
Devices-as-Services: Rethinking Scalable Service Architectures for the Internet of

Things

Fatih Bakir, Rich Wolski, Chandra Krintz
Univ. of California, Santa Barbara

Gowri Sankar Ramachandran
Univ. of Southern California

Abstract

We investigate a new distributed services model and architec-
ture for Internet of Things (IoT) applications. In particular,
we observe that devices at the edge of the network, although
resource constrained, are increasingly capable – performing
actions (e.g. data analytics, decision support, actuation, con-
trol, etc.) in addition to event telemetry. Thus, such devices
are better modeled as servers, which applications in the cloud
compose for their functionality. We investigate the implica-
tions of this “flipped” IoT client-server model, for server dis-
covery, authentication, and resource use. We find that by com-
bining capability-based security with an edge-aware registry,
this model can achieve fast response and energy efficiency.

1 Introduction

As the Internet of Things (IoT) grows in size and ubiquity, it
is becoming critical that we perform data-driven operations
(i.e. analytics, actuation, and control) at the “edge” to reduce
the latency, response time, cost, and energy use for IoT ap-
plications. As such, edge systems increasingly co-locate data
management and analysis services with sensing, instead of
requiring that devices ship their data over long-haul networks
for remote processing using the traditional “cloud” model.

Edge systems [3, 4, 8, 10, 11, 27, 28] typically implement a
publish/ subscribe (pub-sub) model in which devices publish
streams of data (often via a nearby broker); when supported,
actuation often uses a separate protocol. Alternatively, some
solutions target a client-server model, where the IoT devices
are the clients that respond with data whenever a decision
making server needs it. In our view, a client-server model is
well suited to emerging IoT applications in which resource
constrained edge devices provide nanoservices – data-driven
actuation and control, data analysis, processing, and sensing.

We believe that the IoT deployments in the not-too-distant
future will include multi-function devices. As a result, a ser-
vices model in which the specific function (including data
publication) can be requested from each device when it is
needed is more appropriate. Further, because devices will con-
tinue to be resource constrained, they will require “helper” ser-

vices at the edge that augment device capabilities and enable
scale. In this paper, we outline this approach to implementing
Devices-as-Services and describe some of the capabilities of
an early prototype.

Our work is motivated by the following observations.
• IoT applications can and will likely be structured as collec-

tions of services that require functionality from a device
tier, an edge tier, and a cloud tier

• in-network data processing can significantly reduce re-
sponse time and energy consumption [31],

• edge isolation precludes the need for dedicated commu-
nication channels between application and devices, and
facilitates privacy protection for both data and devices,

• actuation in device tier will require some form of request-
response protocol where the device fields the request,

• the heterogeneity of devices militates for a single program-
ming paradigm and distributed interaction model, and

• multi-function devices can and will be able to perform their
functions (including data publication) conditionally based
on application needs (e.g. as a power optimization).

Thus we propose a new model for distributed IoT applications
in Figure 1. We flip the client-server model such that devices
at the edge are “servers” that although resource constrained,
service multiple, scalable applications (i.e. clients) deployed
in the cloud. Note that in many commercial solutions [3, 11]
devices “publish” data to channels to which servers (running
in the cloud) subscribe. We propose to move the servers
to the edge (as a way to scale data ingress, lower latency,
and improve privacy) thereby reversing the current cloud-
centric architecture. Such a model requires a new distributed
architecture that leverages edge resources in these ways.

In this paper, we define one such architecture, investigate
how it can accommodate this new model, and evaluate the
implications of its use in IoT settings and for servicing IoT
applications. The architecture is based on the functions as-
a-service (FaaS) programming and deployment model (the
execution engine that underpins serverless computing for
clouds [13,20,22,23]), and integrates a new approach for effi-
cient client and server discovery, authentication, and authoriza-
tion via a combination of capability-based security [5, 12, 24]



Figure 1: A new distributed services model for IoT: “client”

applications in the cloud compose services exported by

resource-constrained devices at the edge via Edgistries – edge

nodes that facilitate device discovery/registration, privacy me-

diation, and optimization.

and a set of edge services for service registry, privacy media-
tion, and optimization called an Edgistry.

