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Abstract

The Computational Grid [10] has recently been proposed lierimplementation of high-performance applications
using widely dispersed computational resources. The gompmputational Grid is to aggregate ensembles of shared,
heterogeneous, and distributed resources (potentialiyiroied by separate organizations) to provide computagio
“power” to an application program.

In this paper, we provide a toolkit for the development ofdGpplications. The toolkit, called EveryWare, enables
an application to draw computational power transparentigni the Grid. The toolkit consists of a portable set of
processes and libraries that can be incorporated into anligpgion so that a wide variety of dynamically changing
distributed infrastructures and resources can be usedttmgdo achieve supercomputer-like performance. We peovid
our experiences gained while building the EveryWare togiiatotype and the first true Grid application.

1 Introduction

Increasingly, the high-performance computing commurstiplending parallel and distributed computing technolsgie

to meet its performance needs. A new architecture, knowrtasComputational GriftL0], has recently been proposed

to frame the software infrastructure required to implentegh-performance applications using widely dispersed-com

putational resources. Just as household appliances deatrieity from a power utility, the goal of this new architece

is to enable applications to draw compute cycles, networkilaédth, and storage capacity seamlessly from the Grid.
To realize this vision, the application programming enmireent must be able to

¢ leveragaall potentially useful resources that the user can access,
¢ exploit the heterogeneity of the resource pool to the proaggradvantage, and

¢ manage the effects of dynamically changing resource padnce characteristics caused by contention, reconfig-
uration, and federated administration.
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Researchers have developed several innovative and pdweffware infrastructures to support the Grid paradigm [9,
16, 35, 4] and several pilot projects [13, 18, 24] have beendhed to investigate the efficacy of Grid computing. Each
of these technologies, however, is designed assuminghthandividual technology is ubiquitous with respect to the
resources at hand. We note, however, that the resource yuitalae to an application is generally specific to its user
and not a particular infrastructure. A single user may baetgdaccess to resources owned by different organizations
which do not agree to support a single, unifying infrastuoet Moreover, the time at at which a given infrastructure
may become available on a particular resource is also agmoblhere may be a significant time lag between the time
a particular machine becomes available, and when thesesuophésticated infrastructures can be ported to it.

In this paper, we descrideveryWare- a user-level software toolkit for writing Grid programs. deyWare allows
a user to write Grid programs to take maximal advantage ofutthetionality that is present at each resource to which
he or she has access. As such, EveryWare is an embarragsimtgliple set of processes and libraries which can “glue”
different locally-available infrastructures togetherteat a program may draw upon these resources seamlessly. In
addition, we offer our experiences in the development oftheryWare prototype and the first true Grid application.
The EveryWare toolkit enabled the development of this @pibn and provided a framework in which to study and
address the problems associated with writing Computati®rid programs.

In an experiment entered as a contestant in the High-PeafocenComputing Challenge [17] at SC98 in November
of 1998, we were able to use this prototype to leverage Glf#jusegion [16], Condor [35], NetSolve [4], Java [15],
Windows NT [37], and Unix simultaneously in a single, gldpalistributed application. The application, a program
that searches for Ramsey Number counter examples (distimsSection 3), does not use exhaustive search, but rather
requires careful dynamic scheduling for efficiency. Momowy focusing on enhancing the interoperability of the
resources in our pool, we were able to combine the Tera MTA §B@ the NT Supercluster [25] two unique and
powerful resources with a raft of other, more commonly available systems intigdoarallel supercomputers, PC-
based workstations, shared-memory multiprocessors, aratehabled desk-top browsers. As such, it represents an
example of a true Grid programthe computational “power” of all resources that were avddao the application’s
user was assessed, managed, and delivered to the applicBtie EveryWare entry was awarded “Best Acceleration”
by the panel judging the contest.

The dynamic variability of resource performance in a Corapiabal Grid setting makes writing high-performance
Grid programs problematic. EveryWare allows the prograntmeonsider explicitly the potential variability of resce
type (heterogeneity), connectivity, and dynamic load. Eeos, the details associated with managing this variglailie
separated from the application code by well defined APIs.

In the following section, we describe the components in theriaVare toolkit. In Section 3, we explain the appli-
cation we selected as the first Grid program and describenjpéeimentation using the toolkit. In Section 4 we show
the performance results and execution characteristidseoBtid program during the SC98 contest. We then detail our
experiences with the individual infrastructures in Satto We conclude with a future work section in 6 and summary
in7.

2 The EveryWare Toolkit

To realize the performance offered by the Grid computin@g@aym, a program must be ubiquitous, adaptive, robust,
and scalable. Ubiquity is required because the resourecfederated: the owners of the resources allow them to
participate in the Grid, but maintain ultimate authorityeotheir use. As such, the resource pool may change without
notice as resources are added, removed, replaced, or @ggrédhe program is not compatible with all potentially
available software infrastructures, operating systems herdware architectures it will not be able to draw soméef t
“power” that the Grid can provide. Adaptivity is requireddnsure performance. If the resource pool is changing, or the
performance of the resources are fluctuating due to cootgrttie program must be able to choose the most profitable
resource combination from the resources that are avaitdlaley given time. Similarly, if resources become unavéglab
due to reclamation, excessive load, or failure, the prograrst be able to make progress. Scalability, in a Grid setting
allows the program to use resources efficiently. The grehggree to which the program can be dispersed, the greater
the flexibility the Grid system has in being able to meet itdgrenance needs.



