
Java™ on the IA64 Architecture

Michał Cierniak

Intel Corporation
Microprocessor Research Lab

August 22, 2000

(Java is a trademark of Sun Microsystems, Inc.)

8/22/00 Java on IA64Page 2R®

Outline

� Design overview
� GC
� Stack unwinding
� JIT

This is a 4-hour tutorial compressed to 1 hour.

8/22/00 Java on IA64Page 3R®

More information (IA32)

� Practicing JUDO: Java Under Dynamic
Optimizations, Cierniak, Lueh and Stichnoth. PLDI
2000.

� Support for Garbage Collection at Every Instruction
in a Java Compiler, Stichnoth, Lueh, and Cierniak.
PLDI 1999

� Fast, Effective Code Generation in a Just-In-Time
Java Compiler, Adl-Tabatabai, Cierniak, Lueh,
Parikh and Stichnoth. PLDI 1998

8/22/00 Java on IA64Page 4R®

More information (IA64)

� Cycles to Recycle: Garbage Collection on the IA-64,
Hudson, Moss, Subramoney and Washburn. ISMM
2000.

� The IA-64 Architecture Software Developer’s
Manual.

� Documentation is also available for download on the
web at:
http://developer.intel.com/design/ia-64

8/22/00 Java on IA64Page 5R®

Virtual Machine framework

JIT 1 JIT 2 GC Native
libs

Core VM

8/22/00 Java on IA64Page 6R®

Multiple JIT Support

� Two JIT compilers:
➤ Fast code generator
➤ Optimizing compiler

� Used to perform dynamic recompilation
� More about it later

8/22/00 Java on IA64Page 7R®

Allocation

� Rule 1 - Common case must be fast
� Rule 2 - Counting instructions is not enough
� Rule 3 - see Rule 1

8/22/00 Java on IA64Page 8R®

Allocation

� Strategy
➤ Minimal restrictions imposed on JIT

� Do not require gc safety at every allocation point!
➤ Fold all checks into single overflow check

� (Fake) object size > nursery size

� Tactics
➤ Overflow on fast case returns NULL
➤ Caller checks and advances to GC safe point

8/22/00 Java on IA64Page 9R®

Slow Path Allocation

� Allocation succeeds (or throws exception)
� Speed secondary
� Class loader fakes object size
� Deals with Fixed Object Space
� Deals with finalization
� Deals with weak/soft/phantom refs
� Not discussed further

8/22/00 Java on IA64Page 10R®

General Approach

� Per CPU allocation area
➤ better than per thread since number of threads is not

bounded
� Assumes that every context switch will do a little

work. (Talk to OS guys.)
� Fast short code sequence is goal
� Allocation pointer in register

8/22/00 Java on IA64Page 11R®

;; swt and swf are predicate registers, always holding opposite values
;;;; swt means a task switch and resumption have happened
;;;; swt and swf are thread-local
;; ap is the allocation pointer
;; vt is the new object’s vtable pointer value
;; sz is the new object’s size in bytes
;; np receives the address of the new object
top:
(swf) mov np = ap ;; indicate address of new object
(swf) st8 [ap] = vt ;; store vtable pointer
(swf) add ap = ap, sz ;; bump allocation pointer
(swt) br retry ;; task switched, so retry whole sequence
....
retry:;; reset pred regs
cmp.eq swf, swt = r0, r0 ;; set swf true, swt false
br top ;; go retry

Allocation sequence

8/22/00 Java on IA64Page 12R®

;; st, sf, ap, vt, sz, and np are as before
;; lp is the limit pointer
top:
(swf) mov np = ap ;; indicate address of new object
(swf) st8 [ap] = vt ;; store vtable pointer
(swf) add ap = ap, sz ;; bump allocation pointer
(swf) cmp.le swf, swt = ap, lp ;; merge limit test result into swf, swt
(swt) br retry ;; task switched or past limit
....
retry:
cmp.eq swf, swt = r0, r0 ;; set swf true, swt false
cmp.le 0, pgt = ap, lp ;; redo limit test to discriminate
(pgt) br.call rp = gc ;; call gc
br top ;; go retry

With limit check

8/22/00 Java on IA64Page 13R®

Clearing object

� Java requires objects to start life type safe
� Zero is a legal value for all types
� So gc_malloc returns only cleared objects
� Some OS initially clear space

8/22/00 Java on IA64Page 14R®

When to clear an object

� After GC evacuates an object
➤ GC latency is increased

� When an object is allocated
➤ Cost of setting up loop dominates clearing cost

� When a nursery is made available - this wins
➤ Allows clearing of large contiguous space
➤ Remember memory fence after clearing
➤ MTRT and Jess see 2% improvement

