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Abstract—
We present Federated Access ConTrol Support (FACTS) for

flexible and energy efficient IoT edge deployments. FACTS is a
hybrid approach to access control that couples capability support
over MQTT with TLS based security to reduce the power con-
sumption of IoT deployments. Capability systems are lightweight
and enable fine-grained access control using cryptographically
secure tokens. TLS provides number of security guarantees but
is expensive in terms of both time and energy when employed
by resource constrained devices at the edge. By combining the
two, FACTS enables IoT deployment administrators to decide
where and when to use encrypted communication for access
control to achieve the best trade-off between data privacy,
performance, and energy efficiency. We evaluate FACTS for
different deployment scenarios and show that it improves both
energy use and performance relative to existing approaches.

Index Terms—cloud continuum, TLS, capability-based secu-
rity, hybrid access control, federation

I. INTRODUCTION

The Internet of Things (IoT) is a technological vision in
which people interact with their environment (an environment
populated by “things”) digitally, using ubiquitous network con-
nectivity to facilitate the interactions. IoT has great potential
for enhancing situational awareness and performing automated
and intelligent actuation and control of cyber-physical systems.

However, the growth and adoption of this compelling vision
has been slow. IoT deployments are very challenging to
program, debug, secure, and maintain. End-to-end, an IoT
application must be able to marshal a vastly heterogeneous
collection of compute, storage, and networking elements using
an amalgamation of software technologies often not designed
to work as an ensemble. Further, many of the most com-
pelling use cases from climate change, disaster prediction and
response, ecology, etc. require deployments that are remote,
inaccessible, hostile to electronics, that lack power infrastruc-
ture (forcing reliance on batteries), and that must span trust
domains (edge versus cloud).

Most recently, IoT technologies have increasingly focused
on the use of the cloud as an “always on,” ubiquitously
accessible, and flexible digital infrastructure. Connecting every
“thing” to the cloud provides a way to tame the heterogeneity
inherent in the paradigm. Once a “thing” is interfaced to a
cloud, all of the scalable, secure, and performant services
hosted by that cloud are available to an IoT application
designed to use that “thing.”

While most, if not all, of the public cloud venues provide
support for IoT development and integration [1], [2], perhaps
the most popular technologies belong to Amazon Web Ser-
vices (AWS). AWS IoT [3] enables centralized management
of IoT deployments that consist of sensors and resource-
constrained devices (called things). Things can communicate
and interact directly with AWS cloud services when they are
Internet-connected.

However, to reduce latency and support functionality during
periodic or temporary interruptions of network connectivity to
and from the cloud, AWS also supports a remote interfacing
technology called Greengrass [4]. Greengrass is designed to
deploy to an edge device (typically a single board computer
with Java support). It provides services directly to things or
acts as a proxy for AWS cloud services.

The edge device that executes the Greengrass service is
termed a Greengrass (GG) core device. It provides authen-
tication, authorization, an MQTT [5] broker (implementing a
popular publish-subscribe communication protocol for IoT),
as well as computational components (e.g. AWS Lambda
functions [6]) for things to use as services in an IoT deploy-
ment. As such, GG support enables low latency response and
data-driven intelligence (via local, edge-based ML inference
and user-defined data analysis components) for things. It also
enables the “off-line” operation of IoT deployments when tem-
porarily disconnected from the cloud. Finally, by supporting
MQTT communication, this combination of services enables
a wide range of heterogeneous devices to be integrated as
things, including those connected to the core via popular
IoT/sensor network protocols (e.g. zigbee [7], [8], z-wave [9],
[10], LoRaWAN [11], [12]).

Unfortunately, while IoT technologies such as Greengrass
are effective with respect to enabling the cloud to act as
infrastructure for IoT, they are not designed to provide the
extreme energy efficiency required for remote, battery pow-
ered, edge devices and things. For example, a GG core’s
components must execute continuously to implement its op-
eration. Although the core can be disconnected from the
cloud intermittently, it requires connectivity for setup and
device commissioning (thing configuration, authentication, and
integration). Moreover, AWS IoT and GG core uses Transport
Layer Security (TLS) [13] protocols, based on public-key
cryptography [14] to authenticate and authorize all thing



interactions. It also uses TLS to provide an encrypted channel
for thing data transmission (over MQTT). TLS is complex to
configure correctly and consumes significant resources (and
thus battery power) on all devices in an IoT deployment.
It cannot be disabled since it is the basis for the AWS
security model. Thus IoT applications where the perfect-
forward-secrecy [15] that TLS implements is not needed (e.g.
devices connected to a secure network behind a firewall)
must nonetheless expend the energy necessary to support it.
Similarly, many applications require only secure authentication
and/or tamper-proofness, not a fully private communication
channel (e.g. temperature data from a farm, car counts from a
bridge, anonymized data, etc.)