We prototype an early implementation of this architecture
and approach using microcontrollers, single board comput-
ers, and edge clouds. We empirically compare the energy
consumption and performance of traditional and flipped archi-
tectures, as well as our capability approach versus TLS/SSL
based mechanisms for authentication. We find that it is possi-
ble to implement Devices-as-Services – a flipped model of the
currently popular cloud-based IoT architecture – efficiently,
using FaaS as a universal programming paradigm and a set of
application agnostic edge services.

2 Devices-as-services – a New Approach

Our view is that the current Internet and cloud architecture
should “reverse” to accommodate scalable IoT applications.
Rather than hosting services in the cloud (logically making
IoT devices clients of those services), we view devices as
“servers” and applications running in the cloud as “clients”.

This viewpoint is supported by several observations. First,
devices are resource restricted making them capable of de-
livering limited and relatively fixed functionality. This func-
tionality is naturally described as an enumerable set of ser-
vices (responses to requests) that are composed by applica-
tions. These services are necessarily “small” but even fully
resourced cloud services are now being developed as microser-
vices [18]. Devices are the “nanoservices” in an IoT setting.

Secondly, applications must compose device capabilities
from vast collections of devices into meaningful functionality
for users, and in an IoT setting, the user scale will be sub-
stantial. The cloud is where this scaling will necessarily take
place, both in terms of aggregating device functionality, and
matching these aggregations to user demand for them.

Thirdly, much of the current technological development
for IoT [3, 11] is focused on bringing devices to the cloud.
Many of the commercial offerings provide an SDK for us-
ing MQTT [4, 28] or AMQP [1] to publish telemetry, events,
etc. to objects (which subscribe to device channels) in the
cloud that represents each device. For actuation, each device
must separately subscribe to such a channel to receive asyn-

chronous commands (although for low-power applications
that use MQTT-SN, this option is not possible). With our
system, the same server code runs at all tiers — device, edge,
and cloud — unifying the device API as a first-class services
API.

The currently prevalent commercial IoT/cloud APIs require
devices to act separately as “publishers” or “subscribers” or
both (the last to implement “closed-loop” actuation). We be-
lieve that IoT infrastructure must accommodate a richer model
in which devices (however resource restricted) are capable
of actions as well as event telemetry. Thus, logically, IoT de-
vices are better modeled as servers that provide services to
applications.

2.1 The Edgistry
Our approach splits the provisioning of services between de-
vices and a common set of management services located at
the edge, termed The Edgistry. Devices host small, resource-
light services that field requests from, and respond to, client
applications (hosted in the cloud or edge). The Edgistry
• implements an eventually consistent distributed service

registry (e.g. using blockchain consensus protocols such as
Tendermint BFT [6] and Hyperledger Fabric [2]),

• acts as a speed-matching communication service,
• can protect device privacy (e.g. through anonymization) by

isolating the service provider from service consumer, and
• provides computational and storage off-loading services

(e.g. content caching) for device-hosted services.
From a programmability perspective, we advocate a uni-

versally portable “Functions as a Service” (FaaS) capabil-
ity [13,17,20,22,23]. Services on the device are implemented
using a “micro FaaS” – a small, specially tuned, implementa-
tion of FaaS specifically targeting resource-restricted micro-
controllers as an execution platform. The micro FaaS supports
the same programming APIs as a heavier-weight (and server-
less) implementation designed to run on an edge device, in a
private cloud, or in a public cloud. In this way, IoT applica-
tions can be coded using a single “FaaS everywhere” set of
programming abstractions from device to cloud.

To enable this portability and also data durability in a dis-
tributed setting, such scale-spanning FaaS capability must
define a portable storage abstraction, ideally having append-
only semantics. Thus all computations, regardless of location,
can persist data by appending it to some object hosted in the
device-edge-cloud hierarchy using a common API.

2.2 Request Forwarding and Duty Cycle
Note that to save power, some devices will need to spend most
of their duty cycle in a power-saving “sleep” mode. For ex-
ample, an ESP8266 microcontroller [9] 0.01 mAh (milliamp-
hours) in deep sleep mode and requires 320 mAh to transmit
a packet using its on-board WiFi. Using a 18650 Lithium-ion
rechargable battery, it is possible to operate the microcon-
troller for approximately 1 year without a battery recharge
if it limits its communication to every 10 minutes (on the



Figure 2: Speed-matching service requests via an Edgistry

average, using WiFi and WPA2) [29]. Thus, the network con-
nectivity we can expect will be initiated by the device on a
duty cycle dictated by its power budget.