8/22/00 Java on IA64Page 15R®

Write Barriers

� Generational GCs focus on small area of heap
� Uses stack maps for stacks

➤ JVM tracks globals
➤ Class structures in fixed object space

� Track all slots holding pointers to focus area
➤ Scanning entire heap too expensive

� Write barrier remembers where pointers are

8/22/00 Java on IA64Page 16R®

Card Marking

� 1 register for card table base, a right shift of the object
base, plus an byte store marks card

� GC scans marked cards
� Summarize pointers found into rem set

➤ Or re-mark card with relevant train/car id
� Clear card
� If card table is sparse, scanning cost is reduced by

scanning 8 bytes at once

8/22/00 Java on IA64Page 17R®

;; o holds a reference to the object modified
;; f is the offset of the field being updated
;; p is the reference being stored
;; ct holds the virtual base of the card table:
;;;; the location that would hold the mark for the card at address 0
add rx = o, f ;; form field address
st8 [rx] = p ;; store the pointer
shr.u ry = o, k ;; form card index (k is a constant)
add ry = ct, ry ;; form address of card byte
st1 [ry] = GR0 ;; store the constant 0 in the entry

Card Mark Sequence

8/22/00 Java on IA64Page 18R®

Sequential Store Buffer

� 1 reserved register, a store and an increment
� Does not remove duplicates like cards
� Tag lower bits of pointer for consumer
� Use guard page or just check low bits and add link
� Example as in Trishul Chilimbi

➤ Monitor temporal locality of pointer reads
➤ Cluster objects based on temporal locality

8/22/00 Java on IA64Page 19R®

;; o holds a reference to the object modified
;; f is he offset of the field being updated
;; p is the reference being stored; m is a mask of k low-order ones
;;;; (it’s constant, but too big for an immediate)
;; s is the sequential store buffer pointer
add rx = o, f ;; form field address
andcm ry = p, m ;; round p down to start of block
st8 [rx] = p ;; store the pointer
cmp.lt px, py = o, ry ;; compare source and target addresses
(px) st8 [s] = rx, 8 ;; store rx to SSB, increment s by 8

SSB Sequence

8/22/00 Java on IA64Page 20R®

Publication Safety

� Given a newly allocated object how does one ensure
that the fields hold type safe values?

� Solution 1 - only allocate in zeroed areas
➤ But then we have a null vtable

� Solution 2 - publish using a st.rel
➤ ld.acqs are not needed since the st.rel will ensure initial

field value is globally visible prior to object publication

8/22/00 Java on IA64Page 21R®

;; Thread T1 ;; Thread T2
;; v has the vtable value ;; g points to the global
;; p has the object address ;; p gets the object address
;; g points to the global ;; v gets the vtable value
st8 [p] = v ld8.acq p = [g]
st8.rel [g] = p ld8 v = [p]

.acq not needed

Publication Safety

8/22/00 Java on IA64Page 22R®

Stack Unwinding

� Performed completely in SW
� Advantage:

➤ The same code works for NT/VC++ and for
Linux/gcc

� Disadvantage:
➤ Cannot reuse native tools (e.g., debuggers)

8/22/00 Java on IA64Page 23R®

Stack Unwinding: Issues

� Multiple JIT�s
� Native Java methods
� Runtime support functions

8/22/00 Java on IA64Page 24R®

Unwinding: Multiple JIT’s

� Stack frame layout is only known to the JIT

virtual void

unwind_stack_frame(Method_Handle method,

Frame_Context *context);

8/22/00 Java on IA64Page 25R®

Unwinding: Multiple JIT’s

JIT_Specific_Info * jit_info;

jit_info = methods.find(ip);

...

JIT *jit = jit_info->get_jit();

Method *method = jit_info->get_method();

jit->unwind_stack_frame(method, context);

8/22/00 Java on IA64Page 26R®

Stack Unwinding: Native Methods

� We assume no cooperation from the compiler used
for native methods (�C�).

� ar.bsp is saved on every transfer from Java to C.

