dat

As demonstrated by the above measurements, type feedback works
very well for ELF. How well would it work with more conven-
tional implementation techniques (i.e., static compilation), and
how does it apply to other languages?

SELF's clearly inferior back end.

We have also measured the size of compiled code relative to C++ @ optimized
This comparison should be takemm grano salissince our - program
measurements are somewhat imprecise. First, gthe imbers

include some code in the measurement loop calling the actual Figure 11. Type feedback in a statically compiled system
benchmarks; since the two benchmarks are fairly small (10-

40 Kbytes), this code may inflate the numbers ferrSSecond, Thus, we believe that type feedback is probably easier to add to a
all numbers include only the actual code generated by theconventional batch-style compilation system. In such a system,
compilers and exclude any library code needed by the programsoptimization would proceed in three phases (Figure 11). First, the
(for both C++ programs the library code is an order of magnitude executable is instrumented to record receiver types, for example
larger than the actual compiled code). Third, as we have mentionewith a gprof -like profiler [GKM83]. (The standardjprof

above, 8LF's execution semantics are very different from C++'s,
and additional code is sometimes needed to preserve them (e.g
overflow checks).

T With type feedback, it would be possible to customize less aggressively
(thus reducing code size) since customization is no longer needed to enable
inlining (i.e., with type feedback the main benefit of customization is that it
can reduce the number of type tests required).



profiler already collects almost all information needed by type oriented programming languages (e.g., SmalltalitFSSather,
feedback, except that its data is caller-specific rather than call-siteand Eiffel); this is the reason thatine caching[DS84], [HCU91]
specific, i.e., it does not separate two call§oof if both come works well in these languages as an implementation of dynamic
from the same function.) Then, the application is run with one or dispatch. Therefore, we expect type feedback to work well for
more test inputs that are representative of the expected inputs fothese languages; the higher the frequency of dynamically-
production use. Finally, the collected type and profiling informa- dispatched calls, the more beneficial type feedback could be.

tion is fed back to the compiler to produce the final optimized
code.

As mentioned above, static compilation has the advantage that th16' Related work

compiler has complete information (i.e., a complete call graph andPrevious systems have used static type prediction to inline opera-
type profile) since optimization starts after a complete programtions that depend on the runtime type of their operands. For
execution. In contrast, a dynamic recompilation system has toexample, Lisp systems usually inline the integer case of generic
make decisions based on incomplete information. For example, itarithmetic and handle all other type combinations with a call to a
cannot afford to keep a complete call graph, and the first recompi-routine in the runtime system. The Deutsch-Schiffman Smalltalk
lations may be necessary while the program is still in the initializa- compiler was the first object-oriented system to predict integer
tion phases so that the type profile is not yet representative. On threceivers for common message names such as “+" [DS84].
other hand, a dynamic recompilation system has a significantHowever, none of these systems predicted types adaptively as does
advantage because it can dynamically adapt to changes in thiSg F-93.

program’s behavior. Other systems have used some form of runtime type information
i i her | for optimization, although not to the same extent 893 and
5.2 Applicability to other languages not in combination with recompilation. For example, Mitchell's

Obviously, type feedback could be used for other object-orientedsystem [Mit70] specialized arithmetic operations to the runtime
languages (e.g., Smalltalk or C++), or for languages with generictypes of the operands (similar toEL8-89's customization
operators that could be optimized with the type feedback informa-[CUL89]). Similarly, several APL compilers created specialized
tion (e.g., APL or Lisp). But how effective would it be? We cannot code for certain expressions (e.g. [Joh79], [Dyk77], [GW78]). Of
give a definitive answer since would require measurements ofthese systems, the HP APL compiler [Dyk77] came closest to
actual implementations, which are not available. Instead, we customization and type feedback. The system compiled code on a
discuss the applicability of type feedback using Smalltalk and C++ statement-by-statement basis. In addition to performing APL-
as examples. specific optimizations, compiled code was specialized according to
Type feedback is directly applicable to Smalltalk, and we expectthe specific operand types (number of dimensions, size of each
the resulting speedups to be similar to those achievedefer S  dimension, element type, etc.). This so-called “hard” code could
Despite some language differences (e.g. prototype- vs. class-baseexecute much more efficiently than more general versions since
inheritance), the two languages have very similar execution char-the cost of an APL operator varies wildly depending on the actual
acteristics (e.g., a high frequency of message sends, intensive hezargument types. If the code was invoked with incompatible types,
allocation, use of closures to implement user-defined control struc-a new version with less restrictive assumptions was generated (so-
tures, etc.) and thus very similar sources of inefficiency. called “soft” code). Since the system never used type information
C++'s execution behavior (and language philosophy) is much to reoptimize code, the technique is more akin to customization
further away from BLF, but we believe it will nevertheless benefit than to type feedback.

from type feedback. First, measurements of large C++ programsCustomization can be viewed as a restricted version of type feed-
[CGZ94] have shown that calls are almost five times more frequentback that attempts to minimize type tests by placing the receiver
in C++ programs than in C programs, and that the average size of type test at the beginning of the method. Unlike type feedback,
C++ virtual function is only 30 instructions, six times smaller than customization benefits only a restricted set of sends (namely those
the average C function. Second, the two C++ programs weinvolving self ). As implemented in &F, customization is also
measured in section 4.7 slowed down by factors of 1.7 and 2.2more eager (i.e., all methods are always customized right away)
when using virtual functions everywhere, demonstrating that and more static (all programs are treated the same way). In
current C++ compilers do not optimize such calls well. Third, we contrast, type feedback iE$-93 is more lazy and adaptive.