Note that in a “typical” server setting, the client initiates
a connection to the server when making a request. Thus the
server’s activation can be triggered by the connection initia-
tion. In this setting, the connection and the request-response
interaction are decoupled. That is, the device (running a ser-
vice) polls the Edgistry to see if in-bound requests are queued
there. Any pending requests will be forwarded to the device
which can then disconnect (to save power). When a response
is ready, the device connects to the Edgistry and sends a re-
sponse. Moreover, both the service running on the device
and the proxy running on the Edgistry uses append-only data
structures to store state waiting for successful transmission.

Figure 2 shows how a request for service from a device
(registered in a serachable registry, not shown) arrives at the
Edgistry and is appended to a request queue associated with
the device. When the device contacts the Edgistry (as part
of its duty cycle), the request is forwarded to the device and
appended to a queue of requests, thereby triggering a function
in the micro FaaS. When the response is ready, the device
connects and sends it to the Edgistry where it is appended to a
queue of responses destined for a client. Finally, the Edgistry
forwards the response to the original requester.

2.3 Device Registry and Privacy
The Edgistry must implement service discovery (i.e. for de-
vices implementing services) and client registry. That is, when
a client makes a (possibly speed-matched) request from a ser-
vice on a device, the Edgistry will need to keep track of where
the response must be returned. We envision each device pair-
ing with a one local Edgistry node (or a small number of
local nodes) so that it does not have to store per-request client
tracking information.

Service discovery can be implemented using a distributed,
eventually consistent blockchain consensus protocols such
as Tendermint BFTT [6]. A blockchain consensus model is
particularly attractive because it offers the opportunity for
the Edgistry to implement privacy features such as location
and identity anonymization [21]. For example, an application
may wish to contact a device within some geographic region
without the need to know the precise location of the device.
This type of location “fuzzing” can be implemented using
policy delegation by the device to the Edgistry node with
which it is paired. By hiding the identity of the device from the

service requesters, we can mitigate denial of service attacks as
the Edgistry delegates the service to one of the devices in the
network in a geographical neighborhood without revealing
the device identity to service consumers.

3 Capability-based Service Access

Security is a challenge for this inverted model because it re-
quires distributed policy implementation governing a vast
number of services, each implemented using the barest min-
imum of computational and storage resources. This latter
requirement alone precludes the use extant public-key/private-
key “standards” for securing client-server interactions. Specif-
ically, asymmetric cryptography computations and key stor-
age are costly for resource restricted devices. Moreover, cur-
rent TLS [26] protocols do not allow servers to control packet
size, so servers must have large memories (e.g. 16k for half
duplex, 32k for full duplex) to conform.

Our approach uses a distributed, capability based authen-
tication scheme to address these challenges. A capability is
a communicable, unforgeable token of authentication. It en-
capsulates an object, the access rights on that object, and a
cryptographic signature that maintains the integrity of the ca-
pability. We implement access rights as a bitmap and generate
a signature using a private key based method such as Hashed
Message Authentication Codes (HMACs) [19]. The signature
protects the object name and access rights in the capability.
To verify the token, the server receiving a request regenerates
the signature from the capability body and compares it against
the capability signature. If it matches, the server executes the
request and discards the capability.

3.1 Controlled sharing without the server
Capabilities can support privilege reductions without involv-
ing the server. For example, Amoeba [24] implements a
derivation mechanism that uses commutative hash functions
on access-right bitmaps to selectively reduce capability rights.

We generalize this derivation mechanism to support a wider
variety of policy implementations. To enable this generaliza-
tion, each capability maintains a derivation history. Using this
history, the server can verify the validity of derivations. On
each derivation, the signature of the current chain is merged
with the hash of the new capability. Upon receiving a request,
the server walks the chain applying the hashes. If the signa-
tures match at the end and each derivation is legal (e.g. does
not add new rights), the derivation is deemed valid, and the
request is served. This mechanism is similar to Macaroons [5]
for web services, but with optimizations that permit multi-
ple entries to be combined in a single signature generation.
Because any holder of a capability can extend the chain of
rights constraints this capability system can implement truly
distributed access control.