The EveryWare toolkit is composed of three separate soétwamponents:

e aportable linguafrancathat is designed to allow processes using different infugtires and operating systems
to communicate,

¢ a set ofperformance forecasting serviceshat can make short-term resource and application perfocenpre-
dictions in near-real time, and

¢ adistributed state exchangeservice that allows application components to manage ancdhsgnize program
state in a dynamic environment.

The portability of thdingua francaallows the program to run ubiquitously. Dynamic forecagthervices permit the
program to anticipate performance changes and adapt éxe@dcordingly. The distributed state-exchange services
provide a mechanism for synchronizing and and replicatimgortant program state to ensure robustness and scalabilit

The toolkit we implemented for SC98 was strictly a prototgesigned to expose the relevant programming issues.
As such, we do not describe the specific APIs supported by@anponent (they will change dramatically in our future
implementations). Rather, in this section, we motivate@agtribe the functionality of each EveryWare component and
discuss our overall implementation strategy.

2.1 LinguaFranca

For the SC98 experiment, we implementedithgua francausing C and TCP/IP sockets. To ensure portability, we tried
to limit the implementation to use only the most “vanilla&feres of these two technologies. For example, we did not use
non-blocking socket I/O nor did we rely upon keep-alive sigrto inform the system about end-to-end communication
failure. In our experience, the semantics associated Withet two useful features are vendor, and in some cases,
operating system release-level specific. We tried to avoidrolling portability through C preprocessor flags whearev
possible so that the system could be ported quickly to nehitaatures and environments. Similarly, we chose not to
rely upon XDR [33] for data type conversion for fear that itwanot be readily available in all environments. Another
important decision was to strictly limit our use of signdllix signal semantics are somewhat detailed and we did not
want to hinder the portability to non-Unix environmentg(eJava and Window NT). More immediately, many of the
currently available Grid communication infrastructurssch as Legion [16] and Nexus [11], take over the user-level
signal mechanisms to facilitate message delivery. Lasityavoided the use of threads throughout the architecture as
differences in thread semantics and thread implementgtiafity has been a source of incompatibility in many of our
previous Grid computing efforts.

Above the socket level, we implemented rudimentary packatamtics to enable message typing and delineate
record boundaries within each stream-oriented TCP comratioh. Our approach takes its inspiration from the puglicl
available implementation afet per f [19]. The original implementation of the EveryWare packedr comes directly
from the current Network Weather Service (NWS) [39] impleragion, where it has been stress-tested in a variety of
Grid computing environments.

2.2 Forecasting Services

We also borrowed and enhanced the NWS forecasting moduldsviiryWare. To make performance forecasts, the
NWS applies a set of light-weight time series forecastinghmes and dynamically chooses the technique that yields
the greatest forecasting accuracy over time (see [38] fonaptete description of the NWS forecasting methodology).
The NWS collects performance measurements from Grid camguésources (processors, networks, etc.) and uses
these forecasting techniques to predict short-term resoavailability. For EveryWare, however, we needed to be
able to predict the time required to perform arbitrary buyietitive program events. Our strategy was to manually
instrument the various EveryWare components and apgitatiodules with timing primitives, and then passing the
timing information to the forecasting modules to make pegdins. We refer to this process dgnamic benchmarking

as it uses benchmark techniques (e.g. timed program eyentsybed by ambient load conditions to make performance
predictions.



For example, we applied the forecasting modules to dynamicimarks to predict the response time of each
EveryWare state-exchange server. We instrumented eadr serecord the time required to get a response to a request
made to each of the other servers, for each message type. S e identified each place in the server code where
a request-response pair occurred, and tagged each of themets” with an identifier consisting of address where the
request was serviced, and the message type of the requestreBgsting how quickly a server would respond to each
type of message, we were able to dynamically adjust the rged#ae-out interval to account for ambient network
and CPU load conditions. This dynamic time-out discoveryvpd crucial to overall program stability. Using the
alternative of statically determined time-outs, the sysfeequently misjudged the availability (or lack thereof)tioe
different EveryWare state-management servers causimtigssaetries and dynamic reconfigurations (see subset8on
below for a discussion of EveryWare state-exchange funatity). At SC98, network performance on the exhibit floor
varied dramatically, particularly as SCINet [29] was refigured “on-the-fly” to handle increased demand, thereby
exacerbating this problem.

In general, the forecasting services and dynamic benchinggakow both the EveryWare toolkit, and the application
using it, to dynamically adapt itself to changing load andfgrenance response conditions. We trimmed down and
adapted the NWS forecasting subsystem so that it may bedaasle library with application and EveryWare code.
We also added a tagging methodology so that arbitrary pnograents could be identified and benchmarked. We used
standard timing mechanisms available on each system toateriene stamps and eventtimings. However, we anticipate
that more sophisticated profiling systems such as Paradjrafil Pablo [7] will yield higher-fidelity measurements.
While we were unable to leverage these technologies in totn&€98, the prototype EveryWare forecasting interface
is compatible with them.

