On Hardware and Hardware Models
for Embedded Real-Time Systems

Jakob Engblom*

Dept. of Information Technology, Uppsala University
P.O. Box 325, SE-751 05 Uppsala, Sweden
jakob@docs.uu.se / http://www.docs.uu.se/~ jakob

Abstract

When building an embedded real-time systems, the
choice of hardware platform is very important to create
an analyzable and predictable system. Also, the quality
of the models of the hardware used in software tools
is very important to the correctness of timing analysis
and the integrity of the system.

In this paper, we discuss some of the aspects of how
to build hardware models that are correct visavi the
hardware, and how to select hardware that allows real-
time systems to be constructed in a reliable fashion.

The purpose of this paper is to inspire some discus-
ston regarding how real-time systems are designed and
built and verified, from software, hardware, and tools
standpoints.

Keywords: Embedded Systems, Real-Time Systems,
Computer Architecture, Hardware Selection, Hardware
Analysis, Hardware Modelling

1. Introduction

Thanks to the ever-advancing performance of em-
bedded computer technology, an increasing number of
systems are being built and designed where micropro-
cessors and microcontrollers perform substantial con-
trolling tasks. Vehicles, appliances, industrial plants,
toys, mobile phones: embedded systems are every-
where around us. Most of these embedded systems
have real-time constraints, and potentially dangerous

* This work is performed within the Advanced Software

Technology (ASTEC, http://www.docs.uu.se/astec) compe-
tence center, supported by the Swedish National Innovation
Systems’ Administration (VINNOVA, http://www.vinnova.se).
Jakob is an industrial PhD student at IAR Systems
(http://www.iar.com) and Uppsala university, sharing his time
between research and development work.

Presented at the IEEE Real-Time Embedded System Work-
shop, Dec. 3, 2001.

effects if deadlines are missed or some other timing-
related bugs manifest themselves.

When developing embedded real-time systems, de-
signers and programmers rely on various forms of
scheduling and timing analysis. At some point, all
such analyses must account for the hardware used to
obtain execution time information, and if the analysis
method does not accurately reflect the hardware char-
acteristics, the result is likely to be a bad analysis and
potentially a bad system.

The choice of hardware, specifically the microproces-
sor or microcontroller to use, has a profound influence
on the analyzability of a system. The timing behav-
ior of a complex CPU core is very hard to understand
(even without a cached memory system). Thus, sys-
tems have to be designed to facilitate analysis, from
the hardware and up.

2. On the Quality of Hardware Models

In embedded systems development, hardware mod-
els (software running on the cross-development system )
are used for most of the development work and analysis
of a system. The quality of such models form a key part
of the correctness argument for a system. The use of
a bad hardware model (even for eminently predictable
and analyzable hardware) will put the system integrity
at risk.

Looking at the design flow for hardware models, sev-
eral sources of errors can be identified. Figure 1 shows a
schematic flow of the design and implementation work
separating a CPU simulator (the most important type
of hardware model) from the physical chips shipped by
the manufacturer.

The manual writing is probably the biggest source of
errors. The manual writers have to interpret the chip
design, and this interpretation can be different from
that of the hardware implementers. Simple typos can
introduce more errors.



Chip design

Hardware
implementation

VHDL Model

Compilation &
Fabrication

Manual
Writing

User’
man

Simulator
Design
Simulator
Implementation

Figure 1. Workflow of Hardware Modeling

S
a

Chip

Often, many of the details needed to implement a
simulator (or an optimizing compiler) are abstracted
away or glossed over. Many manuals do not describe
the detailed function of a CPU pipeline, but instead
give simple approximate cycle counts for instructions
(which is a grave oversimplification for a pipelined pro-
cessor) [1, 3, 10]. Thus, the manuals typically have a
rather tenuous relation to the chips they are supposed
to document, which is a major problem for hardware
modeling.

Even though hardware engineering is in much bet-
ter shape than software engineering, bugs can be in-
troduced in the hardware implementation. A famous
example is the Pentium FDIV bug [20]. The presence
of extensive errata lists for hardware further indicate
that hardware does contain bugs which are not found
until after products are shipping. It should be noted
that bugs regarding the timing behavior of chips are
quite common while functional bugs are comparatively
rare, since instruction timing is usually not validated
as extensively as functional correctness [12, 17].

