
M
O

B
IL

E
CO

D
E

SE
CU

R
IT

Y

The class loading mechanism,

central to Java, plays a key

role in JDK 1.2 by enabling

an improved security policy

that is permission-based

and extensible.

SECURE JAVA
CLASS
LOADING

LI GONG

Sun Microsystems

W hen Java technology burst onto the Internet scene in 1995,
its developers declared the ambitious goal of providing a safe
programming environment, especially for Web-based,

dynamically composed, and mobile applications.1,2 OEM vendors and
licensees could port the Java platform to their environment, such as
browsers and operating systems, and inherit extensive built-in security fea-
tures. Java’s security tools and services enabled independent software ven-
dors to build a wider range of security-sensitive applications—for exam-
ple, in the enterprise world—with minimal effort.

Java’s original security model for these tools and services is known as
the sandbox model. This model features a very restricted environment in
which to run untrusted code (called applets) obtained from the open net-
work.3 Essentially, the sandbox model trusts local code to have full access
to vital system resources, such as the file system. However, the model does
not trust downloaded remote code, so restricts its access to only a small
set of limited resources. The Java Development Toolkit, versions 1.0.x,
deploy this sandbox model, as do most applications built with JDK,
including Java-enabled Web browsers. For more about the sandbox model,
see the sidebar “The Mechanisms of Java Sandbox Security.”

To extend the sandbox model, Sun Microsystems introduced signed
applets with JDK 1.1.x in early 1997. In this model, Java treats a correct-
ly digitally signed applet as trusted local code, if the end system that
receives the applet recognizes the signature key as trusted. Developers
deliver signed applets, together with their signatures, in the Java Archive
format. In this article, I describe the more finely grained, permission-based
access control architecture, and its relation to the class loading mechanism,
that will be available in the JDK 1.2 release.

56 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ 1089-7801/ 9 8 /$10.00 ©1998 IEEE IEEE INTERNET

.

S E C U R E C L A S S L O A D I N G

57IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1998

NEW SECURITY
MODEL IN JDK 1.2
The forthcoming JDK 1.2 release
will introduce a new security
architecture that uses a security
policy to grant individual access
permissions to running code.4

The policy is based on the code’s
characteristics; for example,
where the code originates,
whether it is digitally signed, and,
if so, by whom. Code that
attempts to access protected
resources will invoke security
checks that will compare permis-
sions granted with permissions
needed for the attempted access.
If the former includes the latter,
the Java virtual machine permits
access; otherwise, it denies access.

The Java runtime system’s security behavior is
entirely specified by its security policy. As a devel-
oper or system administrator, you can set this pol-
icy and configure it directly with either a GUI tool
or a programming interface. A policy object encap-
sulates the policy and a security manager object
enforces it. This means you can implement differ-
ent security policies as needed, simply by cus-
tomizing these objects.

JDK 1.2 builds in support for a commonly used
security policy that controls access essentially by
listing which code is granted what permissions, as
the simple example in Table 1 shows. In abstract
terms, this access control policy maps from a set of
properties that characterize running Java code to a
set of access permissions granted to the concerned
code. If users elect not to specify a policy, JDK 1.2
defaults to the sandbox policy.

Code and Permissions
A piece of code is fully characterized by its origin (its
location as specified by a URL) and a set of public

keys. The public keys correspond to the set of pri-
vate keys with which a developer signed the code by
means of one or more digital signature algorithms.

A permission is represented with a permission
object that is instantiated from a hierarchy of typed
and parameterized access permission classes corre-
sponding to all controlled resources. For example,
the permission representing file system access is
located in the Java I/O package, as java.io.FilePer-
mission. All permission classes must implement a
method called implies where a.implies(b) == true
means that if, say, a piece of code is granted per-
mission a, then it is naturally granted permission
b. This method is used to compare permissions,
and encapsulates resource access semantics locally
within a permission class.4

Significantly, with semantics encapsulation the
actual access control code need not be specialized
for a particular type of resource. For example, JDK
1.2 (or any Java application or applet) can use
identical access control code for security checks
during access to the file system, to networking

Java enforces the seemingly simple sandbox security model through a number of sophis-
ticated mechanisms.