To address these limitations, we present FACTS – Federated
Access ConTrol Support for flexible and energy efficient
authentication and authorization, for remote, battery pow-
ered IoT edge deployments. FACTS is a hybrid approach to
access control that combines capability-based authentication
with TLS based AWS IoT/GG core security to reduce the
power consumption of edge devices. Capability systems en-
able fine-grained access control using cryptographically secure
tokens [16]–[18]. FACTS extends capability-based access con-
trol with support for MQTT communication and integration
with the GG core to enable end-to-end authentication and
authorization with significantly lower energy consumption.
FACTS also enables IoT deployment administrators to decide
where and when to use encrypted communication (in addition
to authentication and authorization) to achieve the best trade-
off between data privacy, performance, and energy use.

We evaluate FACTS using small, single board computers
that act both as core devices (i.e. those hosting a GG core) and
as representatives of sensors and actuators. We make this latter
choice (as opposed to using embedded devices for the sensors
and actuators) because it is possible to achieve more accurate
instrumentation of an edge-based IoT deployment end-to-end.
We measure energy consumption using a logic analyzer and
digital circuit that facilitates fine-grained, accurate sampling
of current and voltage. Our results show that the combina-
tion of capability-based authentication and TLS to facilitate
communication between the GG core and AWS dramatically
reduces energy consumption at the edge. On average at the
core device, FACTS reduces energy consumption by 11%
when client devices that employ a duty cycle. It reduces
energy consumption of the core by up to 95% when client
devices send multiple messages and it reduces client-side
energy consumption (by up to 74%).

II. RELATED WORK

The heterogeneity and dynamic and distributed nature of
IoT deployments make resource access control a significant
challenge. Many commercial IoT systems use Transport Layer
Security (TLS) [13] protocols, based on public-key cryptogra-
phy [1], [3]. These systems use edge devices to communicate
with servers and edge proxies via encrypted channels, often
using RSA certificates. Although TLS addresses many security
challenges, it also consumes significant resources on resource

restricted devices (memory, computation, network, battery
power, etc.) and depends on a number of resource-intensive
operations for its security.

Due to the implementation complexity, resource consump-
tion, and configuration difficulty of TLS-based security, many
IoT devices have weak or no access control, and are eas-
ily compromised [19], [20]. As a result, many devices are
placed behind gateways or firewalls which proxy requests [21],
rendering the resource expense associated with TLS-based
security on the device needlessly redundant and costly. Related
work, e.g. [14], [22], shows that it is possible to reduce
the overhead of TLS significantly in some edge computing
contexts. Our work reduces the overhead of TLS used by
cloud-IoT systems by integrating capability based security. Ca-
pability systems provide flexible, fine-grained control access
and data integrity without the use of expensive encryption,
identity, and certificate management [16], [17], [23].

Other prior works also use hybrid approaches to access con-
trol to achieve combined benefits (security and performance)
for IoT deployments [24]. Pranata et al in [25] use public
key encryption technologies with capabilities in IoT settings
to reduce resource use. In [26], the authors combine role
based, attribute based, and capability based access control for
IoT deployments. Our approach extends TLS by embedding
capabilities into the MQTT payload from devices. The authors
in [27] embed attribute based access control but require en-
forcement monitoring. MQTT can also use TLS-based access
control directly, but doing so for IoT is heavy weight and
vulnerable to attack [28]. Finally, new standards are emerging
to reduced the overhead of security protocols on resource
constrained devices [29], [30].

III. FACTS

FACTS is a lightweight augmentation of TLS-based security
mechanisms provided by public cloud systems that enables
more flexible and energy-efficient authentication and autho-
rization services (henceforth termed simply as Auth Services
or AS) for fog and edge devices. To enable these benefits, we
design FACTS around these key security principles.

• AS must implement access control based on verified
identities.

• AS must integrate support for auditing access and enforc-
ing accountability for actions taken.

• AS policies must be able to specify permissions at a
granular level (e.g. for individual operations, resource,
and data types).

• AS must be able to adapt to dynamically changing
deployment conditions and configurations.