It is possible for our derivation chains to grow over time. To
bound this growth we provide a flattening functionality, which
compresses a chain of derivations into a single capability
upon each successful request. Because server verification of



capabilities is efficient (cf. Section 5) this methodology is
appropriate for very large scale IoT deployment.

3.2 Protecting Capabilities
To avoid the use of resource-consuming encrypted links be-
tween devices at the edge, we devise a novel approach to
protecting capabilities in clear text channels. In our scheme,
capabilities are further constrained to a specific request before
being transmitted. Thus, a capability transmitted over the net-
work can only be used for that request. We number requests
with monotonously increasing sequence numbers to prevent
replay attacks. To enable this, we employ the current time as
the sequence numbers of each request. Since updating the se-
quence number in the server requires a valid capability, a DOS
attack cannot be employed by an outside attacker. The device
stores the last sequence number for efficiency purposes. If a
client has a buggy time protocol implementation or a clock
drifts, our protocol handles this case by returning the current
sequence number in the error response. The clients can syn-
chronize their clocks using this number. Upon the detection
of such a drift, an external service such as the Edgistry can fix
the sequence number using a special capability. If the attack
model of the application involves malicious clients, a separate
sequence number can be employed per client.

3.3 Maintaining trust
The end device and Edgistry perform 2-way authentication
so that either can verify requests from the other. During boot-
strap, the end device passes a capability to the Edgistry. Using
2-way authentication, the Edgistry also passes a capability it
signed to the end device. Using this capability, the Edgistry
can verify the authenticity by requiring the end device to send
responses by deriving from that capability.

4 A Prototype

We prototype this “flipped” client-server model and our
capability-based security method using CSPOT [30], an open
source 1 distributed platform for deployment and execution
of IoT applications. CSPOT runs as a FaaS server on micro-
controllers (i.e. as a micro FaaS), and as a serverless FaaS
runtime system on edge devices, private clouds, and public
clouds. In CSPOT, a function invocation can only be coupled
with a “Put” of data targeting some storage object, which is
append-only and persistent. The function coupled with the
put has direct access to this newly posted data as well as
all previously appended data up to some limit specified with
the object is created. CSPOT data objects are called WooFs
(Wide-area objects of Functions) and each WooF resides in a
single namespace. Namespaces are addressed by a URI and,
thus, network accessible. A CSPOT application can only per-
sist data in WooFs located in one or more namespaces – the
functions that are invoked are thus stateless while executing.

In our prototype implementation, we use capabilities to au-
thenticate four CSPOT functions: namespace creation, WooF
creation within a namespace, Put operations which store data

1https://github.com/MAYHEM-Lab/cspot.git

Table 1: Comparison of Devices-as-services and AWS IoT.
Units are milliseconds; across 100 benchmark runs.

mean stdev max
AWS IoT+λ 5578 265 6843
CSPOT device->Edgistry->AWS 608 5.78 652

in a WooF (and may invoke a function), and Get operations
which retrieve data from a WooF.

Upon flashing a device, we generate an HMAC secret. A
“root” capability is securely issued when the device is paired
with an Edgistry node. This capability carries the right to
create a namespace on the device which the Edgistry node
uses to initialize the service.

As part of the bootstrapping process, the Edgistry creates
the necessary namespaces and the WooFs on the device. After
the CSPOT components are initialized, the application, for
instance a temperature monitor, is started and periodically
Puts a new reading into the local WooF.

Note that because the Edgistry has the initial root capability,
it can implement all access control policies via derivations
from the root capability once the initial trust relationship is es-
tablished. For instance, the Edgistry can generate capabilities
for the WooFs and namespaces it creates during the bootstrap
process, rather than the device generating and transmitting
them. The device need only verify each derivation, thereby
saving code complexity and power.

At the end of the bootstrapping process, the Edgistry de-
rives the application capabilities. For instance, the Edgistry
has full access rights to the WooFs in the device, but it derives
and transfers a read only capability for the clients (applica-
tions) to use, following the principle of least privilege.