2.3 Distributed State Exchange Service

To function in the current Grid computing environments, agram must be robust with respect to resource performance
failure while at the same time able to leverage a varietyfiédint target architectures. EveryWare provides a dhigteid
state exchange service that can be used in conjunction pjilication-level checkpointing to ensure robustness. Ev-
eryWare state-exchange servers (calBssifs) allow application processes to register for state syorghation. The
application component must register a contact addressigaeimessage type, and a function that allowBassipto
compare the “freshness” of two different messages haviagdme type. All application components wishing to use
Gossip service must also export a state-update methoddbmaassage type they wish to synchronize.

Once registered, an application component periodicaligives a request from @ossipprocess to send a fresh
copy of its current state (identified by message type). Ghssipcompares that state (using the previously registered
comparator function) with the latest state message red&ioen other application components. When @essipdetects
that a particular message is out-of-date, it sends a fredéb spdate to the application component that originated the
out-of-date message.

To allow the system to scale, we rely on three assumptionst, Fiat theGossipprocesses cooperate as a distributed
service. Second, that the number of application compomégntsng to synchronize is small. Lastly, that the grantyari
of synchronization events is relatively coarse. CoopenatietweerGossipprocesses is required so that the workload
associated with the synchronization protocol may be ewveislyibuted. At SC98, the EveryWatgossis dynamically
partitioned the responsibility for querying and updatingpléication components amongst themselves. We stationed
severalGossifs at well-known addresses around the country. When an apipiccomponent registered, it was assigned
a responsibl&ossipwithin the pool of availabl&ossis whose job it was to keep that component synchronized.

In addition, we allowed th&ossippool to fluctuate. NewGossipprocesses registered themselves with one of the
well-known sites and were announced to all other functigrdossifs. Within theGossippool, we used the NWS
cligue protocol [39] (a token-passing protocol based oddealection [12, 1]) to manage network partitioning and
Gossipfailure. The clique protocol allows a clique of processeslyaamically partition itself into subcliques (due
to network or host failure) and then merge when conditionsite The EveryWaresossippool uses this protocol to
reconfigure itself and rebalance the synchronization Igahohically in response to changing conditions.

The second and third assumptions are more restrictive. UBeceachGossipdoes a pair-wise comparison of ap-
plication component statgy? comparisons are required fo¥ application components. Moreover, if the overhead



associated with state synchronization cannot be amortigetseful computation, performance will suffer. We believe
that the prototype state-exchange protocol we implemefiotle8C98 can be substantially optimized, (or replaced by
a more sophisticated mechanism) and careful engineerimgezhuce the cost of state synchronization over what we
were able to achieve. However, we hasten to acknowledgadthaitl applications or application classes will be able to
use EveryWare effectively for Grid computation. Indeeds in interesting and open research question whether large-
scale, tightly synchronized application implementatiafilsbe able to extract performance from Computational Gyid
particularly if the Grid resource performance fluctuatesasgh as it did during SC98. EveryWare does not allow any
application to become an effective Grid application. Ratléacilitates the deployment of applications whose elear
teristics are Grid suitable so that they may draw computatipower ubiquitously from a set of fluctuating resources.
Similarly, the consistency model required by the applaratrogram dramatically affects its suitability as an Ev-
eryWare application, in particular, and as a Grid applarain general. The development of a high-performance state
replication facilities that implement tight bounds on dstency is an active area of research. EveryWare does not at-
tempt to solve the distributed state consistency probleralfaconsistency models. Rather, it specifies the inclusion
replication and synchronization facilities as a constitigervice. At SC98, we implemented a loosely consistentaer
based on th&ossipprotocol. Other, more tightly synchronized services camberporated, each with its own perfor-
mance characteristics. We note, however, that applicatiaming tight consistency constraints are, in generdicdif
to distribute while maintaining acceptable performaneele EveryWare is not intended to change the suitability of
these programs with respect to Grid computing, but rathabkess their implementation and deployment at what ever
performance level they can attain.

3 Example Application: Ramsey Number Search

The application we chose to implement as part the EveryWgperanent at SC98 attempts to improve the known
bounds of classical Ramsey numbers. T classicalor symmetric Ramsey numb&;, = R, is the smallest
numberk such that any complete two-colored graphkovertices must contain a complete one-colored subgraph on
of its vertices. It can be proven in a few minutes tiat = 6; it is already a non-trivial result thak, = 18, and the
exact values of higheR,, are unknown.

Observe that to show that a certain numpés a lower bound foi?,,, one might try to produce a particular two-
colored complete graph i — 1) vertices that has no one-colored complete subgraph on anjts vertices. We will
refer to such a graph as a “counter-example” forith& Ramsey number. Our goal was to find new lower bounds for
Ramsey numbers by finding counter-examples.

This application was especially attractive as a first tedsE\vdryWare because of its synchronization requirements
and its resistance to exhaustive search. For example, ifvistees to find a new lower bound fé;, one must search
in the space of complete two-colored graphs4dnvertices, since the known lower bound is current8y ( [28]).
There are2?0? > 10?7 different two-colored graphs on 43 vertices which makingnfeasible to try all possible
colorings. Therefore, we must use heuristic technique®tdrol the search process making the process of counter-
example identification related to distributed “branch-dnmadind” state-space searching. Note that this searclegyrat
requires individual processes to communicate and syncteas they prune the search space implying potentiallglarg
communication overheads.

