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Abstract—In this paper, we investigate new methods for
improving the accuracy of outdoor temperature prediction
using small, low-cost, single board computers (SBCs) used in
Internet-of-Things (IoT) deployments. Predicting temperature
without dedicated temperature sensors frees up space on these
systems for other sensors and reduces the cost of microclimate
sensing (e.g. as used in IoT-based, agricultural applications).
Our approach uses multiple linear regression and combines
measurements of on-board processor temperature from multi-
ple SBCs with remote weather stations. In addition, it accounts
for SBC computational load through the use of smoothing
techniques that filter out noise in the measurement time series.
We empirically evaluate our approach using multiple IoT
deployment scenarios, compare it against prior work, and find
that it reduces prediction error significantly for these scenarios.
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I. INTRODUCTION

The Internet of Things (IoT) is quickly expanding to in-

clude every “thing” from simple Internet-connected objects,

to collections of intelligent devices capable of everything

from the acquisition, processing, and analysis of data, to

data-driven actuation, automation, and control. Since these

devices are located “in the wild”, they are typically small,

resource-constrained and battery powered. At the same time,

low latency requirements of many applications mean that

processing and the analysis must be performed near where

data is collected. This tension requires new techniques that

equip IoT devices with more capabilities.

One way to enable IoT devices to do more is to use

integrated sensors to estimate the measurements of other

sensors, a technique that we call sensor synthesis. Since the

number of sensors per device is generally bounded by design

constraints (e.g. space or power limitations), sensor synthesis

makes it possible to free up resources in IoT devices for

other sensors, particularly those that are less amenable to

synthesis, and to reduce the monetary cost of sensing.

Since sensor synthesis is based on computed estimates

rather than actual measurement, it also introduces the pos-

sibility of additional error beyond measurement error. In

this paper, we show how the overall error (measurement

error convolved with error propagation due to composition)

can be reduced compared to prior work. The authors of [1]

present a technique for estimating outdoor temperature from

CPU temperature for IoT applications in agriculture. They

use a simple regression technique to “synthesize” (in our

parlance) and lower the cost of microclimate temperature

monitoring on farms. They estimate outdoor the temperature

from the processor temperature sensor built into board com-

puters (SBCs), e.g Raspberry Pi devices [2]. This past work

relies on data cleaning (both pre and post regression) that

employs computationally expensive methodologies that must

be performed on full-featured resources (e.g. in a cloud).

In this paper, we examine how a larger ensemble of mea-

surements improves the accuracy of “synthetic” temperature

measurement (beyond the 1− 2◦ Fahrenheit errors reported

in [1]) while, at the same time, not requiring the use of

powerful computational resources. Specifically, we propose

new methods for estimating outdoor temperature from SBC

processor temperature.

Reducing the prediction error is not only academically

interesting, rather, precision has a direct impact on the cost

and efficiency of what has become known as precision

agriculture or precision farming. In precision agriculture,

farmers use technology to increase the efficiency of farming

techniques increasing crop yields and reducing costs. Having

more precise temperate data reduces the cost of frost pre-

vention (by avoiding the unnecessary use of frost mitigation

systems (e.g. fans)) and prevents excessive resource use

without negatively impacting crop production. Consequently,

we believe that our approach can contribute to improved

farming outcomes, enable water and energy savings, and

help reduce carbon emissions, by providing high-quality data

to data-driven, IoT-based agricultural applications.

Key to our approach is the combined use of processor

temperatures from multiple devices with outdoor tempera-

ture from high-quality, remote weather stations used to train

a multiple linear regression model. We use this model to

predict the future outdoor temperature at a particular device

location that is not part of the model. We also investigate

the efficacy of computationally simple smoothing techniques

(based on sliding window reductions) to reduce noise.

Moreover, we investigate how well our approach performs

when the processors on the devices experience load. Load

may affect processor temperature and thus negatively im-

pact the accuracy of our outdoor temperature estimates. To

address this, we develop techniques that successfully deal

with the perturbations caused by load variability, which is an
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important requirement to make our sensor synthesis practical

in the field (and which went uninvestigated in prior work).