Policy delegations also can be performed by clients. For
instance, an application client A can share a capability C1 with
another application B with a constraint that the derived capa-
bility C

′

1 is only valid in the presence of another capability,
C2, that B must present alongside C

′

1. Thus clients can also
create derivations that implement policies such as identities
(represented by an identity capability) without the server’s
involvement (i.e. without contacting the device which can
always verify any derivation).

5 Evaluation

Our initial goal is to verify the execution and power efficien-
cies of this new model at the device level. We begin with an
abbreviated comparison of the Devices-as-services model to
the IoT infrastructure offered by Amazon AWS [16]. Table 1
shows the end-to-end timings from a ESP8266 [9] microcon-
troller to AWS using our new model, and the AWS IoT SDK
coupled with AWS Lambda.

This benchmark uses NTP-synchronized clocks to record a
timestamp on the device and another in AWS; it computes end-
to-end latency as the difference between the two. Both CSPOT
and AWS Lambda implement an event-driven FaaS program-
ming environment. For AWS, we persist in DynamoDB [7]



For the CSPOT case, we replicate data on an Edgistry node
(an Intel NUC) [15] in a WooF before forwarding/persisting
it in CSPOT running in a virtual machine in AWS. The table
shows mean, standard deviation, and maximum latencies in
milliseconds over 100 experimental runs. The Edgistry node
is hosted using an edge cloud [8] running Eucalyptus [25]
located in the same room as the microcontroller. The edge
cloud is connected to the UCSB campus network. From this
data (and a more detailed comparison that includes Azure IoT
Hub [30])it is clear that this new methodology is at least an
order of magnitude faster (in terms of latency) than compa-
rable commercial offerings even when it replicates data in
the Edgistry. Further, the coefficient of variation for the AWS
experiment is 0.04 and 0.009 for the CSPOT experiment, in-
dicating that our system is also an order of magnitude more
stable in terms of performance variation.

Moreover, devices that publish all of their data all of the
time (e.g. using MQTT to leverage AWS or Azure) wastes
precious battery lifetime when that data is not demanded. This
new model allows devices to function as servers and only to
respond when data is requested by a client application. Thus,
in this work, we focus on improving the efficiencies of the
security features at the edge, where computational power and
electrical energy (i.e. battery power) are at a premium.

Much of the latency experienced in commercial offerings
(and the concomitant loss of battery life through additional
active time in the device) is associated with the TLS-based se-
curity protocols that MQTT and AMQP implementations use.
While it is possible to use the bidirectional nature of MQTT
and AMQP communications to implement close-loop device
interactions, these protocols (let alone the APIs that actuate
them) are not specifically designed to implement higher-level
service interactions on devices with moderate or severe power
restrictions and/or very limited memory. Devices-as-services
requires a more efficient, high-level interaction and key to
that interaction is efficient authentication. We next compare
our capability-based approach (which uses an HMAC-based
mechanism) to competitive approaches. In all experiments,
SHA256 hash was used for generating a digest from mes-
sages. For the public key cryptography experiments, we use
the recommended key size for RSA of 2048 bits and 4096
bits and 256 bits for ECC. For the hash generation, we use a
custom version of libemsha. Generation of SHA256 hashes
from messages are common to both approaches. Our imple-
mentation takes around 88 (0.06) microseconds per SHA256
hash on a message of 32 bytes. The time it takes to hash a
message scales linearly with message size.

Table 2 shows a comparison of the execution times for
various cryptographic techniques when used to sign and ver-
ify messages. The table shows the times for RSA (using
PKCS1) for two different key lengths, ECDSA (an Elliptic
Curve Cryptography – ECC – method popular in many IoT ap-
plications [14]), and an HMAC-based scheme we have imple-
mented. Below the double lines we also show the performance

Table 2: Comparison of cryptographic algorithms for signing
and verifying a 32 byte message on the ESP8266. Average
execution time and standard deviation (in parens) are shown.
Last 2 rows show end-to-end measurements.