8/22/00 Java on IA64Page 27R®

(Inputs)

0

31
32

127

Locals
Outputs

Unallocated

Size of frame (sof)

sofsolCurrent Frame Marker (CFM)

Size of locals (sol)

General Registers & Stack Frame

Stacked

Static

8/22/00 Java on IA64Page 28R®

GR Stack Frame: Example

32

46

loc

out
52

21

sof

14

sol

CFM

??PFM

Size of frame (sof)

Size of locals (sol)*

Virtual register numbers

*Includes inputs

in

8/22/00 Java on IA64Page 29R®

GR Stack Frame: Call

32

46

loc

out
52

out
32

38

call

21

sof

14

sol

CFM

??PFM

7

sof

0

sol

2114

in

Pr
oc

ed
ur

e
A

Pr
oc

ed
ur

e
B Note renaming: r52, r38 are same physical register

PFM is local state

8/22/00 Java on IA64Page 30R®

32

46

loc

out
52

out
32

38

call

32

48

loc

out
50

GR Stack Frame: Allocate

21

sof

14

sol

CFM

??PFM

7

sof

0

sol

2114

19

sof

16

sol

2114

alloc

in

in

Pr
oc

ed
ur

e
A

Pr
oc

ed
ur

e
B

8/22/00 Java on IA64Page 31R®

GR Stack Frame: Return

32

46

loc

out
52

out
32

38

call

32

48

loc

out
50

21

sof

14

sol

CFM

??PFM

7

sof

0

sol

2114

19

sof

16

sol

2114

21

sof

14

sol

2114

alloc
32

46

loc

out
52

return

in

in in

Pr
oc

ed
ur

e
A

Pr
oc

ed
ur

e
B Note renaming!

8/22/00 Java on IA64Page 32R®

Register Stack Engine / Backing Store

� Register stack: finite physical depth but infinite
virtual depth
➤ Number of physical registers is ≥ 96

� �Overflow�
➤ When the processor runs out of physical registers

(during an alloc), the RSE automatically spills
registers to memory (backing store)

� �Underflow�
➤ When a procedure whose register stack was spilled to

backing store returns (br.ret), the RSE restores the
registers from the backing store

R®

Register Stack Engine: Backing Store

Unallocated

Procedure A

Procedure B

Procedure C

Unallocated

Procedure A

Procedure A
Ancestors

sol B

sol A

sof C

Call

Return

BSP

BSPSTORE

Active frame

RSE load/stores

Higher register & memory addresses

Procedure B
RSE load/stores

Procedure A calls Procedure B calls Procedure C

Physical Stacked Registers Backing Store

RSE traffic need only occur
on overflow & underflow

R®

Register Stack Engine: NaT bits

� RSE responsible for saving
NaT bits
➤ Spilled/filled in groups of 63
➤ Every 63 register

saves/restores
➤ NaTs are collected in RNaT

register
� When BSPStore{8:3} ==
111111
➤ RNaT register is stored

NaT Collection

NaT Collection

63 Stacked,
General Registers

63 Stacked,
General Registers

Memory

8 Bytes

BSPStore{8:3}
111111

111110

000000

111111

111110

000000

8/22/00 Java on IA64Page 35R®

Native Methods Wrappers

…

mov r46=r14

br.call b0=b6

mov r34=r8

…

alloc r40 = ….

…

mov r51=r32

br.call b0=b6

…

br.ret b0

alloc r40 = ….

…

br.ret b0

Generated
by JIT Wrapper

Native
function

8/22/00 Java on IA64Page 36R®

Native Wrapper Outline

� Create JNI handles
� Save unwind info
� Enable GC
� Call the function
� Disable GC
� Restore unwind info
� Unhandle the result (optional)

8/22/00 Java on IA64Page 37R®

Dynamic Recompilation

� Translate bytecodes to native code at run time
➤ Compilation time part of performance equation
➤ Full global optimizations not always justified

� Adaptively and selectively recompile

8/22/00 Java on IA64Page 38R®

Java recompilation strategies

� Lightweight optimization
➤ Fast compilation time
➤ Reasonable good performance

� Heavyweight optimization
➤ Slow compilation time
➤ Good performance

� 90-10 rule
➤ 90% methods: lightweight
➤ 10% methods: heavyweight

8/22/00 Java on IA64Page 39R®

Structure of dynamic recompilation

Unoptimized
Native

Unoptimized
Native

Profiling Data
Representation

CountersCounters

BytecodeBytecode

Fast Code
Generator

Fast Code
Generator

Optimized
Native

Optimized
Native

Optimizing
Compiler

Optimizing
Compiler

8/22/00 Java on IA64Page 40R®

Fast code generation vs. interpreter
� When to recompile

➤ Interpreter
� reduce compilation time
� degrade performance dramatically
� recompilation window is narrow

➤ Fast code generation
� increase more compilation time
� improve performance dramatically
� recompilation window is wider

� Debugging
➤ Debugging optimized code is hard
➤ Running on interpreter mode may not be acceptable