expect that C++ programmers will make even more use of virtual The system described in this paper was inspired by the experi-
functions in the future as they become more familiar with object- mental proof-of-concept system described in [HCU91]. That
oriented programming styles; for example, recent versions of thesystem was the first one to use type feedback (then called “PIC-
Interviews framework [LVC89] use virtual functions more based inlining”) for optimization purposes. However, being an
frequently than previous versions. experimental system, its structure and performance was very
To give a concrete example, the DOC document editor measured idifferent. It did not use dynamic recompilation; methods had to be
[CGZ94] performs a virtual call every 75 instructions; given that a recompiled “by hand,” and the system lacked any mechanism
C++ virtual call uses about 5 instructions and usually incurs two determining “good” recompilation candidates (i.e., it never looked
load stalls and a stall for the indirect function call, we estimate thatat the callers). As a result, its speedup over a system without type
this program spends roughly 10% of its time dispatching virtual feedback was modest (about 11%). Based on measurements of
functions. If type feedback could eliminate a large fraction of these C++ programs, Calder and Grunwald [CG94] argue that type feed-
calls, and if the indirect benefits of inlining in C++ are similar to back would be beneficial for C++; their proposed “if conversion”
those measured foreS- (i.e., total savings are 4-6 times higher appears to be identical to inline caching [DS84] and PIC-based
than the call overhead alone, see Figure 7), substantial speeduginlining [HCU91], except that it is performed statically.

appear possible. The Apple Object Pascal linker [App88] turned dynamically-
For type feedback to work well, the dynamic number of receiver dispatched calls into statically-bound calls if a type had exactly
types per call site should be close to one, i.e., one or two receiveone implementation (e.g., the system contained orGase-

types should dominate. A large fraction of call sites in C++ have sianPoint  class and n®olarPoint  class). The disadvantage
this property [CG94][G+94], and it also holds in other object- of such a system is that it still leaves the procedure call overhead
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Appendix: Detailed Data

Benchmark SiZ2 Description
¥ |DeltaBlue 500 two-way constraint solver [SM+93] developed af the
g University of Washington
E
2 |PrimMaker 1100 program generating “glue” stubs for external primi-
3 tives callable from SELF
‘_EB Richards 400 simple operating system simulator originally written
o in BCPL by Martin Richards
CecilComp | 11,500 Cecil-to-C compiler compiling the Fibonacci func-
tion (the compiler shares about 80% of its code with
the interpreter, Cecilint)
]
-:% Cecillnt 9,000 interpreter for the Cecil language [Cha93] runnipg a
= short Cecil test program
<
% Mango 7,000 automatically generated lexer/parser for ANSI C,
Rl parsing a 700-line C file
[
‘_g Typeinf 8,600 type inferencer for SELF [APS93]
ull 15,200 prototy{)pe user interface using animation technigues
[CU93]
uI3 4,000| experimental 3D user interfAce

Table A-1: Benchmark programs

2 Lines of code (excluding blank lines and comments).
b Time for both UI1 and UI3 excludes the time spent in graphics

primitives
execution time (ms)

POITE] SELRS | e o seiran

CecilComp 1,34 953 1,144
Cecilint 2,035 1,085 2,026
DeltaBlue 744 210 687
Mango 2,423 1,526 2,292
PrimMaker 2,52 1,227 2,279
Richards 922 591 693
Typeinf 1,448 769 1,388
Uil 716 686 645
uI3 656 528 571

Table A-2: Execution times

Benchmark unoptimized SELF-91 SELF-93 nifEeLe'(::i-t?:ck
CecilComp 3,542,858 N/A 120,418 472,422
Cecillnt 1,254,244 262,424 48,383 274,166
DeltaBlue 2,030,319 407,283 202,241 413,024
Mango 3,290,836 642,545 204,048 681,070
PrimMaker 3,934,308 819,277 76,273 602,217
Richards 6,962,721 839,478 151,819 888,817
Typeinf 2,363,131 288,982 101,858 293,815
ui1 1,727,021 256,573 213,145 288,176
uI3 1,274,863 274,26p 101,884 301,344

The execution times of the above benchmarks were kept relatively
short to allow easy simulation. To make sure that the small inputs
do not distort the performance figures, we measured three of the
benchmarks with larger inputs. Table A-3 shows that the speedups
achieved by type feedback are very similar to the speedups with
smaller inputs.

execution time (seconds) speedup

Benchmark SELF-93 SELF-93 large small

nofeedback| input | input®
CecilComp-2 97.2 715 1.36 141
Cecilint-2 38.5 21. 1.76 1.88
Mango-2 18.9 11.6 1.59 1.%9

Table A-3: Performance of long-running benchmarks

2 computed from the data in Table A-2
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Table A-4: Number of dynamically-dispatched calls

execution time (ms)
System

Richards| DeltaBlue
SELF-93 591 21
Smalltalk 2,586 60C%
C++ (all virtuals) 546 149
C++ (min. virtuals) 249 8y
Lisp 2,016 N/A

Table A-5: Performance of other systems

2 elapsed time (see text)

code size (ﬁ)bytes)
System

Richards| DeltaBlug
SELF-93 11.3 39.9
Smalltalk N/A N/A
C++ (all virtuals) 7.6 13.5
C++ (min. virtuals) 7.1 9.8
Lisp 14.7 N/A

Table A-6: Size of compiled code