■ First, Sun designed the Java language to be type-safe and easy to use. Language features
such as automatic memory management, garbage collection, and range checking on
strings and arrays are examples of how Java helps programmers write safer code.

■ Second, compilers and a bytecode verifier ensure that the Java virtual machine
executes only legitimate Java code. The bytecode verifier, together with the Java virtual
machine, guarantees language type safety at runtime. Moreover, a class loader defines
a local name space, which helps to ensure that an untrusted applet cannot interfere
with the running of other Java programs.

■ Finally, the Java virtual machine mediates access to crucial system resources. A security
manager checks this access in advance and restricts actions of untrusted code to the
minimum.

THE MECHANISMS OF JAVA SANDBOX SECURITY

Table 1. A simple example of a security access policy that lists which permissions are granted to a given piece of code.

Code Permission
Applets from http://java.sun.com Read the Java software directory
Applets from http://java.sun.com signed by Sun Microsystems Write to the Java software directory
Applets from http://mygames.com No special permission
Applications installed in directory /usr/local/bin Read and write all files in the /tmp directory

.

M O B I L E C O D E S E C U R I T Y

58 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET

resources, and to system properties. At the same
time, semantics encapsulation makes it possible to
dynamically add a new type of controlled resource,
because programmers can reuse the built-in access
control code and need to add only the corre-
sponding permission class.

How Access Control Works
JDK 1.2 applies the security policy and its associ-
ated access controls to both Java applications and
applets. The access control process is the same,
regardless of whether an applet or an application is
involved. You might view an applet, either through
a Web browser or the Appletviewer program pro-
vided with the JDK. Alternatively, you might run
a Java application, possibly from the command line
by invoking the program called java. Either way,
the following steps occur.

1.The Java virtual machine obtains a class file and
accepts it if the file passes preliminary bytecode
verification.

2.The Java virtual machine determines the class’s
code source. This step includes signature
verification, if the code appears to be signed.

3.The Java virtual machine consults the security
policy, and composes the set of permissions to
grant to this class. In this step, the policy object
will be constructed, if it has not been already.

4.The Java virtual machine loads and defines the
class, and marks the class to have been granted
the set of permissions.

5.The Java virtual machine instantiates the class
into objects, and executes their methods.
Runtime type-safety check continues.

6. If at least one method of a class is in the call
chain when a security check is invoked, the
access control code examines the class’s set of
granted permissions. It does this to see if there
is sufficient permission for the requested access.
If yes, the execution continues. If no, a security
exception occurs. When a security exception—
which is a runtime exception—occurs and is
not caught, the Java virtual machine aborts.

7.When the class file and the instantiated objects
are no longer in use, they are garbage-collected.

These steps show how the class loading mechanism
is integrally connected with security. The class
loader locates and fetches the class file, consults the
security policy, and defines the class object with the
appropriate permissions.

SECURE CLASS LOADING
Dynamic class loading is an important feature of
the Java virtual machine because it enables the Java
platform to install software components at run-
time.1 Class loading has several unique character-
istics. First, lazy loading means that classes are
loaded on demand, on a just-in-time basis. Second,
dynamic class loading maintains the type safety of
the Java virtual machine by adding link-time
checks, which replace certain runtime checks and
are performed only once.5 Moreover, programmers
can define their own class loaders that, for exam-
ple, specify the remote location from which certain
classes are loaded, or assign appropriate security
attributes to them. Finally, programmers can use
class loaders to provide separate name spaces for
various software components. For example, a
browser can load applets from different Web pages
using separate class loaders, thus maintaining a
degree of isolation between those applet classes. In
fact, these applets can contain classes of the same
name—the Java virtual machine treats these class-
es as distinct types.