We hasten to acknowledge that not all applications or agiin classes will be able to use EveryWare effectively for
Grid computation. Indeed, it is an interesting and openaietequestion as to whether large-scale, tightly syncheghi
application implementations will be able to extract paeriance from Computational Grids, particularly if the Grid
resource performance fluctuates as much as it did during B&8yWare does not allow any application to become an
effective Grid application. Rather, it facilitates the @pnent of applications whose characteristics are Grithble
so that they may draw computational power ubiquitously feoset of fluctuating resources.



3.1 Implementing the Ramsey Number Search Algorithm with ExeryWare

We used the implementation strategy discussed in the presabsection to structure the Ramsey Number Search
application a set of computationaientsthat request run-time management services from a set oicapiph-specific
servers Figure 1 depicts the structure of the application. Appi@aclients (denoted “A’ in the figure) can execute in a

logging

scheduler

gossip

application tasks

persistent state
manager

Figure 1:Structure of Ramsey Number application at SC98

number of different environments, such as NetSolve [4]bB#[9], Legion [16], Condor [35], etc. They communicate
amongst themselves and with scheduling servers (markeith 162 figure) to receive scheduling directives dynamically
Persistent state managers (denoted by “P” in the figureyalosd protect any program state that must survive host
or network failure. Logging servers (marked “L") allow arairy messages to be logged by the application. Finally,
all application components use tl®ssipservice (marked “G”") to synchronize state. To anticipatdlchanges, the
various application components consult the Network WeaBervice (NWS)- a distributed dynamic performance
forecasting service for Computational Grids [39, 38, 26].

3.1.1 Scheduling

To schedule the Ramsey Number application, we use a caolteofi cooperating, but independent scheduling servers
to control application execution dynamically. Each clipetiodically reports computational progress to a schaduli
server. Servers are programmed to issue different contedtives based on the type of algorithm the client is exegut
how much progress the client has made, and the most receputational rate of the client.

The scheduling servers are also responsible for migrator based on forecasts of available resource performance
levels. If a scheduler predicts that a client will be slowdzhen previous performance, it may choose to migrate that
client’s current workload to a machine that it predicts vl faster. Rather than basing that prediction solely on the



last performance measurement for each client, the scheds#s the NWS lightweight forecasting facilities to make
its predictions. Note that this methodology is inspired byne of our previous work in building application-level
schedulers (AppLeS) [31, 3].

3.1.2 Persistent State Management

To improve robustness, we identify three classes of progtate within the application: local, volatile-but-reglied,

and persistent. Local state is state that can be lost by thkcapion due to machine or network failure (e.g. local
variables within each computational client). VolatiletHpaplicated state is passed between processes as a result o
Gossipupdates, but it is not written to persistent storage. Fongte, the up-to-date list of active servers is volatile-
but-replicated state. Persistent state must survive gsedball active processes in the application. The largasttes
example that the application has yet to find, for examplehé&ck-pointed as persistent state.

We use a separate persistent state service for three re&s@hswe want to limit the size of the file system footprint
left by the application. Many sites restrict the amount afkdétorage a guest user may acquire. By separating the
persistent storage functionality, we are able to dynanyisghedule the application’s disk usage according to alisl
capacities. Secondly, we want to ensure that persistdatistaltimately stored in “trusted” environments. For exden
we maintained a persistent state server at the San Diegacupguter Center because we were assured of regular
tape back-ups and industrial quality file system securigistly, we are able to implement run-time sanity checks on all
persistent state accesses. If a process attempts to stouatecexample, for example, the persistent state managger fi
checks to make sure the stored object is, indeed, a Ramsatec@xample for the given problem size.

3.1.3 Logging Service

To track the performance of the application dynamically,imelemented a distributed logging service. Scheduling
servers base their decisions, in part, on performancerirdtion they receive from each computational client. Before
the information is discarded, it is forwarded to a loggingvee so that it can be recorded. Having a separate service
allows us to limit and control the storage load generatedbyapplication.

4 Results

To estimate the performance of the Ramsey Number Searcicafigh, we instrumented each client to maintain a
running count of the computational operations it perforirige bulk of the work in each of the heuristics (see Section 3)
are integer test and arithmetic instructions. Since eachiste has an execution profile that depends largely on the
point in the search space where it is searching, we were @nalykly on static instruction count estimates. Instead,
we inserted counters into each client after every integstraied arithmetic operation. Since the ratio of instrumigra
code to computational code is essentially one-to-one (wegér increment for every integer operation) the perforcea
estimates we report are conservative. Moreover, we do rhide any instrumentation instructions in the operation
counts nor do we count the instructions in the client inteafto EveryWare only “useful” work delivered to the
application is counted. Similarly, we include all commuation delays incurred by the clients in the elapsed timings.
The computational rates we report include all of the oveldbemposed by our software architecture and the ambient
loading conditions experienced by the program during SCB&at is, all of the results we report in this section are
conservative estimates of the sustained performdalteeredto the application during SC98.