The hardware compilation and fabrication do not
usually generate user-visible bugs.

The simulator implementation also has some bug
sources. In the simulator design step, it is possible to
introduce errors by misinterpreting the manuals and
ignoring important features in the model. During sim-
ulator implementation, errors are introduced as the de-
signed simulation model is converted into actual pro-
gram code.

In summary, the “timing correct” hardware models
we use in real-time development and research are sev-
eral bug-inducing steps away from the actual hardware,
which makes the use of such models quite questionable.
It is necessary to find a way to validate the hardware
models used when building real-time systems. To in-
vestigate this, we look at some work performed in val-
idating CPU simulators.

Looking at Figure 1, it seems that it would be pos-

sible to shortcut the process by using the VHDL code
in some manner. Unfortunately, VHDL simulators are
orders of magnitude slower than a regular cycle-correct
simulators, and automatic abstraction from VHDL to
a cycle-level simulator is not feasible.

2.1. Experience Report 1

Black and Shen [4] report their experience in validat-
ing a model of a PowerPC 604 processor. The method
employed was to execute many test cases (small pro-
grams) on both their simulator and a real CPU. The
performance counters of the PowerPC were used to
check the correctness of the model. For such a com-
plex chip, this is a reasonable approach. As a sanity
check, they also executed a number of larger programs
and compared the cycle counts on the simulator and
the hardware.

The results are interesting, since they never man-
age to get a perfect correspondence. Fixing an error
in the model sometimes revealed other errors that had
been masked by the first, and the total error could thus
increase for some fixes. However, over time, the accu-
racy of the model increased, both for the performance
counter agreements and the cycle counts for the tested
larger programs. For their final model, about 20 per-
cent of the individual small tests failed to be within one
clock cycle of the hardware timing, while the large test
programs showed an error between 2 and 10 percent.
The errors were both positive and negative, indicat-
ing overestimates and underestimates of the execution
time.

Their conclusion is that systematic validation
against hardware is necessary to build a performance
model that users can have confidence in using, and that
achieving a reliable and precise model requires a large
development effort. The complexity of current high-
end microprocessors makes the development of reliable
hardware models a “great challenge”.

2.2. Experience Report 2

Gibson et al. investigated the quality of the models
used in the research and development of the Stanford
FLASH multiprocessor [8]. The FLASH project em-
ployed several different simulators during the develop-
ment of the system, and collected a large amount of
data on how well the simulators and the hardware cor-
related. Their testing was initially based on running
large multi-processor numerical applications and com-
paring the resulting execution times. Smaller bench-
marks were introduced to help pinpoint specific per-
formance mismatches later in the process.

The CPU models used were all based on generic sim-
ulation packages like Mipsy and MXS, which were given



parameters to closely emulate the MIPS R10000 CPUs
used. However, these models were not able to capture
all relevant details of the CPU, giving execution time
results very different from the hardware for key parts
of their code like TLB miss handlers. This is claimed
to be a general problem with generic CPU simulators:
they are not sufficiently configurable to model all the
quirky cases of the real hardware.

The conclusions for simulator construction is that
simulation technology is barely able to keep up with the
increased complexity of modern computer systems, and
that hardware to compare with is necessary in order to
build a good model.

2.3. Experience Report 3

Montdn [16], working within our project, validated
a trace-driven simulator for the NEC V850E [19], used
in our WCET research, by comparing execution times
with the real hardware. The NEC V850E is a simple
scalar design without caches, typical for today’s 32-
bit RISC microcontrollers. The scope of the validation
effort was limited to the pipeline core. The hardware
used was a V850E emulator, which, according to NEC,
has exactly the same core as used in the normal chips,
the only difference being in the packaging and access
to internal signals.

The experiments used both short test cases of a few
instructions each, and some larger programs. For each
test, cycle counts were compared, and when a differ-
ence was found, the test was analyzed in detail, trying
to find the fault in the simulator that caused the dis-
crepancy. Many errors in the manuals were discovered
when a clock cycle count deviated from the expected.
To give a feeling for the types of errors found in this
experiment, a short selection is given in Figure 2.