Class Loader Hierarchies
When class loaders load Java software components,
the smallest unit is a class. Classes are defined in a
machine-independent, binary representation
known as the class file format. An individual class
representation is called a class file, even though it
need not be stored in an actual file. For example,
class files can be stored as records or commands in
a database.

A class file can contain bytecode as well as sym-
bolic references to fields, methods, and names of
other classes. For example, a class named C is
declared as follows:

class C {
void f() {
D d = new D();
...
}

}

The security policy and related
access controls apply to both Java

applications and applets.

.

S E C U R E C L A S S L O A D I N G

59IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1998

The class file representing C contains a symbolic
reference to class D. The Java virtual machine
resolves symbolic references at link time (of class
C) to actual class types. To do this, the Java virtual
machine must load the class file of D and create the
class type.

A class loader L that loads class C is the class’s
defining class loader. The actual class type is fully
qualified by both itself and its defining class loader,
<C, L>. Therefore, two types in the Java runtime are
equal if both the class types are equal and their
defining class loaders are identical.

Since there can be multiple instances of class
loader objects in one Java virtual machine, how do
we determine which class loader to use as the defin-
ing loader when loading a class?

In JDK 1.2, the situation is further complicat-
ed because JDK introduces multiple class loader
classes with distinct properties. Thus another ques-
tion is, what type of class loader should we use
when loading a class?

Class Hierarchy Root and Tree. The root of the class
loader class hierarchy is an abstract class called
java.lang.ClassLoader, originally defined in JDK 1.0
and since expanded. Class java.security.Secure-
ClassLoader, introduced in JDK 1.2, is a subclass
and concrete implementation of the abstract Class-
Loader class. Class java.net.URLClassLoader is a sub-
class of SecureClassLoader.

A utility program called Appletviewer uses a pri-
vate class—sun.applet.AppletClassLoader—to load
applets. In JDK 1.0, AppletClassLoader is a subclass
and concrete implementation of ClassLoader. In
JDK 1.2, however, it is a subclass of URLClassLoader.
Note that interposing new classes between an exist-
ing class and its subclass are binary backward-com-
patible.1

When creating a custom class loader class, users
can subclass from any of the above class loader
classes, depending on the particular needs of the
custom class loader. (Because AppletClassLoader is
a private class defined in the sun.* package, it is not
supported and is subject to change, so an applica-
tion should not subclass from it.)

Each class is loaded by its defining class loader,
and each class loader itself is a class and must be
loaded by another class loader. This may prompt
the obvious chicken-and-egg question: Where does
the first class loader come from? It comes from a
primordial class loader that bootstraps the class
loading process. The primordial class loader, gen-
erally written in a native language such as C, does

not manifest itself in the Java context. The pri-
mordial class loader often loads classes from the
local file system in a platform-dependent manner.

Some classes, such as those defined in the java.*
package, are essential for the Java virtual machine
and runtime system to function correctly. They are
often called system classes. For historical reasons, all
system classes have a defining class loader that is a
null object. This null class loader, sometimes called
the system class loader, is perhaps the only sign that
a primordial class loader exists. In fact, it is easier to
simply view the null class loader as the primordial
class loader. In JDK 1.2, a core set of system class-
es, called base classes or base system classes, contin-
ue to be loaded by the primordial class loader. All
other system classes are loaded by instances of the
URLClassLoader. Figure 1 lists the class loader classes
defined in JDK 1.2 and describes their relationship
with each other.

Given all classes in one Java runtime environ-
ment, we can easily form a class-loading tree to
reflect the class-loading relationship. Each class that
is not a class loader is a leaf node. Each class’s par-
ent node is its defining class loader, with the null
class loader being the root class. Such a structure is
a tree because there cannot be cycles—a class loader
cannot have loaded its own ancestor class loader.
Figure 2 depicts such a defining relationship.

Delegation. Another relationship between class loader
objects is delegation. When the Java virtual machine
asks one class loader to load a class, this class loader
either loads the class itself or asks another class loader

Primordial class loader

java.lang.ClassLoader

java.security.SecureClassLoader

java.net.URLClassLoader

sun.applet.AppletClassLoader

Figure 1. Class loader class hierarchy in JDK 1.2. The arrows indi-
cate subclassing.