4.1 Sustained Execution Performance

As a Computational Grid experiment, we wanted to deternfimeicould obtain high application performance levels
from widely distributed, heavily used, and non-dedicateshputational resources. In Figure 2, we show the sustained
execution performance of the entire application duringritvedve-hour period including and immediately preceding th



judging of our High-Performance Computing Challenge at@®%on November 12, 1998Thez — axis shows the
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Figure 2:Sustained Application Performance

time of day, Pacific Standard Tirheand they — axis shows the average computational rate over a five-minute time
period. The highest rate that the application was able t@msuwas 2.39 billion integer operations between 09:51 and
09:56 during a test an hour before the competition (rightehside of the graph). The judging for the competition
itself (which required a “live” demonstration) began atd(.: As several competing projects were being judged simul-
taneously, and many of our competitors were using the saswairees we were using, the networks interlinking the
resources suddenly experienced a sharp load increase.olorenany of the competing projects required dedicated
access for their demonstration. Since we deliberately didequest dedicated access, our application suddenly lost
computational power (as resources we claimed by otheregijaihs) as the communication overheads rose (due to in-
creased communication load). The sustained performaigpdd to 1.1 billion operations as a result. The application
was able to adapt to the performance loss and reorganiffesibsthat by 11:10 (when the demonstration actually took
place), the sustained performance had climbed to 2.0 hitlwerations per second.

This performance profile clearly demonstrates the poteptiver of Computational Grid computing. With non-
dedicated access, under extremely heavy load conditloa&teryWare application was able to sustain supercomputer
performance levels.

1We demonstrated the system for a panel of judges betweef AMGand 11:30 AM PST.
25C98 was held in Orlando, Florida which is in the Eastern tamee. Our logging and report facilities, primarily locataidstable sites on the
west coast, used Pacific Standard Time. As such, we repdiraHof-day values in PST.



4.2 Performance Response

We also wanted to measure the smoothness of the performesense the application was able to obtain from the
Computational Grid. For the Grid vision to be implementetapplication must be able to draw “power” uniformly from
the Computational Grid as a whole despite fluctuations andbiity in the performance of the constituent resourdes.
Figures 3 and 4 we compare the overall performance respaai@ed by the application (graph (c) in both figures) with
the performance and resource availability provided by éafthstructure. Figure 3 makes this comparison on a linear
scale and Figure 4 shows the same data on a log scale so thatltheange of performance variability may be observed.
In Figures 3a and 4a we detail the number of cycles we weretalsieccessfully deliver from each Grid infrastructure
during the twelve hours leading up to the competition. Sanhjl in Figure 3b, we show the host availability from each
infrastructure for the same time period. Together, thesplyg provide insight into the diversity of the resources we
used in the SC98 experiment.

In Figure 3c we reproduce Figure 2 for the purpose of comgari§igure 4c shows this same data on a log scale.
By comparing graphs (a) and (b) to (c) on each scale we expesgegree to which EveryWare was able to realize the
Computational Grid paradignDespite fluctuations in the deliverable performance and hdsavailability provided
by each infrastructure, the application itself was able to daw power from the overall resource pool relatively
uniformly . As such, we believe the EveryWare example constitutestteafplication to be written that successfully
demonstrates the potential of high-performance CompmurtatiGrid computing. It is the first true Grid program.

5 Computational Grid Experiences Using EveryWare

In this section, we describe the way in which we implemenitedRamsey Number Search application using different
Grid computing infrastructures with EveryWare as a coaatitg tool. Our goal in using these infrastructures was to
attempt to leverage the functionality from each that wastmssful for the application. In addition, we wished to gain
programming experience with these technologies in a “l8ed setting.

5.1 Unix

We developed the reference implementation of EveryWaretladRamsey Number Search application for Unix and
Unix sockets. Our goal was to target high-performance nessulocated at the NSF Partnerships for Computational
Infrastructure sites. When we began development in the @moin1998, these resources were entirely Unix based.
By starting with a Unix implementation, we believed that weuld be able to leverage the greatest number of systems
quickly. Our plan was to then use this implementation as &sesfor the port to other infrastructure types.

To support this development and deployment strategy, theibhplementation had to be portable and unparameter-
ized by variables from the execution environment. Poritgt#hsured that we would be able to migrate the functiopalit
not only between Unix systems, but to other infrastructypes such as Java and NT. Similarly, each application compo-
nent had to be self-configuring so that we could leverage axymiifferent process invocation mechanisms as possible.

For portability, we identified “basic” Unix functionalithtat we believed would be commonly supported by most
implementations. In particular, we relied upon common s&ros for

¢ the socket system caldeend() ,r ecv() ,connect(),listen() ,bi nd(),andaccept(),
e thesel ect () file-descriptor synchronization call, and
e thesetitimer() system call

In addition, we assumed that there would be some potentiatigor-specific way of obtaining clock readings (e.g. via
get ti meof day() ) with one-second resolution. Conspicuously absent fragiligt are thread manipulation calls. All
of the application-specific services were single threadeidiwcomplicated their implementation, but greatly enteshc
their portability. Similarly, we chose not to rely upon ther k() system call. While the semantics obr k() are
universal with respect to Unix implementations, we did naltdye that all of the execution environments would support
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Figure 4: Log Scale:
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for k() inthe same way. The chief problem we had to overcome washkatdcket calls for TCP/IP could block a
calling thread of execution indefinitely. On the receivimglewe used theel ect () system call to portably implement
a receive with time-out. For sending or connecting, howewerinitially relied upon a forked “watchdog” process to
send a blocked sender a Unix signal after a time-out. Thistfonality was difficult to re-implement in non-Unix
based environments such as provided by Legion and Javaathste used the self-alarm functionality provided by the
setitinmer() system call which, interestingly, turned out to be reldyiyortable.

