Java™ on the 1A64 Architecture

Michal Cierniak

Intel Corporation

Microprocessor Research Lab
August 22, 2000

(Java is a trademark of Sun Microsystems, Inc.)

Outline

* Design overview
* GC
* Stack unwinding
° JIT

This 1s a 4-hour tutorial compressed to 1 hour.

Page 2 Java on [A64

More information (1A32)

* Practicing JUDO: Java Under Dynamic
Optimizations, Cierniak, Lueh and Stichnoth. PLDI

2000.

e Support for Garbage Collection at Every Instruction
In a Java Compiler, Stichnoth, Lueh, and Cierniak.
PLDI 1999

* Fast, Effective Code Generation in a Just-In-Time
Java Compiler, Adl-Tabatabai, Cierniak, Lueh,
Parikh and Stichnoth. PLDI 1998

Intel = 8/22/00 Page 3 Java on [A64

More information (1A64)

* Cyclesto Recycle: Garbage Collection on the |A-64,
Hudson, Moss, Subramoney and Washburn. ISMM
2000.

* The |A-64 Architecture Software Developer’s
Manual.

* Documentation 1s also available for download on the
web at:
http://developer.intel.com/design/i1a-64

Intel i 8/22/00 Page 4 Java on IA64

Virtual Machine framework

nti | [Tz | | go | |[Native
libs

LT

Core VM

Page 5 Java on [A64

Multiple JIT Support

* Two JIT compilers:

0 Fast code generator

0 Optimizing compiler
* Used to perform dynamic recompilation
° More about it later

Intel = 8/22/00 Page 6 Java on [A64

Allocation

* Rule 1 - Common case must be fast

* Rule 2 - Counting instructions is not enough
® Rule 3 - see Rule 1

Intel = 8/22/00 Page 7 Java on [A64

Allocation

* Strategy

0 Minimal restrictions imposed on JIT
* Do not require gc safety at every allocation point!

0 Fold all checks 1nto single overflow check
* (Fake) object size > nursery size
* Tactics
0 Overflow on fast case returns NULL
0 Caller checks and advances to GC safe point

= 8/22/00 Page 8 Java on [A64

Slow Path Allocation

* Allocation succeeds (or throws exception)
* Speed secondary

* (Class loader fakes object size

* Deals with Fixed Object Space

* Deals with finalization

* Deals with weak/soft/phantom refs

* Not discussed further

Intel = 8/22/00 Page 9 Java on [A64

General Approach

* Per CPU allocation area

0 better than per thread since number of threads 1s not
bounded

° Assumes that every context switch will do a little
work. (Talk to OS guys.)

* Fast short code sequence 1s goal
* Allocation pointer in register

Intel = 8/22/00 Page 10 Java on [A64

Allocation sequence

;; sSwt and swf are predicate registers, always holding opposite values
;.1 SWt means a task switch and resumption have happened

;.1 sSwt and swf are thread-local

;; ap is the allocation pointer

;; vt is the new object’s vtable pointer value

;; Sz Is the new object’s size in bytes

;; Np receives the address of the new object

top:
(swf) mov np = ap ;; Indicate address of new object

(swf) st8 [ap] = vt ;; Store vtable pointer

(swf) add ap = ap, sz ;; bump allocation pointer

(swt) br retry ;; task switched, so retry whole sequence

retry:;; reset pred regs
cmp.eq swif, swt = r0, r0 ;; set swf true, swt false

. br top ;; go retry
InteL 8/22/00

Page 11 Java on [A64

With limit check

;» St, sf, ap, vt, sz, and np are as before
;» Ip is the limit pointer

top:
(swf) mov np = ap ;; Indicate address of new object

(swf) st8 [ap] = vt ;; Store vtable pointer

(swf) add ap = ap, sz ;; bump allocation pointer

(swf) cmp.le swf, swt = ap, Ip ;; merge limit test result into swf, swt
(swt) br retry ;; task switched or past limit

retry:

cmp.eq swf, swt =0, rO ;; set swf true, swt false

cmp.le O, pgt=ap, Ip ;; redo limit test to discriminate

(pgt) br.call rp = gc ;; call gc

br top ;; go retry

i 8/22/00 Page 12 Java on [A64

Clearing object

* Javarequires objects to start life type safe
* Zero 1s a legal value for all types