Algorithm Sign ms (stdev) Verify ms (stdev)
PKCS1 (2048 bit) 3280 (190) 187 (4)
PKCS1 (4096 bit) 31580 (190) 9190 (9)
ECDSA (256 bit) 214 (1) 4340 (216)
HMAC (64 bit) 0.37 (0) 0.37 (0)
HMAC (128 bit) 0.37 (0) 0.37 (0)

3-level Derived
Capability (64 bit) 0.77 (0) 1 (0)
5-level Derived
Capability (64 bit) 1.18 (0.04) 1.3 (0)

of a 3-level capability derivation and a 5-level derivation on
the server (e.g. to represent a setting in which the clients
constrain capabilities multiple times). We also ran a TLS
based server experiment. We find that each connection uses
3950 milliseconds (ms; standard deviation (stdev) 11 ms) and
32320 ms (stdev 5 ms) for a simple TCP request and 2048 bit
and 4096 bit keys, respectively. The difference between these
two measurements is due to network performance variability.

Clearly, an HMAC-based approach is considerably less
computationally intensive than either of the competitive ap-
proaches. Indeed, even the derived capability timings are
better for a 3-level derivation than for a single capability veri-
fication using either of the other schemes.

While the results in Table 1 indicate that, overall (even
with additional persistent data replication) our method re-
quires an order of magnitude less “active time,” and active
time is proportional to power usage, we highlight on the en-
ergy efficiency of the authentication protocol. Specifically,
our method uses 0.072 mJ and 0.185 mJ for generation and
verification, respectively. RSA signatures (2048 bit keys) con-
sume 606.1 mJ and 34.6 mJ, and ECC signatures use 39.54
mJ and 80.32 mJ, respectively. That is for capability genera-
tion our method uses between 3 and 4 orders of magnitude
less energy for authentication than either RSA or ECC.

6 Conclusions

We propose a new “flipped” client-server model for IoT in
which devices at the edge are servers that provide nanoser-
vices, which applications in the cloud (the clients) compose
for their implementations. We contribute a novel approach
to distributed service design based on “FaaS everywhere,”
edge-level support, and a novel capability mechanism for dis-
tributed policy implementation, a fuller exposition of which
is available from [30]. Our empirical evaluation shows that
this approach is feasible and introduces very little overhead
and power consumption.
This research is supported in part by NSF (CNS-1703560, OAC-1541215, CCF-

1539586), ONR NEEC (N00174-16-C-0020), AWS Cloud Credits for Research, and

the USC Viterbi Center for Cyber-Physical Systems and the Internet of Things.



References

[1] Amqp home page. https://www.amqp.org, 2019. [On-
line; accessed 2-May-2019].

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fab-
ric: a distributed operating system for permissioned
blockchains. In Eurosys, page 30, 2018.

[3] Azure Internet of Things. https://www.

microsoft.com/en-us/cloud-platform/

internet-of-things-azure-iot-suite. [On-
line; accessed 22-Aug-2016].

[4] A. Banks and R. Gupta. Mqtt v3.1.1 protocol specifica-
tion, 2014.

[5] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson,
Ankur Taly, Michael Vrable, and Mark Lentczner. Maca-
roons: Cookies with contextual caveats for decentralized
authorization in the cloud. In Network and Distributed

System Security Symposium, 2014.

[6] Ethan Buchman. Tendermint: Byzantine fault tolerance

in the age of blockchains. PhD thesis, University of
Guelph, 2016.

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swami Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s Highly Available
Key-Value Store. In Symposium on Operating System

Principles, 2007.

[8] Andy Rosales Elias, Nevena Golubovic, Chandra Krintz,
and Rich Wolski. Wheres the bear?–automating wildlife
image processing using iot and edge cloud systems. In
ACM Conference on IoT Design and Implementation,
2017.

[9] ESP8266 Specifications Web Site, 2019.
[Online; accessed 15-March-2019] https:

//www.espressif.com/en/products/hardware/

esp8266ex/overview.

[10] Fog Data Services - Cisco. http://www.cisco.com/
c/en/us/products/cloud-systems-management/

fog-data-services/index.html. [Online; accessed
22-Aug-2016].

[11] GreenGrass and IoT Core - Amazon Web Ser-
vices. https://aws.amazon.com/iot-core,

greengrass/. [Online; accessed 2-Mar-2019].

[12] S. Gusmeroli, S. Piccione, and D. Rotondi. A Capability-
based Security Approach to Manage Access Control in

the Internet of Things. Mathematical and Computer

Modelling, 58(5-6), September 2013.

[13] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkatara-
mani, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Serverless computation with openlambda. In HotCloud,
2016.