Process invocation semantics presented another impetioneortability and wide deployment. Each infrastructure
exported its own interface for launching and terminatingoesses. The problem was particularly cumbersome in batch
controlled environments where the appropriate invocag@mantics were often user and site specific. To get the appro-
priate level of service from some of these systems, a userspasify the correct account and target queue information.
The Globus GRAM [9] interface provided a partial solutioe€sSection 5.2 for a discussion of our experience using
Globus with EveryWare) but, in general, we were unable toausiagle set of semantics in all environments. To min-
imize the problem, all components received any necessaanpers via messages. When any component started, it
immediately attempted to contact a scheduler running atlakmewn location to receive start-up parameters and execu
tion instructions (see Section 3.1.1 for details). As altethe application did not need to rely on infrastructupegific
parameter-passing mechanisms or shell environment V@siabstart-up.

We also used the GNidut oconf utility extensively. Header file placement for common lifgrand system call
packages is often vendor-specific. While our choice of systalls was relatively universal, usiagit oconf we were
able to achieve complete source-code portability acrddgrak platforms and between Unix and NT via the CygWin
emulation environment (see Section 5.5 for a descriptidevefryWare for NT).

5.2 Globus

The Globus Project is an on-going research effort to createfastructure that allows aggregation of distributed
resources into Grids. The Globus Metacomputing Toolkitlig, provides several user-level facilities to build “Glabu
enabled” Grid applications.

Each component of the Globus toolkit may be used indepelydaindr in concert with the other services. Figure 5
illustrates the Globus services used by the Ramsey Numlaecisapplication. Our principal design goal was to enable
light switch functionality, which provides the notion of single point of controfor activating and deactivating the
Globus-enabled application components. The Ramsey Nué&rch application uses the process control/creation
(via the Globus Resource Allocation Manager), persistarage (via the Global Access to Secondary Storage), and
metacomputing directory services from the Globus toolkftis light switch abstraction hides much of the complexity
of the each of these components and the underlying Globtesinficture.

The Globus Resource Allocation Manager (GRAM) mechanisoviges process creation and control capabilities.
GRAM is a gatekeeper that first creates certificates of atittignfor each user that enable access to remote compute
resources. Once processes are executing GRAM providesénevith means to check job statuses, kill jobs, or read
output from jobs. Our Ramsey Number application used the MR#Aerface to launch computational clients at various
sites running Globus gatekeepers. Once the client wagdtatitput and exit statuses were irrelevant, since thatclie
was not designed to run to completion. Essentially, the GRAfgrface was being used as a remote process invocation
mechanism in this application.

The Global Access to Secondary Storage (GASS) interface/slhpplications access to common persistent storage
areas. GASS servers essentially allow remote processeag the GASS client utilities or library functions) to acses
local file systems. A GASS server acts as a simple file servéuiring to a port and transferring files to or from its
local file system, driven by requests which are received ahghrt by remote processes.

We configured a GASS server (running on a well-known hostrt@s a repository for pre-compiled computational
client binary images for various platforms. Requests semjatekeepers would then reference files in the repository,
rather than files on the gatekeepers’ local file systems.hEurtore, we took advantage of the gatekeepers ability to

3For clarity, these services are described here as theyeexistthe time of our experiments. Globus is, by nature, atantig changing system.
Readers interested in changes that may have occurred si8&should refer to documentation and technical papertaaimiat [14].
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Figure 5: Ramsey Number application on the Globus infrastructure. Depicted is the relationship between the
Ramsey Number Search application control site, the Griduees, and the Globus subsystems used. The following
Globus mechanisms used by the application and EveryWalittace shown: Globus Resource Allocation Manager
(GRAM) the Global Access to Secondary Storage (GASS), andlibtacomputing Directory Service (MDS).

substitute values for some pre-defined variable namesgeptiag the execution platform. This facilitated platferm
independent access to the GASS server. By doing so, we usaghtbkeeper asgrappling hookonto the machine,
automatically loading the appropriate binary through GASS

The Globus Metacomputing Directory Service (MDS) [8] is &d®n the Lightweight Directory Access Protocol
(LDAP) [40]. It serves as a general-purpose repositoryrifmrimation about resources in the Globus testbed. Among
other data, the MDS stores information about where eactkgeper is running, how to contact it (i.e. TCP/IP port
number), and how many nodes are free on the resource it manBlge Ramsey Number application used the metadata
stored in the MDS to perform crude, but effective, resouiseavery. It queried the MDS for a list of potential executio
sites and then exercised a relatively lightweighithenticate-onlpperation to determine if the application’s user is
authentic and authorized to run remote processes on eagkegater that is listed. At the same time, the MDS metadata
specified the architecture type of each target machine s@athappropriate GRAM and GASS specification could be
made.