* So gc malloc returns only cleared objects
* Some OS 1nitially clear space

Intel = 8/22/00 Page 13 Java on [A64

When to clear an object

* After GC evacuates an object

0 GC latency 1s increased
°* When an object 1s allocated

0 Cost of setting up loop dominates clearing cost
°* When a nursery is made available - this wins
0 Allows clearing of large contiguous space
0 Remember memory fence after clearing

0 MTRT and Jess see 2% improvement

Page 14 Java on [A64

Write Barriers

* Generational GCs focus on small area of heap

* Uses stack maps for stacks
0 JVM tracks globals
0 Class structures in fixed object space

* Track all slots holding pointers to focus area
0 Scanning entire heap too expensive

* Write barrier remembers where pointers are

Intel = 8/22/00 Page 15 Java on [A64

Card Marking

1 register for card table base, a right shift of the object
base, plus an byte store marks card

GC scans marked cards

Summarize pointers found into rem set
0 Or re-mark card with relevant train/car 1d

Clear card

If card table 1s sparse, scanning cost 1s reduced by
scanning 8 bytes at once

Intel = 8/22/00 Page 16 Java on [A64

Card Mark Seguence

;; 0 holds a reference to the object modified

;; T1s the offset of the field being updated

;» p is the reference being stored

;; ct holds the virtual base of the card table:

.1, the location that would hold the mark for the card at address O
addrx=o,f ;; form field address

st8 [rX] =p ;; store the pointer

shrury =0, k ;; form card index (k is a constant)

add ry =ct, ry ;; form address of card byte

stl [ry] = GRO ;; store the constant O in the entry

= 8/22/00 Page 17 Java on [A64

Sequential Store Buffer

1 reserved register, a store and an increment
Does not remove duplicates like cards

Tag lower bits of pointer for consumer

Use guard page or just check low bits and add link

Example as in Trishul Chilimbi
0 Monitor temporal locality of pointer reads
0 Cluster objects based on temporal locality

Page 18

Java on [A64

SSB Sequence

;; 0 holds a reference to the object modified

;; T1s he offset of the field being updated

;; p is the reference being stored; m is a mask of k low-order ones
..., (It's constant, but too big for an immediate)

;; S IS the sequential store buffer pointer

addrx=o,f ;; form field address

andcmry =p, m ;; round p down to start of block

st8 [rX] =p ;; store the pointer

cmp.lt px, py = o, ry ;; compare source and target addresses
(px) st8 [s] =rx, 8 ;; store rx to SSB, increment s by 8

= 8/22/00 Page 19 Java on [A64

Publication Safety

* Given a newly allocated object how does one ensure
that the fields hold type safe values?

* Solution 1 - only allocate in zeroed areas
0 But then we have a null vtable
* Solution 2 - publish using a st.rel

0 ld.acgs are not needed since the st.rel will ensure 1nitial
field value 1s globally visible prior to object publication

Page 20 Java on [A64

Publication Safety

. Thread T1

;» V has the vtable value

;; p has the object address
;» g points to the global

st8 [p] =V

st8.rel [g]=p

.acq not needed

Page 21

;; Thread T2

;» g points to the global

;; P gets the object address
;; vV gets the vtable value

Id8.acq p = [g]
1d8 v = [p]

Java on [A64

Stack Unwinding

* Performed completely in SW

* Advantage:

0 The same code works for NT/VC++ and for
Linux/gcc

* Disadvantage:
0 Cannot reuse native tools (e.g., debuggers)

Page 22 Java on [A64

Stack Unwinding: Issues

* Multiple JIT’s
* Native Java methods

* Runtime support functions

Intel = 8/22/00 Page 23 Java on [A64

Unwinding: Multiple JIT’s

* Stack frame layout is only known to the JIT

virtual void
unw nd_stack frame(Method Handl e nethod,
Frame_ Cont ext *context);

Intel = 8/22/00 Page 24 Java on [A64

Unwinding: Multiple JIT’s
JIT Specific Info * jit_info;
jit_info = nmethods.find(ip);

JIT *jit = jit_info->get jit();
Met hod *method = jit _info->get nethod();

jit->unw nd_stack frame(nethod, context);

= 8/22/00 Page 25 Java on [A64

Stack Unwinding: Native Methods

* We assume no cooperation from the compiler used
for native methods (“C”).

° ar.bsp is saved on every transfer from Java to C.