.

M O B I L E C O D E S E C U R I T Y

60 NOVEMBER • DECEMBER 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET

to do so. The first class loader thereby delegates the
loading task to the second class loader. The delega-
tion relationship is virtual in the sense that it has
nothing to do with which class loader loads or defines
which other class loader. Instead, a delegation rela-
tionship forms when class loader objects are created,
and in the form of a parent-child relationship. Nev-
ertheless, the system class loader is the delegation root
ancestor of all class loaders. Applications that create
class loaders must be careful to ensure that the dele-
gation relationship does not contain cycles; otherwise,
the delegation process may enter into an infinite loop.
Figure 3 illustrates the delegation relationship.

Class Resolution Algorithm
In the default implementation of JDK 1.2, the Java
virtual machine searches for classes in the follow-
ing order:

1.Checks if the class has already been loaded.
2.Delegates, if the current class loader has

specified a delegation parent, to the parent to
load this class. If there is no parent, delegates to
the primordial class loader.

3.Calls a customizable method to find the class
elsewhere.

In step 1, the Java virtual machine looks into the
class loader’s local cache (or its functional equiva-
lent, such as a global cache) to see if a loaded class
matches the target class. Step 3 provides a way to
customize the mechanism that looks for classes. A
custom class loader can thus override this method
to specify how to look up a class. For example, an
applet class loader can override this method to go
back to the applet host, try to locate the class file,
and load it over the network. If at any step the
loader locates a class, it returns the class to be used
by the Java virtual machine.

It is crucial for type safety that the same class
loader does not load the same class more than once.
If the class is not among those already loaded, the
current class loader attempts to delegate the task to
the parent class loader. This can occur recursively
and ensures the use of the appropriate class loader.
For example, when locating a system class, the del-
egation process continues until it reaches the sys-
tem class loader.

If the Java virtual machine does not find the
class with steps 1–3, a ClassNotFound exception
occurs. If it finds the class, on the other hand, its
type is <C, L>, in which L is the class loader that
actually loaded and defined the class. The eventual
class type, therefore, is not directly affected by the
variety of intermediate delegation class loaders.

Given the name of any class, which class loader
does the Java virtual machine start with in trying
to load the class? The rules for it to determine the
requesting class loader are as follows:

■ When loading the first class of an application,
use a new instance of the URLClassLoader.

■ When loading the first class of an applet, use a
new instance of the AppletClassLoader.

■ If an existing class triggers the class-loading
request by referring to it or by calling
java.lang.Class.for Name directly, ask the defin-
ing class loader for the existing class to load the
class.

Rules about the use of URLClassLoader and Applet-
ClassLoader instances have exceptions and can vary
depending on the particular system environment.
For example, a Web browser may choose to reuse
an existing AppletClassLoader to load applet classes
from the same Web page.

Because class loaders are so powerful, the Java
virtual machine severely restricts who can create
instances of them. On the other hand, it is desir-
able to provide a convenient mechanism for appli-

Primordial class loader

Delegation ancestor

Delegation parent

Requesting class loader

Figure 3. Class-loading delegation relationship in JDK 1.2.

Primordial class loader

URLClassLoader 1

URLClassLoader 2Application classes

Base system classes

Figure 2. Class-defining relationship in JDK 1.2.

.

S E C U R E C L A S S L O A D I N G

61IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ NOVEMBER • DECEMBER 1998

cations or applets to specify URL locations and
load classes from them. JDK 1.2 provides static
methods to allow any program to create instances
of the URLClassLoader class, although not other
types of class loaders.

Class Paths
The class loader classes I have described provide
programmable ways to locate and load classes and
resources. To simplify installation of software com-
ponents on a Java-enabled system, there are well-
defined and user-specific places to put such com-
ponents. This allows them to be automatically
discovered by the Java runtime system.