5.3 Legion

Legion is an object-based, meta-systems software profehedJniversity of Virginia [16, 22]. It implements a dis-
tributed object model that is scalable, easy-to-programf-folerant, and secure. Legion’s object-oriented datmn
semantics motivated us to develop a “stateless” applicationt for the Ramsey Number Search application. Legien of
fers both “stateful” clients in which a specified backingrstis used for storage of required information; and “statgle
clients in which operations are performed and results netdiindependent of prior executions. The advantage from
the application’s perspective of a stateless client is ltiegion implements automatic resource discovery and psoces
migration for stateless objects.

To test our ability to develop application-specific sergitsing EveryWare, we also implemented the scheduling
and persistent state services using Legion. Our goal wasripthe Legion environment to be partitioned from the
rest of the EveryWare application dynamically in the evdiat network connectivity failure. If we had not implemented
the Ramsey Number Search services for Legion, we would hasédensure that another infrastructure was always
connected to the pool of Legion resources so that thesecesrgould execute.
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To communicate with the other infrastructures, we impler@éra translator object for thengua franca As an
alternative, we could have loaded each Legion object wighittyua francalibrary, but we found that having a sin-
gle message translator greatly aided the debugging protegmrticular, it gave us a single monitoring point for all
messages headed to and from Legion application comporiéttis. translator had become a bottleneck, however, our
design would have supported the alternative approach.

To construct the translator, we implemented the Legionieassof the scheduler and persistent state manager as
a single object and configured to be passive (to function upquoest). The role of the translator was to invoke an
appropriate Legion method based on message receipt. lct.effie translator implemented an event model for the
Legion application components that permitted them to redpo events that occurred in other infrastructures.

5.4 Condor

Condor provides reliable guest access to federated waidstaesources [35, 5]. The goal of the Condor system is to
support high-throughput computing [2] by consuming othiseidle CPU cycles from a workstation pool. Workstation
owners allow Condor to monitor keyboard and process agtieitdetermine when a workstation becomes idle. Idle
workstations may be claimed by Condor and used to run guesepses. When workstation activity indicates that the
resource is being reclaimed by its owner, the guest prosesithier checkpointed and migrated to a workstation of the
same type, or killed.

For the EveryWare experiment, we used a heterogenous tiotieaf Condor-managed workstations. Since the mi-
gration facilities could not move program state betweenpobdifferent resource types, we chose to use the “vanilla”
Condor universe [5] for the Ramsey Number Search applicatiothe vanilla universe, guest jobs are terminated with-
out warning when a resource is reclaimed by its owner. Apgibn clients, therefore, checkpointed their persistedt a
volatile-but-replicated state through the EveryWaiessipmechanisms. Since the EveryWare schedulers are stateless,
they were also executed within the Condor pool. When a sdaedas killed by Condor, its clients could automatically
switch to another viable scheduler. Scheduler birth andhdieéormation was circulated via th@ossipprotocol so
application clients could learn of the currently viableadtlers.

In practice, the overhead associated managing the locatiosparency of rapidly moving (birthing and dying)
schedulers proved prohibitive. Since clients requestduditey service, they could only learn of server death atithe t
when they attempt to make contact. In this dynamic configamatlients spent an appreciable amount of time simply
locating a viable server. We, therefore, opted for a morelsteonfiguration in which the Condor application clients
only contacted schedulers that were located outside of dm@r pools. Since scheduler failure occurred much less
frequently than resource reclamation, the overall peréoroe improved.

5.5 NT and Win32

To leverage NT-based systems we used the CygWin [6] compiteulation library, and execution environment. The
reference Unix implementation used only the most “vaniiet of system calls possible which were all supported
by the emulation library. The overall effort required to quete the port of EveryWare to the Win32 system was
minimal, consisting of changes to include files, the in@usif a less specific random number generation function, and
a static definition of where to direct error and log output. d®wveloping a port to NT, we were able to leverage the
NT Superclusters located at NCSA and UCSD as well as a vasfeBC resources that would have effectively been
unusable otherwise.

Execution on the NT Superclusters was straightforwardy wie exception of the following minor issues. First,
each of the machines in the cluster had to be configured tbveeBomain Name System (DNS) host names. This con-
figuration change was necessary to support communicatioreba computational client processes and the EveryWare
schedulers. Since no one expected that the NCSA Superciustdd be used in cooperation with other resources, the
ability to resolve host names was not a part of the defaulfigoration. NCSA support personnel quickly resolved this
configuration problem for us at SC98.

A more subtle challenge was presented by the batch schgdsyistem used on the Superclusters, Local Sharing
Facility (LSF). To prevent a large set of new worker procedsem presenting a excessive instantaneous load to a
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particular EveryWare scheduler upon startup, we desigaet @orker process to sleep for a randomized amount of
time before soliciting instructions from the rest of theteys. LSF seemed to interpret the lack of cpu usage by
assuming the process is dead, reclaiming the processosddryother distributed processes. We reduced the sleep time
duration, sacrificing our goal of reduced scheduler loadyiter to effectively use the Supercluster processors.