Intel = 8/22/00 Page 26 Java on [A64

General Registers & Stack Frame

A 127
Unallocated
Stacked Outputs | Size of frame (sof)
Locals _
Size of locals (sol)
v 30 (Inputs)
A 31
Static
v 0

Current Frame Marker (CFM) sol sof

Page 27 Java on [A64

GR Stack Frame: Example

lﬁ Virtual register numbers

A Size of frame (sof)

A Size of locals (sol)*

Yy
sol sof
1 [

M | 14 21

? ? :
M ' ' *Includes inputs

= 8/22/00 Page 28 Java on [A64

GR Stack Frame: Call

l* Note renaming: r52, r38 are same physical register

Procedure B

50 [38
out out

sol sof
1 [
0 7

e
14 21 | <— PFMis local state

Page 29 Java on [A64

GR Stack Frame: Allocate

Procedure B

—
alloc
sof sol sof
0 e
7 16 19
] 0
21 14 21

Page 30 Java on [A64

GR Stack Frame: Return

S0
0 8 out
o 4 — Note renaming!
§ loc
§ s2 [] 38]
o out out in
_____________ 32
sol sof sol sof sol sof
T T T
0 7 16 19 14 21
T T —/— T
14 21 14 21 14 21

Page 31 Java on [A64

Register Stack Engine / Backing Store

* Register stack: finite physical depth but infinite
virtual depth

0 Number of physical registers 1s = 96
* “Overflow”

0 When the processor runs out of physical registers
(during an alloc), the RSE automatically spills
registers to memory (backing store)

e “Underflow”

0 When a procedure whose register stack was spilled to
backing store returns (br.ret), the RSE restores the
registers from the backing store

Intel = 8/22/00 Page 32 Java on [A64

Register Stack Engine: Backing Store

Physical Stacked Registers Backing Store
. Call A '
Unallocated
A
sof C Procedure C | <=— Active frame BSP
Yy . <
A
sol B RSE load/stores
Procedure B Procedure B
BSPSTORE
X _____________________________________ <
RSE load/stores
sol A Procedure A Procedure A
= Unallocated
' Return y, . Procedure A
RSE traffic need only occur W~

on overflow & underflow

Procedure A calls Procedure B calls Procedure C Higher register & memory addresses

Register Stack Engine: NaT bits

Memory
. . BSPStore{8:3}
°* RSE re.:sponmble for saving 111111 | NaT Coflection
0 Spilled/filled 1n groups of 63 63 Stacked.
[EVCI'y 63 register General Registers
saves/restores 000000
0 NaTs are collected in RNaT 111111 | NaT Collection
register 111110
°* When BSPStore{8:3} == 63 Stacked,
1 1 1 1 1 1 General Registers
0 RNaT register 1s stored 000000
<

8 Bytes

Native Methods Wrappers

Generated Native
by JIT Wrapper function
allocr40=....
mov r46=r 14

br .call b0=b6 mov r51=r32 /valloc r40=....
mov r34=r8 br.call bO=b6
— br.ret b0

br.ret bO

Sl 8/22/00 Page 35 Java on [A64

Native Wrapper Outline

® (Create JNI handles

* Save unwind info

* Enable GC

* (all the function

* Disable GC

* Restore unwind info

* Unhandle the result (optional)

Intel = 8/22/00 Page 36 Java on [A64

Dynamic Recompilation

* Translate bytecodes to native code at run time
1 Compilation time part of performance equation

1 Full global optimizations not always justified

* Adaptively and selectively recompile

Intel = 8/22/00 Page 37 Java on [A64

Java recompilation strategies

* Lightweight optimization

0 Fast compilation time

1 Reasonable good performance
* Heavyweight optimization

0 Slow compilation time

0 Good performance
°* 90-10 rule

1 90% methods: lightweight

0 10% methods: heavyweight

Intel = 8/22/00 Page 38 Java on [A64

Structure of dynamic recompilation

Fast Code
Generator

v

Unoptimized
Native

i 8/22/00

Bytecode

\

—p| Counters

Profiling Data

Optimizing
Compiler

Representation

Page 39

Y

Optimized
Native

Java on [A64

Fast code generation vs. interpreter

* When to recompile

0 Interpreter
* reduce compilation time
* degrade performance dramatically
* recompilation window 1s narrow

0 Fast code generation
® Increase more compilation time
* improve performance dramatically
* recompilation window 1s wider

* Debugging
0 Debugging optimized code 1s hard
0 Running on interpreter mode may not be acceptable