• Security requirements can be specified at a granular level
(e.g. authentication, privacy, integrity, access control).

• Edge deployments must be able to make progress (i.e.
continue secure execution) when disconnected from the
cloud for extended periods.

• AS must be able to tolerate faults and work consistently
and efficiently under a wide range of resource constraints.



The first two principles are standard for AS. The others are
tailored to the characteristics of remote IoT deployments.
Given that these deployments are heterogeneous with a wide
range of capabilities, capacities, and resource restrictions,
security cannot be “one size fits all”. In particular, TLS
addresses many security requirements but many requirements
may be redundant or excessive (e.g. when behind a firewall
or when authentication and data integrity and not full data
privacy is sufficient). Given that TLS also consumes significant
resources (memory, computation, network, battery power, etc.)
and depends on a number of resource-intensive operations
for its security, we design FACTS to support a range of
TLS and non-TLS access controls that are granular and that
can be tailored to the security requirements of individual
deployments.

Such flexibility should also extend to the IoT application
runtime. Thus, our principles also target dynamic adaptation
of access control policies to support changing deployment
conditions and requirements. Finally, an AS must be designed
such that an application can continue to securely operate (and
make progress) in the face of faults, intermittent connectivity,
and lack of cloud access given that such scenarios are common
for many remote IoT deployments.

A. Design

To support these principles, FACTS augments TLS-based
AS with fine-grained access control. For this to work in
remote, failure-prone IoT settings, we design FACTS with the
following features: (1) edge-only device commissioning and
authorization, (2) minimal bespoke client software hosting,
(3) easy integration with existing public cloud edge deploy-
ments,(4) fault resiliency, (5) logging, and (6) end-to-end
energy efficiency. Our goal is to provide a range of security
guarantees that can be used when full-TLS is not required in
an attempt to reduce the energy use of battery-powered edge
devices for AS. For (1), we eliminate reliance on the Internet
and cloud connectivity, thus ensuring that IoT deployments
can maintain their security integrity even when disconnected
from the cloud (i.e. when they are only locally connected).
Because of the vast heterogeneity of client devices in IoT
deployments, we designed FACTS (2) so that it can work on
a large majority of devices without modification. To enable
this, we layer FACTS on top of MQTT – a popular publish-
subscribe protocol.

At the other end of the IoT spectrum, our goal is to
make it easy to integrate FACTS with public cloud IoT
edge services (3), e.g. AWS Greengrass or Azure IoT Hub,
thereby facilitating its use by existing IoT deployments. In
particular, FACTS must be able to provide the same or
similar functionality as these services for client devices, to
be useful. FACTS features (4) and (5) are key to addressing
the aforementioned design principles for IoT (auditing and
fault resiliency.) Finally, FACTS customizes access control to
trade off some TLS guarantees for energy savings; thus our
approach must achieve significant energy savings (6).

Fig. 1: FACTS Token

For fine-grained access control, we employ capability-based
security [16]–[18]. Capability systems use unforgeable tokens
attached to request messages to grant access to resources using
the principle of least privilege (only the minimum level of
access is granted). Tokens consist of a body and a tag. The
body is composed of frames that contain information needed to
implement a given security policy. To implement decentralized
policies, a holder of a token can append one or more frames to
that token to create a derivation which is verifiable and tamper-
proof. When the token is presented to a service for verification
of authorization, the service must verify that each frame in
the token was correctly added and that each successive frame
grants no additional privilege (i.e. each frame of a derivation
attenuates privilege).

Each token is carries a tag which is the HMAC signature
for the entire token. When a frame is added, the computation
of the new tag depends on the previous tag for the token
without the frame appended. A service issues a principal token
to start the chain of frames and uses a private secret as the
key from which the first tag is generated. Thus a service, when
presented with a derivation of the principal token, and verify
(by computing the intermediate tags from the principal token
forward) that each frame is a valid attenuation.

It is possible to implement security policies that do not
depend on a notion of identity using this mechanism. However,
identity is intrinsic to IoT-cloud integration. To implement
identity, a service that wishes to authenticate an identity must
send a fully-attenuated derivation of a principal token to an
identity service over a secure channel (e.g. using TLS). The
identity service maintains a list of authorized users of this
service. When a user authenticates to the identity service,
it creates a derivation of the principal token that includes a
verified identity ID and returns it to the service over a secure
channel. To enable a device to access the service on behalf
of the identity carried in the token, it installs the token in the
device when the device is commissioned (e.g. via a secure
channel or secure physical link).