5.6 Java

We implemented a lightweight version of the applicationamalin order to take advantage of the ubiquity of Internet-
based Java Virtual Machines. This choice was motivated byd#sire to allow any user connected to the Internet to
contribute processor cycles without downloading and Ifistaany one execution environment or porting the toolkit.
Using this framework, a user can download an applet versfadhe application and immediately participate in the
distributed execution.

Java’s portability and ease of use comes with considerabtieoff in performance. The threaded nature of the
language however, enabled us to overlap computation wittnmenication. In addition, we implemented a lightweight
version of the Ramsey Search heuristics with limited gregplbd improve performance. Our results show that the
applet version of the Ramsey application is still much slotlhan when using the other frameworks, but the additional
(otherwise unused) cycles still aid computation.

Just-In-Time compilers [20, 34, 32], Java-to-C-code ti@oss [27, 30], and other Java research [21] offer hope
for improved performance for future EveryWare applicasioRor example, during SC98, an interpreted version of the
applet on a 300 Mhz Pentium Il performed 111,616 integeratjmrs per second on average; a JIT-compiled version
performed 12,109,720 integer operations per second oag®eEven though the JIT-compiled version is still slower
than many of the other hosts from different frameworks in study, as Java improves in performance, it will be a
practical and important gateway to the use of idle cycles.

5.7 NetSolve

The NetSolve [4] infrastructure developed at the UnivgrsitTennessee provides brokered remote procedure invoca-
tion service in a distributed environment. Computatiorail/ers communicate their capabilities to brokering agents
Application clients gain access to remote services thrausfinongly typed procedural interface.

At SC98, we used NetSolve to test the extensibility of therPare approach. The EveryWare development team
had extensive implementation experience with all of theepbthfrastructures we employed in the study. To test the
ability of EveryWare to leverage an infrastructure we hat previously encountered, we appealed to the NetSolve
group and asked if they would be willing to develop an Every\aplementation of the Ramsey Number Search code
for NetSolve. Dr. Henri Casanova based his implementatiothe Legion version since, at the time of the experiment,
the NetSolve invocation interface was functional.

6 Future Work

The EveryWare experiment verified an important conjecttirat programs can be written which realize the Computa-
tional Grid paradigm. Our focus in the future will be towards/eloping EveryWare as a programming tool, and using
it to enable Grid application programming.

While the Ramsey Number Search application was an effeigsteof the EveryWare and Grid computing concepts,
it was a difficult program to write. We, the application pragmers, had to design and implement both application
clients (performing the actual computations) and the apptin-specific services that were required for robustaads
adaptivity. The EveryWare toolkit made such an implemémapossible, but not easy. One of our primary future
objectives is to develop the software necessary to makeyBgre a useful tool for more than the dedicated and the
brave. In particular, we plan to exploit commonalities ie tharious service designs to provide an application-sgecifi

4The members of the EveryWare development team are the auththis paper.
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service framework or template. Programmers could themlinsbntrol modules within the framework that would be
automatically invoked by each server.

We plan to study the applicability of EveryWare to a variefyGrid applications. We will continue to enhance
Ramsey Number Search application, both as a study of Ever/\fad to improve the known bounds of classical
Ramsey numbers. Our experience at SC98 showed that to dearély, we will need to parallelize some of the
individual heuristics, each of which we will implement asargputational client within the application. As a result, we
will develop ways in which EveryWare can be used to coupletljgsynchronized parallel codes running on parallel
computers with other Grid application components.

We also plan to characterize types of applications thatalemdadvantage of the Grid infrastructure using the Every-
Ware toolkit. Two characteristics discovered during ouB8Experience that may achieve improved performance using
this development environment are applications with cadiplaster/slave and data parallelism and non-trivial commun
cation and synchronization requirements. To determing@#mrmance levels achievable using the EveryWare toolkit
on such applications, we plan to implement an image recactitn tool called Positron Emission Tomography (PET)
and a data mining application called NOW G-Net.

7 Conclusions

By leveraging a heterogeneous collection of Grid softwaue lzardware resources, dynamically forecasting future re-
source performance levels, and employing relatively sindtributed state managementtechniques, EveryWarahas e
abled the first application implementation that meets t@irements for Computational Grid computing. In [10](page
18) the authors describe the criteria that a Computationial @ust fulfill as the provision opervasive dependable
consistentandinexpensiveomputing.

e Pervasive- At SC98, we were able to use EveryWare to execute a high-pesfoce, globally distributed program
on machines ranging from the Tera MTA to a web browser locatedcampus coffee shop at UCSD.

e Dependable- The Ramsey Number Search application ran continuously &arly June, 1998, until the High-
Performance Computing Challenge on November 12, 1998.

e Consistent- During the twelve hours leading up to the competition itséie application was able to draw
uniform compute power from resources with widely varyingitbility and performance profiles.

e Inexpensive- All of the resources used by the Ramsey Number Search applicaere non-dedicated and
accessed via a non-privileged user login.

To our knowledge, EveryWare is the first Grid software efthat has been able to successfully meet these criteria, and
to demonstrate the degree to which they are met quantiative
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