8/22/00 Java on IA64Page 41R®

Fast code generator

� Fast code generation
➤ 2 linear-time passes over bytecodes

� No explicit IR
➤ No control flow graph or inst. list

� Fast global register allocation
➤ No interference graph
➤ Direct mapping

� GC support

8/22/00 Java on IA64Page 42R®

Structure of fast code generator

PrepassPrepass

Global register allocationGlobal register allocation

Code generation &
Code emission
Code generation &
Code emission

Code and data patchingCode and data patching

Inserting
profiling code

8/22/00 Java on IA64Page 43R®

Prepass

� Basic block boundaries
� Static reference counts of local variables
� Max number of output parameters
� Stack depths at the end of blocks
� Is leaf method
� Estimated iA64 code size of each block

➤ Predication

8/22/00 Java on IA64Page 44R®

Allocate registers for local variables

� Assign registers to variables with highest static
reference counts

� May not want to assign registers to all variables
➤ Reduce number of local

� Non-leaf methods
➤ Assign unused in and local (stack) registers

� Leaf-methods
➤ Assign scratch (caller-save) and local registers

8/22/00 Java on IA64Page 45R®

Allocate registers to stack operands

� Register pool
➤ Scratch, local and preserved
➤ Explicitly manage registers

� round-robin fashion
� get_reg() and free_reg(r)

� Short life span (not across calls)
➤ Use scratch registers

� Operands left on stack at the end of BB
➤ Move to home locations

� Operands across call sites
➤ Re-shuffle scratch registers at call sites

8/22/00 Java on IA64Page 46R®

Code generation

� Selection, compaction and emission
➤ All three are done in one pass

aload_0
getfield #15
aload_1
iconst_0
iaload
iadd
iload_3
isub

. . .

aload_0
getfield #19

aload_0
getfield #15
aload_1
iconst_0
iaload
iadd
iload_3
isub

. . .

aload_0
getfield #19

bytecode

curr_bc

code
selection

I1: . .
I2: . .
I3: . .
I4: . .
. . .

code
compaction

I1 I2

I3

I4 I5

code
emission

0100110101000
0111001100101
1000100101000
0100101000100

8/22/00 Java on IA64Page 47R®

Code selection

� For each bytecode, select a sequence of iA64 insts
� Light-weight optimizations

➤ Lazy code selection
� e.g., fold immediate operands

➤ Common subexpression elimination
➤ Array bounds checking elimination
➤ Load-after-store elimination
➤ Strength reduction

8/22/00 Java on IA64Page 48R®

Code compaction

� Instruction buffer
➤ Number of bundles (parameter)
➤ Instructions that are not yet emitted

� Determine templates lazily
� Exchange instructions to fit into templates

bndl_0

bndl_1

bndl_3

Instruction Buffer

I1: . . .
I2: . . .
I3: . . .

I1

I2

I3

01001000010011100

Code
Emission

bndl_0

bndl_1

bndl_3

bndl_2

bndl_2

8/22/00 Java on IA64Page 49R®

GC support
� Goals

➤ GC safe at every native instruction
➤ Simple

� Live references
➤ Local variables

� run-time bit vector
� schedule set/reset with astore/istore in the same bundle

➤ Stack operands
� recompile
� track live references by code compactor

� Cache root set to avoid unnecessary recompilation

8/22/00 Java on IA64Page 50R®

Structure of optimizing compiler

PrepassPrepass

InliningInlining

Global optimizationGlobal optimization

Global register alloc.Global register alloc.

Code expansion &
Local register alloc.
Code expansion &
Local register alloc.

Code schedulingCode scheduling

Code emissionCode emission

Code patchingCode patching

IR constructionIR construction

TemplatizationTemplatization

GC supportGC support

8/22/00 Java on IA64Page 51R®

Global optimizations

� Bounds checking elimination
� Propagate exception information

➤ Prove exceptions are not thrown
➤ Improve code scheduling quality

� Lazy exception
➤ Eliminate unnecessary creation of exception objects
➤ Speed up exception throwing

� If-conversion
� Escape analysis

8/22/00 Java on IA64Page 52R®

Code scheduling

� Dependence graph
➤ Types: field, array, static, vtable, length, spill, reg, �

� List scheduling
➤ Cycle-by-cycle
➤ Two I, two M, two F, or three B
➤ Max 6 instructions per cycle
➤ Latency

� Templatization
➤ Bundle instructions and decide template types
➤ Combine instructions from different cycles using

mid-bundle stop bits

8/22/00 Java on IA64Page 53R®

GC support
� Goal

➤ GC safe at every native instruction
� High-level

➤ Take snapshot at beginning of BB
➤ Encode delta of each instruction
➤ Coalesce contiguous instructions with no delta

� Low-level
➤ Use Huffman encoding
➤ Based on offline analysis of statistics
➤ Dedicate a few registers for object references

� Predication
➤ Check predicate reg�s value during GC