The device can include the identity token as a frame in
any request and the service can verify that the ID in the
token was originally authenticated by the identity service.
Since the identity token is not a strict attenuation of access
rights, we encode them as constraints within a frame and check
them as part of capability validation. Constraints contextually



Fig. 2: Depiction of an example FACTS IoT deployment

attenuate tokens and thus enable arbitrary security policies
to be specified. Note that each service implements its own
interpretation of tokens presented to it. Thus it is possible
for a service to accept requests from a device that includes
the identity token from one user and other requests from the
device on behalf of a different user.

Figure 1 depicts a FACTS token with three frames. Each
frame names a resource identified by an MQTT topic (e.g.
/smartfarm) and specifies a bit vector describing access rights
read, write, and execute for the resource. The read
bit indicates that the requester may subscribe to the topic.
The write bit indicates that the data payload encoded in the
message may be written to the resource. The execute bit
indicates that the payload write can also trigger execution of
a serverless function. The execute bit is not interpreted unless
the write bit is set. Each frame attenuates the previous frame;
the bottom-most frame in this example contains an identity
constraint. The HMAC signature computed over the frame is
included with the frame.

When a request comes in, FACTS extracts the capabilities
from the token, validates the identity (if any), and authorizes
the operation (by verifying the capabilities and constraints).
Once authorized, FACTS logs the request (for auditing pur-
poses) and executes the operation. FACTS uses the services
deployed on the core devices to implement the operation, e.g.
access to local storage or function invocation.

B. Deployment

Figure 2 exemplifies a FACTS deployment. The gray sec-
tions of the figure represent FACTS services for interfacing
devices to AWS Greengrass. Using FACTS, GG core devices
use TLS to interact with the cloud directly and they use
a customized combination of TLS and fine-grained access
control for interoperation with other devices not hosting the
GG core at the edge.

The figure depicts an IoT deployment consisting of two
client devices (representing resource-constrained sensors or
actuators), and a Greengrass (GG) core device, all co-located
at the edge of the network (i.e. on-premises). We focus on
secure edge device interoperation in this work. Client devices
are IoT devices that connect to the GG core device using the
MQTT protocol. Clients send data to the core for storage,
processing, and function triggering via MQTT publish events;

they receive commands from the core and data from other
clients via MQTT subscription messages. Core resources map
to MQTT topics.

A GG core device is an IoT device that proxies access to
remote AWS cloud services and IoT device management for
client devices; it also provides client devices with local func-
tionality by executing software modules called components
(depicted as circles and the right-most service icons in the core
rectangle). The GG core itself is controlled using a mandatory
component called a nucleus which runs continuously via a
Java Virtual Machine (JVM) runtime system.

Component functionality that the core can implement in-
cludes MQTT message processing, data storage, data pro-
cessing and machine learning services, as well as arbitrary
functions (AWS supplied or user-defined) that are triggered by
a local AWS Lambda component in response to MQTT publish
events. When a GG client device connects to the GG core, the
core attempts to authenticate and authorize the device (using
the TLS client auth component in the figure) with the AWS
cloud. If the GG core is not able to reach the cloud, it performs
the authorization directly using locally cached credentials for
the client. Note that at the time a client is first introduced,
the GG core must have connectivity to the AWS cloud or its
credentials cannot be cached.

The core performs mutual TLS authentication using X.509
certificates transmitted as part of an MQTT connection request
from a client device. Clients can then publish MQTT messages
over an encrypted channel until the connection is terminated.
The core authorizes client operations triggered by MQTT to
publish events using IAM [31] policies specified as part of the
deployment configuration and encoded in the client certificate.
The length of time that the core stores client credentials locally
is a configurable deployment parameter. Client credentials
required by MQTT TLS include a client (Dev) certificate, a
private key, and the root certificate authority (RootCA; identity
of client certificate signing authority). The MQTT client is
responsible for data acquisition (for publishing), subscription
management (for subscription) and setup/teardown of the
MQTT TLS connection with the core.