In the end, for test cases not affected by the hard-
ware bug, the small test cases passed without error.
Errors for all but one of the test programs were down to
about 10 cycles, which was attributed to measurement
differences. One test program indicated some hardware
feature that was not correctly modeled. Overall, the
resulting simulator offers a very good correspondence
with the hardware.

3. On Cache Modeling

Another important aspect of a CPU is its cache sys-
tem. Building a model of a cache system is usually
quite simple, but analyzing the behavior in execution
time analysis is more complex.

Research in worst-case execution time analysis have
addressed the analysis of single-level direct-mapped
caches and set-associative caches with least-recently-
used (LRU) replacement [7, 14, 21, 18]. Separate

Manual Writing

The multiply instruction sometimes writes two registers,
which causes a delay of one cycle (probably the register bank
has only one write port). This was not documented.

Some forms of jump instructions were documented as being
one cycle faster than they actually were.

Simulator Design

The V850E has a main pipeline and a secondary pipeline. It
was possible for instructions to continue issuing to the sec-
ondary pipeline even if the main pipeline was busy, which is
not possible in the hardware.

One instruction had been forgotten in the simulator imple-
mentation.

Simulator Implementation

Signed and unsigned division has a one clock-cycle difference
in execution time, which was implemented the wrong way
around.

Some bit-manipulation instructions did not keep certain re-
sources locked for their entire execution, letting other in-
structions slip by, eventually leading to internally inconsistent
states and thus a crash of the simulator.

Hardware Bugs

There is no interlock on the hardware for successive load in-
structions writing the same register, making it possible to de-
stroy data in certain conditions, and leading to faster execu-
tion of some scenarios. This condition has been reported as a

hardware bug by NEC, and was not modeled in the simulator.

Figure 2. Selection of Bugs

data and instruction caches makes the analysis prob-
lem tractable; unified caches are much harder [6]. Also
note that multiple-level cache hierarchies, also popu-
lar on current desktop machines and servers, make the
analysis problem harder.

The cache analysis methods are efficient and effec-
tive, but unfortunately, many embedded architectures
have cache systems that do not fulfill the assumptions
used in the cache analysis research.

LRU replacement for a set-associative cache is con-
ceptually simple and effective, but it is not practically
implementable in hardware when going above asso-
ciativity four, due the memory and logic required to
track the latest access date for all cache lines in a set
larger than four lines [9]. Thus, many set-associative
cache systems used in embedded systems use other
replacement policies. The Intel X-Scale architecture
(“StrongARM 2”) has a round-robin cache replace-
ment scheme for its 32-way set-associative cache [11].
The ARM 7 cores use a 4-way unified cache with ran-
dom replacement policy, presenting a really hard prob-
lem for WCET analysis (and predictable performance)
[1]. Analysis of random and round-robin replacement
schemes are bound to be very pessimistic, since any
access can invalidate any other line in the same set [6].

A related issue is that for complex, superscalar,
processors with dynamic out-of-order dispatch, cache
misses might cause shorter execution times than cache
hits, which invalidates the basic assumptions behind
worst-case cache analysis [15]. This points to the un-




suitability of dynamically scheduled processors in hard
real-time systems.

4. Summary and Recommendations

This paper has presented an overview of work per-
formed in validating hardware models against the hard-
ware being modeled, and a discussion on the properties
of cache memories and their models. The purpose is
twofold: to point out that it is very difficult to build
correct hardware models and to inspire some discussion
in the hardware design of real-time systems.

We believe that a real-time system has to be de-
signed from the ground up for predictability in timing.
Selection of processor and memory system design is
very important to produce a reliable system. Just se-
lecting a “very fast” processor is not enough, since real-
time system design is not about being fast but about
being predictable.

Without a predictable hardware platform and cor-
rect timing analysis tools, scheduling theory and anal-
ysis is rather useless, since the input to a scheduling
algorithm has to be correct for the generated schedule
to be correct.