= 8/22/00 Page 40 Java on [A64

Fast code generator

* Fast code generation
0 2 linear-time passes over bytecodes
* No explicit IR
7 No control flow graph or inst. list
* Fast global register allocation
0 No interference graph
0 Direct mapping
* GC support

Intel = 8/22/00 Page 41 Java on [A64

Structure of fast code generator

Global register allocation

. Inserting
Code generation & [isiling code
Code emission

Code and data patching

Page 42 Java on [A64

Prepass

* Basic block boundaries

* Static reference counts of local variables
°* Max number of output parameters

* Stack depths at the end of blocks

* Is leaf method

* Estimated 1A64 code size of each block

0 Predication

Intel i 8/22/00 Page 43 Java on IA64

Allocate registers for local variables

* Assign registers to variables with highest static
reference counts

* May not want to assign registers to all variables
1 Reduce number of | ocal

* Non-leaf methods
0 Assignunused | n and | ocal (stack) registers

* Leaf-methods
0 Assign scratch (caller-save) and | ocal registers

Intel i 8/22/00 Page 44 Java on IA64

Allocate registers to stack operands

* Register pool
0 Scratch, local and preserved
0 Explicitly manage registers
* round-robin fashion
* get reg() and free reg(r)

* Short life span (not across calls)
0 Use scratch registers

® Operands left on stack at the end of BB
0 Move to home locations

* Operands across call sites
0 Re-shuffle scratch registers at call sites

Intel i 8/22/00 Page 45 Java on IA64

Code generation

* Selection, compaction and emission
0 All three are done in one pass

byt ecode

al oad_0

getfield #15 code code code

al oad_1 i ; : :

?const__o sel ecti on COITpaCtI on em SSiI on
curr_bc %’::hgad N ﬁ 11 | 12 —————> 0100110101000

I8 E oicoLon:

oub T 4 o 0100101000100

b I S
al oad_0
getfield #19

el 2/22/00 Page 46 Java on [A64

Code selection

* For each bytecode, select a sequence of 1A64 1nsts
* Light-weight optimizations
0 Lazy code selection
* ¢.g., fold immediate operands
0 Common subexpression elimination
0 Array bounds checking elimination
0 Load-after-store elimination
0 Strength reduction

Page 47 Java on [A64

Code compaction

Instruction buffer
0 Number of bundles (parameter)
0 Instructions that are not yet emitted

* Determine templates lazily
* Exchange instructions to fit into templates

I nstruction Buffer Code

Em ssi on

1 bndl _0 = 01001000010011100
:gf o bndl _1 bndl 0
bndl 2 bndl 1
bndl _3 bndl 2
bndl 3

el 8/22/00 Java on [A64

GC support

* Goals
0 GC safe at every native instruction
0 Simple

* Live references

0 Local variables

* run-time bit vector

* schedule set/reset with astore/istore in the same bundle
0 Stack operands

* recompile

* track live references by code compactor

* (Cache root set to avoid unnecessary recompilation

= 8/22/00 Page 49 Java on [A64

Structure of optimizing compiler

4 v
Prepass Global register alloc.

! !

Code scheduling

v

IR construction

l Templatization
Inlining i
l GC support
Global optimization L
l Code emission

Code expansion &
Local register alloc.

Code patching

Page56 Java on [A64

Global optimizations

* Bounds checking elimination

* Propagate exception information
0 Prove exceptions are not thrown
0 Improve code scheduling quality
* Lazy exception
0 Eliminate unnecessary creation of exception objects
0 Speed up exception throwing

* [f-conversion

* Escape analysis

Intel = 8/22/00 Page 51 Java on [A64

Code scheduling

* Dependence graph

0 Types: field, array, static, vtable, length, spill, reg, ...
* List scheduling

0 Cycle-by-cycle

0 Two I, two M, two F, or three B

0 Max 6 1nstructions per cycle

0 Latency
* Templatization

0 Bundle instructions and decide template types

0 Combine instructions from different cycles using
mid-bundle stop bits

Intel = 8/22/00 Page 52 Java on [A64

GC support
* Goal

0 GC safe at every native instruction
* High-level
0 Take snapshot at beginning of BB
0 Encode delta of each instruction
0 Coalesce contiguous instructions with no delta

* Low-level
0 Use Huffman encoding
0 Based on offline analysis of statistics

0 Dedicate a few registers for object references
* Predication

0 Check predicate reg’s value during GC

Intel = 8/22/00 Page 53 Java on [A64