FACTS extends both client and core device functionality (cf
the gray sections of Figure 2). On the client, FACTS provides
a simple software development kit (SDK) for Python. The
script facilitates the same functionality as on the GG client
(for publish and subscribe). It also sets up and tears down the
MQTT connection (without TLS; MQTT CAP in the figure)
and augments publish events with FACTS request capabilities.
FACTS automatically generates request capabilities for each
MQTT publish by combining and digitally signing the client’s
root capability (Root CAP), optionally a digital signature for
the data being sent, and the client’s identity token (ID). As with
GG, these client credentials are passed to the device once via
a secure channel from the identity provider during client/core
commissioning. With FACTS, however, the identity provider
can be co-located with the devices and core (precluding the
need for an Internet connection to a centralized cloud). FACTS
transmits the request capability with the data as part of an



MQTT publish message.
On the core, FACTS receives publish events via the MQTT

broker. FACTS, implemented as a GG component (lower
Client auth in the figure), verifies the request capability, and
logs the requests (for auditing purposes). If the request is
authorized, FACTS stores the data and optionally invokes other
GG components on behalf of the client (providing the same
functionality for client devices as GG alone).

IV. EVALUATION

We next evaluate FACTS by comparing its energy consump-
tion to that of using Greengrass for IoT authentication and
authorization for things (edge devices) using different scenar-
ios. We first describe our experimental setup and then present
our results. We refer to the combination of authentication and
authorization as simply Auth Services (AS).

A. Experimental Setup

The core and client devices that comprise our IoT deploy-
ments are Raspberry Pi 3B+ single-board computers. These
devices run the Raspberry Pi 32-bit OS (Bullseye) and have
quad-core ARMv8 CPUs clocked at 1.4 GHz and 1 GB of
RAM. The client devices connect to the core device via a
private Ethernet connection. Each client sends data to the core
via the MQTT (v5) protocol implemented using the Eclipse
Paho MQTT Python client library v1.6.1.

The Greengrass core device (GG) runs AWS Greengrass
version 2.12.1. AWS IoT requires that the GG core be con-
nected to the Internet to interact with AWS IoT services during
configuration and every 30 minutes of disconnection (in order
to be able to continue to authenticate clients). We use a WiFi
connection for the GG-to-cloud connectivity. During periods
of disconnection, the GG core caches authentication-validating
credentials so that for clients can interact with the core while
the core is disconnected from the cloud. In the following
experiments, once the GG core authenticates with the cloud,
we disable the WiFi connection so that it does not consume
energy or cause performance interference. During online con-
figuration, we register each client device with AWS IoT and
configure the necessary IAM policies to authorize access to
the Greengrass core device. We install the X.509 certificates
manually as described in the AWS IoT documentation.AWS
IoT AS is performed by the core using a TLS layer and
validation of the X.509 certificate chain. Once authenticated
and authorized (via AWS security policies), client devices
publish their messages using the encrypted channel created via
this process. If a device disconnects, it must reconnect (and
perform the TLS handshake again) to establish connectivity
and to transmit additional data.

The FACTS core device implements its capability-based
access control using CAPLets version 1.0 [16]. FACTS also
integrates the mosquitto MQTT broker without TLS (note
that the the Greengrass broker requires TLS) and instead
controls access to resources using capabilities. An MQTT
subscriber, written in C, receives published messages from
devices, extracts the capability from each, then validates the

Fig. 3: Experimental setup for measuring power consumption

request. If successful (i.e. the request is authenticated and
authorized), the service posts the data to a log and optionally
invokes a serverless/FaaS function. We install the root capa-
bility (principal capability) and identity token on each client
device manually for use with the FACTS core as part of device
commissioning (as described previously). FACTS clients use
MQTT (v5) over an unencrypted channel to send their data
and a request token with every publish event. FACTS performs
AS on every request (MQTT publish).

Note that the channel is secure but not private. That is, an
eavesdropper on the network can capture the message traffic.
However, because FACTS signs the data, an attacker cannot
tamper with it and replay the message with a different data
payload. The full CAPLets protocol includes replay protection
(i.e. encrypted sequence numbers) for individual messages
and support for perfect-forward secrecy, but these features are
disabled in the implementation we tested in these experiments.

It is surprisingly difficult to measure accurately the energy
consumption of Pi devices [32], [33]. To do so, we use an
Analog Discovery Board 2 [34] and have implemented a
digital circuit to make this possible. Our circuit is equipped
with a shunt resistor in series with the Pi which measures
current. Figure 3 presents the circuit diagram we use. We
collect the data using a sample rate of 100 Hz using a laptop
which we post-process to generate our results. We calibrate
the measurements using a USB energy monitor (as ground
truth) between the board and the circuit prior to running
the experiments. We use this device to measure the voltage
and current during the experiment. We then compute average
power (in watts), time duration (in seconds), and energy
consumption (in joules) from this data for the time duration
of each experiment. All devices in the deployment are time
synchronized using NTP.We perform each experiment 5 times
and compute the average across runs. We collect performance
data for both a client device and a core device which we
present in the following subsection.