Based on the information presented above, we have
the following concrete advice to offer developers of em-
bedded real-time systems:

e The documentation for a processor should be as-
sumed to contain errors or incomplete information,
and building a correct hardware model requires val-
idation against real hardware. Only the hardware
represents correct information about itself (and in
many circumstances, the VHDL code).

e Accurate hardware models are possible to build for
simple pipelined processor architectures, but not for
advanced superscalars. Thus, simple pipeline archi-
tectures are preferable for embedded real-time sys-
tems.

e Hardware should be selected for predictable perfor-
mance, modelability, and analyzability. In the DSP
field for example, predictability has been maintained
even as performance has been pushed higher [5].

e Cache systems should be kept simple and pre-
dictable, since this both enables analysis and makes
the worst-case behavior less bad. Replacing the
cache by programmer-controlled fast SRAM is often
a very good option to keep performance and increase
predictability, at some cost in program complexity
(2, 13].

References

[1] ARM Ltd. ARM 720T Data Sheet, 37¢ edition, September
2000. Document no. DDI 0192A.

2]

[4]

[5]

9)
[10]
[11]
[12
[13]

14]

(15]

(16]

(17]
(18]

(19]

20]

(21]

ARM Ltd. ARMYE-S Flyer, 2001. Document no. DOI

00798A.

ARM Ltd. ARM 9TDMI Technical Reference Manual, 3"%
edition, March 2000. Document no. DDI 0180A.

Bryan Black and John Paul Shen. Calibration of Micropro-
cessor Performance Models. IEEE Computer, pages 59—65,
May 1998.

Jennifer Eyre. The Digital Signal Processor Derby. IEEE
Spectrum, 38, June 2001.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and Precise WCET Determination for a Real-Life Pro-
cessor. In Proc. First International Workshop on Embedded
Software (EMSOFT 2001), LNCS 2211, October 2001.

C. Ferdinand, F. Martin, and R. Wilhelm. Applying com-
piler techniques to cache behavior prediction. In Proc. ACM
SIGPLAN Workshop on Languages, Compilers and Tools
for Real-Time Systems (LCT-RTS’97), 1997.

Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz,
John Hennessy, and Mark Heinrich. FLASH vs. (Simulated)
FLASH: Closing the Simulation Loop. In Proc. 9th ACM
International Conference on Architectural Support for Pro-
grammang Languages and Operating Systems (ASPLOS00),
November 2000.

Jim Handy. The Cache Memory Book. Academic Press,
274 edition, 1998.

Infineon. Instruction Set Manual for the C166 Family, 24
edition, March 2001.

Intel.
2000.

Intel XScale Core Developer’s Manual, December

Intel. Intel Pentium 4 Processor Specification Update, April
2001.

Philip Koopman. Perils of the PC Cache. Embedded Sys-
tems Programming, pages 26-34, May 1993.

S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Ki. An accurate
worst-case timing analysis for risc processors. IEEE Trans-
actions on Software Engineering, 21(7):593-604, July 1995.

T. Lundqvist and P. Stenstrom. Timing anomalies in
dynamically scheduled microprocessors. In Proc. 20"
IEEE Real-Time Systems Symposium (RTSS’99), Decem-
ber 1999.

Sven Montan. Validation of Cycle-Accurate CPU

Simulator against Actual Hardware. Master’s
thesis, Dept. of Information Technology, Upp-
sala University, 2000. Technical Report 2001-007,

http://www.it.uu.se/research/reports/2001-007/.

Motorola Inc. MPC850 Family Device Errata Reference,

February 2001.

Frank Mueller. Timing Analysis for Instruction Caches.
Real-Time Systems Journal, 18(2/3):209-239, May 2000.

NEC Corporation. V850E/MS1 32/16-bit Single Chip Mi-
crocontroller: Architecture, 3" edition, January 1999. Doc-
ument no. U12197EJ3VOUMAOO.

Dick Price. Pentium FDIV flaw—lessons learned. IEEE Mi-
cro, April 1995.

Friedhelm Stappert. Predicting pipelining and caching be-
haviour of hard real-time programs. In Proc. of the 9t"
Euromicro Workshop of Real-Time Systems, June 1997.