JDK 1.0 and 1.1 feature a well-known, built-in
systemwide search path called the class path, which
is set in a platform-specific way. For example, on
Unix systems, the class path can be set via the Shell
environment variable CLASSPATH. Essentially, all
classes or Java Archive files containing classes on
the local file system must reside on this path to be
discovered. Moreover, this is the same path where
all system classes reside. As a result, the Java virtu-
al machine treats all classes from the local file sys-
tem as system classes and gives them full resource-
access privileges. There is therefore no distinction
between local classes that really are system code
from those classes that are part of some locally
installed applications.

This access control situation is clearly not per-
fect. There are many scenarios where a locally
installed application should not be given full sys-
tem privileges. For example, when trying out a
demo program newly received in the mail, it is pru-
dent to run the demo with very limited privileges.
Or, when displaying an important document, it is
safer to run the display application in read-only
mode to prevent possible software bugs from alter-
ing document content.

To accommodate such scenarios, the JDK 1.2
security architecture treats locally resident classes
like remotely downloaded applet classes—by grant-
ing them specific and fine-grained permissions. To
achieve this goal, JDK 1.2 distinguishes genuine
system classes from all other classes by means of
separate class paths. One is the system class path,
for storing system classes. The other is the applica-
tion class path, for storing all other classes. The Java
virtual machine still loads classes on the system class
path with the primordial class loader or a URL-
ClassLoader and trusts them by default. A URL-
ClassLoader usually loads classes on the application
class path, and the Java virtual machine grants such

classes the appropriate permissions according to the
security policy.

CONCLUSIONS
JDK 1.2 has introduced a powerful and secure class
loading mechanism. It not only enforces type safe-
ty and name space separation but also has a signif-
icant role in the new security architecture that sup-
ports fine-grained, permission-based access control.
The new class loading mechanism’s flexibility—
through its delegation scheme and the rich set of
class loader classes—gives Java applications and
applets greater freedom to customize and specify
how, when, and from where classes are loaded.
Because the class loading mechanism is central to
both the correctness and the security of the Java
runtime system, we would like to model and define
this mechanism, perhaps in a formal verification
system. We can then obtain a formal specification
and prove (or disprove) that the mechanism as cur-
rently designed is sufficient for security. ■

REFERENCES
1. J. Gosling, B. Joy, and G. Steele, The Java Language Speci-

fication, Addison-Wesley, Menlo Park, Calif., 1996.

2. T. Lindholm and F. Yellin, The Java Virtual Machine Spec-

ification, Addison-Wesley, Menlo Park, Calif., 1997.

3. L. Gong, “Java Security: Present and Near Future,” IEEE

Micro, Vol. 17, No. 3, May/June 1997, pp. 14–19.

4. L. Gong et al., “Going Beyond the Sandbox: An Overview

of the New Security Architecture in the Java Development

Kit 1.2,” Proc. Usenix Symp. Internet Technologies and Sys-

tems, 1997, Usenix Assoc., Berkeley, Calif., pp. 103–112.

5. S. Liang and G. Bracha, “Dynamic Class Loading in the

Java Virtual Machine,” Proc. ACM Conf. Object Oriented

Programming Systems, Languages, and Applications, ACM

Press, New York, 1998.

Li Gong is chief architect, Java security and networking, a Distin-

guished Engineer, and manager of the security and network-

ing group at Sun Microsystems’ Java software division. He is

an associate editor of ACM Transactions on Information and

System Security and is on the editorial board of the Journal of

Computer Security. He served as program chair of the IEEE

Symposium on Security and Privacy, the ACM Conference

on Computer and Communications Security, and the IEEE

Computer Security Foundations Workshop. He received the

BS and MS degrees from Tsinghua University, Beijing, and a

PhD degree from the University of Cambridge, England.

Readers may contact Li at Sun Microsystems Inc., 901 San

Antonio Rd., Palo Alto, CA 94303; li.gong@sun.com;

http://java.sun.com/people/gong/.

.