B. Results

We present performance comparisons between FACTS and
Greengrass from the perspective of both a client device and
a core device. In our IoT deployments, both core and client



Fig. 4: Average energy consumption (lower is better) for
different publish counts per experiment using the GG MQTT
broker, the mosquitto MQTT broker (MOSQ) and FACTS
(which also uses mosquitto).

devices are battery powered. Client devices are sensors which
sample data from their environment and send it to the core
via MQTT. The core then stores the data (which optionally
triggers a function) for later analysis.

The results presented herein are generated using MQTT
QoS 1. We use QoS 1 because we found that the Greengrass
MQTT broker dropped many publish messages if more than
1000 were sent at a time (FACTS surprisingly dropped none
even when over 10000 messages sent at once). We also
measured the performance difference for both core imple-
mentations (FACTS and Greengrass) for 100 messages using
both QoS levels and found the results to be similar (for
duration, average power, and energy consumption). Thus we
omit data for QoS 0 for brevity and consider only QoS 1 in
our evaluation.

C. Client Performance

We first evaluate the performance impact of using GG
and FACTS on the client side. Figure 4 graphs the energy
consumption of the client for a set of experiments. For
each experiment, the client publishes a specified number of
messages to the MQTT broker at the core. We consider counts
of 50 to 10000 publish events. The client connects to the
broker once at the start of each event (and disconnects when
it receives an acknowledgment from the last publish).

The blue, unmarked curve shows the average energy con-
sumption in joules for a client communicating with a GG core
device (which implements its own MQTT broker in Java).
FACTS uses mosquitto as its MQTT broker because it is
implemented in C/C++ and allows clients to communicate with
the broker with or without TLS (the GG broker requires that
TLS be used). Energy is depicted on the y-axis and back-to-
back message count (for 8-byte data payloads in each message)
is shown on the x-axis. For each set of messages, the client
makes a single connection with the broker. FACTS energy
consumption is shown via the red curve with circle markers.
On average, the client consumes 74% less energy interacting
with FACTS than when interacting with GG.

Fig. 5: Average publish performance for client-side GG

Fig. 6: Average publish performance for client-side FACTS

To determine if FACTS introduces any overhead on the
client side, we also measure the use of the mosquitto MQTT
broker without FACTS. This data is shown using a black
curve with star markers (MOSQ). MOSQ and FACTS align
and are virtually indistinguishable in the figure indicating that
FACTS introduces almost no overhead on the client side.
Quantitatively, we find that there is an average difference of
0.03 joules between MOSQ and FACTS. This low overhead is
likely to be similar for any broker that FACTS integrates (e.g.
if it were possible to use the GG broker directly but without
TLS). The difference in broker performance (without FACTS)
is likely due to the use of the Java programming language
for the GG broker (vs C/C++ for mosquitto) or the use of
encryption. It is not due to the TLS connection overhead since
the MQTT connection latency is amortized over all messages
in each individual experiment.

We present the raw measurement data in Figures 5 (for GG)
and 6 (for FACTS). The columns show the publish count,
experiment duration in seconds, average power in watts, and
average energy consumption (across runs) in joules. Overall,
the client when using FACTS is significantly faster than when
using GG and the average power is slightly higher. Due to the
reduction in time, energy consumption using FACTS is far less
even for very large numbers of publish events.

These improvements occur even though FACTS sends a
larger payload (530 more bytes per publish on average) per
message to encode the capability in the request. However, it
also avoids encrypting every message as GG does. By trading
off privacy (data is sent between the client devices and the core
in the clear), FACTS achieves much lower energy consumption
at the client side than GG.



D. Core Performance

The difference between using FACTS and GG on the client
side is primarily due to the broker implementation. Thus, we
next consider the energy consumption for GG and FACTS for
the core device. In this study, we use the same core device for
both GG and FACTS. For each set of experiments however,
we turn off any services of the competitor (in addition to the
WiFi as discussed above) to avoid unnecessary energy use or
performance interference.