[14] J Hernandez-Ramos, A. Jara, L. Marin, and A. Skarmeta
Gomez. Dcapbac: Embedding authorization logic into
smart things through ecc optimizations. Int. J. Comput.

Math., 93(2), February 2016.

[15] Intel NUC. https://en.wikipedia.org/wiki/

Next_Unit_of_Computing [Online; accessed 1-Feb-
2018].

[16] Internet of Things - Amazon Web Services. https:

//aws.amazon.com/iot/. [Online; accessed 22-Aug-
2016].

[17] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,
N. Yadwadkar, J. Gonzalez, R. Popa, I. Stoica, and
D. Patterson. Cloud Programming Simplified: A Berke-
ley View on Serverless Computing, Feb 2019.

[18] M. Jung, S. Mollering, P. Dalbhanjan, P. Chapman,
and C. Kassan. Microservices on AWS. https://

docs.aws.amazon.com/aws-technical-content/

latest/microservices-on-aws/introduction.

html, September 2017. [Online; accessed 2-Mar-2019].

[19] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. Hmac:
Keyed-hashing for message authentication, 1997. [On-
line; accessed 26-Apr-2019] https://tools.ietf.

org/html/rfc2104.

[20] H. Lee, K. Satyam, and G. Fox. Evaluation of pro-
duction serverless computing environments. In 2018

IEEE 11th International Conference on Cloud Comput-

ing (CLOUD), July 2018.

[21] L. Liu. Privacy and location anonymization in location-
based services. SIGSPATIAL Special, 1(2), July 2009.

[22] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha. A
preliminary review of enterprise serverless cloud com-
puting (function-as-a-service) platforms. In IEEE Inter-

national Conference on Cloud Computing, Dec 2017.

[23] G. McGrath and P. R. Brenner. Serverless computing:
Design, implementation, and performance. In Interna-

tional Conference on Distributed Computing Systems

Workshops, June 2017.

[24] S. Mullender, G. van Rossum, A. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba – A distributed

https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-iot-suite
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.espressif.com/en/products/hardware/esp8266ex/overview
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/fog-data-services/index.html
https://aws.amazon.com/iot-core,greengrass/
https://aws.amazon.com/iot-core,greengrass/
https://en.wikipedia.org/wiki/Next_Unit_of_Computing
https://en.wikipedia.org/wiki/Next_Unit_of_Computing
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/introduction.html
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/introduction.html
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/introduction.html
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/introduction.html
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104


Operating System for the 1990’s. IEEE Computer, 23(5),
May 1990.

[25] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. The eucalyptus open-source cloud-
computing system. In IEEE Cluster Computing and the

Grid, 2009.

[26] E. Rescorla. The transport layer security (tls) protocol
version 1.3. RFC 8446, IETF, August 2018.

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The Case for VM-based Cloudlets in Mobile Computing.
IEEE Pervasive Computing, 8(4), 2009.

[28] A. Stanford-Clark and H. Truong. Mqtt for sensor net-
works (mqtt-sn) protocol specification, 2013.

[29] Dr. Thorsten von Eicken’s Low Power WiFi
Blog, 2019. [Online; accessed 15-March-2019]
https://blog.voneicken.com/projects/

low-power-wifi-intro/.

[30] R. Wolski and C. Krintz. CSPOT: A Serverless Platform
of Things. Technical Report 2018-01, UC Santa Bar-
bara, 2018. https://www.cs.ucsb.edu/research/

tech-reports/2018-01.

[31] Yong Yao and Johannes Gehrke. The cougar approach
to in-network query processing in sensor networks. SIG-

MOD Rec., 31(3), September 2002.

https://blog.voneicken.com/projects/low-power-wifi-intro/
https://blog.voneicken.com/projects/low-power-wifi-intro/
https://www.cs.ucsb.edu/research/tech-reports/2018-01
https://www.cs.ucsb.edu/research/tech-reports/2018-01

	Introduction
	Devices-as-services – a New Approach
	The Edgistry
	Request Forwarding and Duty Cycle
	Device Registry and Privacy

	Capability-based Service Access
	Controlled sharing without the server
	Protecting Capabilities
	Maintaining trust

	A Prototype
	Evaluation
	Conclusions