We first consider the cost of client connections when using
GG and FACTS for different experimental scenarios. In this
evaluation, we consider three scenarios. In the first scenario
(No Reconnect), AS is performed once by GG when
the connection is initiated by a client device. This scenario
represents the case in which the cost of AS is amortized over
many publish events. Note that for FACTS, every publish mes-
sage includes the request capability which FACTS validates
prior to data storage or function invocation. That is, FACTS
implements per-message authentication and authorization as
opposed to GG which relies on a TLS session to communicate
otherwise unauthenticated messages. As a result FACTS does
not amortize authentication/authorization over multiple mes-
sages but each capability check is significantly less resource
intensive compared to using TLS. Moreover, the data in the
FACTS publish event is sent is clear text (unencrypted) trading
off data privacy for energy efficiency when privacy is not
required. It is tamper-proof, authorized, and all operations are
authenticated, but it is not channel private.

In the second scenario (All Reconnect), clients connect
and disconnect on every publish. This represents the scenario
in which clients disconnect frequently to allow event-driven
“deep sleep” as a way of conserving battery power or to
“batch” the data to reduce message count. For such a set-
ting however, GG introduces overhead for both connection
establishment and TLS for every message. FACTS imposes
overhead only for connection establishment. For both of these
scenarios, the client publishes 50 messages. Thus, there are
50 connects for All Reconnect and 1 connect for No
Reconnect.

The third scenario (Duty Cycle) represents a more re-
alistic use case which we include for comparison. In this
scenario, the client devices connect and send data for a
period of time and then sleep waiting until the next set of
measurements becomes available or to conserve battery life.
In our experiments, the client sends 100 messages then sleeps
for 10 seconds. It repeats this 10 times for a total of 1000
publish events across 10 connections.

Figure 7 presents three tables of data for these scenarios
and experiments. Each table has columns for average en-
ergy consumption in joules per experiment (Energy), average
experiment duration in seconds (Time), and average power
in watts (Power). Each row shows a set of results for the
three scenarios: No Reconnect, All Reconnect, and
Duty Cycle. The topmost table shows the performance
improvement as a percentage when we use FACTS vs GG.

Fig. 7: Connection Cost at the core device. The top table
shows the percent reduction in energy, time, and average power
enabled by FACTS vs GG. The middle and lower tables show
the raw data for each core implementation.

Fig. 8: Energy in joules for publish events at core device.

The middle table shows the raw data for GG and the lower
table shows the raw data for FACTS .

This data shows that the cost of establishing a connection
is high for both GG and FACTS. On average for the All
Reconnect scenario, a connection costs 2.04J and 1.04s for
GG and 1.81J and 1.01s for FACTS. This results in a 95%
reduction in energy consumption for FACTS vs GG. The bulk
of this improvement comes from reducing the time associated
with each connection. In comparison, the average for the No
Reconnect scenario, a connection costs 0.088J and 0.043s
for GG and 0.004J and 0.002s for FACTS. This results in a
11% reduction in energy consumption for FACTS vs GG.

For the more realistic use case (Duty Cycle), FACTS
uses 11% less energy, 8% less time, and 2% less power than
GG. Note that because the core never sleeps (it must be
available for connections from clients), it is unable to reduce
this overhead when clients are not communicating with it. We
are considering new ways of reducing the power consumption
of core devices at the edge as part of future work.

Figure 8 presents table data for the No Reconnect
scenario. It enables us to evaluate the overhead of publish
events at the core without the overhead of connection (a
single connect occurs as the start of the publish process).
The first column shows the number of publish messages sent
by the client for each experiment. The second column shows
the energy consumption in joules for GG on average across
experiments. The third column shows the energy consumption



in joules for FACTS on average across experiments. The last
column shows the percent reduction (or increase) in energy
consumption over GG that FACTS enables.

For small numbers of publish events, FACTS significantly
outperforms GG. For publish counts between 1000 and 4000,
FACTS performs similarly to GG at the core device. When
the number of publishes at once becomes very large (greater
than 5000 per experiment), we observe a performance cross
over between GG and FACTS. GG outperforms FACTS by
amortizing the cost of encryption and TLS communication
establishment across the many messages. FACTS must validate
the capability for every message and adds communication
overhead to each message (for the larger payload). This
processing time starts to accumulate when there are more than
5000 messages sent at once.

This result speaks to the trade offs associated with each type
of AS mechanism. As part of future work, we are considering
how to combine the use of FACTS and GG adaptively over
time depending on data size and messaging and security
requirements. Our goal is to use the AS mechanism that will
achieve the lowest energy use dynamically depending on the
application requirements.

V. CONCLUSIONS AND FUTURE WORK

We present FACTS – hybrid access control for fog/edge
devices that integrates low overhead capability-based security
with AWS Greengrass. By combining TLS with the use of
capabilities, we enable IoT deployment administrators to de-
cide where and when to use encrypted channels to achieve the
best trade-off between data privacy performance, and energy
efficiency. Our evaluation shows that FACTS is able to achieve
end-to-end message based authorization with significantly
lower overhead than using AWS Greengrass alone.

As part of future work, we are investigating more energy
efficient implementations of the MQTT broker and reducing
the size of the FACTS’s capability. We are also developing the
necessary tooling to automate IoT deployment that developers
can use to specify which devices use TLS and which use
capability-based security for an IoT application.
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[14] M. Suárez-Albela, T. M. Fernández-Caramés, P. Fraga-Lamas, and
L. Castedo, “A practical performance comparison of ecc and rsa for
resource-constrained iot devices,” in Global IoT Summit, 2018.

[15] Q. Fan, J. Chen, M. Shojafar, S. Kumari, and D. He, “Sake*: A
symmetric authenticated key exchange protocol with perfect forward
secrecy for industrial internet of things,” IEEE transactions on industrial
informatics, vol. 18, no. 9, pp. 6424–6434, 2022.

[16] F. Bakir, C. Krintz, and R. Wolski, “CAPLets: Resource Aware,
Capability-Based Access Control for IoT,” in ACM Symposium on Edge
Computing, 2021.

[17] A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for decen-
tralized authorization in the cloud,” in Network and Distributed System
Security Symposium, 2014.

[18] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Renesse, and
H. van Staveren, “Amoeba – A distributed Operating System for the
1990’s,” IEEE Computer, vol. 23, no. 5, May 1990.

[19] J. Hughes and W. Diffie, “The challenges of iot, tls, and random number
generators in the real world,” ACM Queue, vol. 20, 2022.

[20] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes,
“Iotls: understanding tls usage in consumer iot devices,” in Proceedings
of the 21st ACM Internet Measurement Conference, 2021, pp. 165–178.

[21] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky, and G. Xu,
“Vigilia: Securing smart home edge computing,” in Symposium on Edge
Computing (SEC), 2018.

[22] X. W. Pengkun Li, Jinshu Su, “itls: Lightweight transport-layer security
protocol for iot with minimal latency and perfect forward secrecy,” IEEE
Internet of Things Journal, 2020.

[23] S. Pal, M. Hitchens, V. Varadharajan, and T. Rabejaja, “On design of
a fine-grained access control architecture for securing iot-enabled smart
healthcare systems,” in EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2017.

[24] S. Pal and Z. Jadidi, “Protocol-based and hybrid access control for the
iot,” Sensors, vol. 21, no. 6832, 2021.

[25] H. Pranata, R. Athauda, and G. Skinner, “Securing and governing access
in ad-hoc networks of internet of things,” in International Conference
on Engineering and Applied Science, 2012.

[26] S. Pal, M. Hitchens, V. Varadharajan, and T. Rabehaja, “Policy-based
access control for constrained healthcare resources in the context of the
internet of things,” J. Netw. Comput. Appl, vol. 139, 2019.

[27] P. Colombo and E. Ferrari, “Access control enforcement within mqtt-
based internet of things ecosystems,” in Symposium on Access Control
Models and Technologies, 2018.

[28] A. Hintaw, S. Manickam, S. Karuppayah, and M. F. Aboalmaaly, “A
brief review on mqtt’s security issues within the internet of things (iot),”
Communications, vol. 14, no. 6, 2019.

[29] G. Selander, J. Mattsson, and F. Palombini, “Ephemeral diffie-hellman
over cose (edhoc),” IETF, Tech. Rep. 9528, Mar 2024.

[30] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object security
for constrained restful environments (oscore),” IETF, Tech. Rep. 8613,
Jul 2019.

[31] “AWS IAM,” http://aws.amazon.com/iam/; accessed May 31, 2024.
[32] M. D. Mudaliar and N. Sivakumar, “Iot based real time energy moni-

toring system using raspberry pi,” Internet of Things, vol. 12, 2020.
[33] G. Bekaroo and A. Santokhee, “Power consumption of the raspberry pi:

A comparative analysis,” in IEEE International Conference on Emerging
Technologies and Innovative Business Practices for the Transformation
of Societies, 2016.

[34] M. Dabacan, “Analog discovery 2 reference manual,” Analog Discovery
2 Reference Manual-Digilent Reference, 2018.