Finally, to evaluate the practical effectiveness of our

approach, we deploy multiple Raspberry Pi Zero devices

in an agricultural setting where citrus trees are grown.

To compare the values of our synthesized sensors with

measured temperature values, we equip the devices with

temperature sensors, which we use to establish ground

truth. We evaluate different combinations of explanatory

variables1 with and without smoothing, and with and without

a computational load on the processor, as part of our multiple

linear regression models. Our results show that our approach

reduces mean absolute prediction error (MAE) over past

work and is robust to processor load. We next detail our

approach and its empirical evaluation.

II. PREDICTING OUTDOOR TEMPERATURE FROM

PROCESSOR TEMPERATURE

The goal of our work is to reduce the prediction error

associated with sensor synthesis of outdoor temperature

from the processor temperature by single board computers

(SBCs), for IoT-based agricultural applications. Because

temperature is used to guide water use, greenhouse control,

and frost mitigation strategies, it is critical that we be able to

estimate temperature with very high accuracy. If we are able

to do so, we can reduce the number of sensors required and

lower the cost of sensing in agricultural settings, while using

temperature estimates to automate, actuate, and control farm

operations.

Past work [1] on this topic uses a combination of single

spectrum analysis [3] (to filter noise) and simple linear

regression (Ch.3 of [4]) to model the relationship between

the response variable (outdoor temperature) and the explana-

tory variable or predictor (the processor temperature). The

authors use the model to predict outdoor temperature using

different IoT devices and settings, and report a MAE of

1− 2◦F for the best case and 14◦F for the worst case.

Our approach applies multiple linear regression to reduce

this error. In particular, we consider processor temperature

measurements from multiple SBCs (deployed in other on-

farm microclimates), and outdoor temperature from a remote

weather station, as possible predictors. We use the term

processor and CPU interchangeably throughout.

A. Deployment and Datasets

We deploy four Raspberry Pi (RPi) Zero [2] devices

(named Pi1, Pi2, Pi3, and Pi4) equipped with temperature

1In linear regression, an explanatory variable is an independent variable
that is used to predict a value. In our context, the independent variables
are the CPU temperatures and weather station temperature (gathered from
a weather station that is in the area of the SBCs but not necessarily co-
located), which we use in the model to predict the synthesized sensor.
Explanatory variables are also called predictors in the literature. Since we
use multiple regression, we use more than one predictor in our synthesis.

sensors, at different locations (microclimates) in an agricul-

tural setting (citrus trees). We place a pair of RPis within 3

feet of each other, in two different trees, spaced 10 feet apart.

Pi1 and Pi2 monitor tree #1 and Pi3 and Pi4 monitor tree

#2. Each device is housed in an inexpensive plastic enclosure

and has an on-board processor temperature sensor that is part

of its hardware/software interface.

The devices read their processor temperature sensor value

every 5 minutes and can process, store, or wirelessly transmit

their measurements. We label the measurements CPU-1,

CPU-2, CPU-3, and CPU-4, for the CPUs of Pi1 through

Pi4, respectively. The RPi devices then transmit the measure-

ments to an on-farm computer for aggregation and analysis.

Each RPi is additionally equipped with an AM2302

DHT22 digital temperature and humidity sensor [5], which

we use to measure ground truth. The devices read and

transmit these values every 5 minutes (labeled DHT-1, DHT-

2, DHT-3, and DHT-4, with temperature value DHT-{i}
representing the temperature measured by the DHT22 sensor

attached to the Pi{i}) along with their CPU temperature

readings to a remote analysis system. We only use this

DHT22 data as ground truth (to compute prediction error),

i.e., it is not used as part of modeling or prediction.

Finally, we also consider the use of freely available,

high-end weather station data from the Internet weather

service WeatherUnderground [6]. The closest weather station

is 2640 feet (800m) away from our field deployment. We

collect the temperature reported by the WeatherUnderground

station closest to the deployment site every five minutes

(labeled WU-T). We align the measurements (CPU, DHT22,

and WU) using the nearest timestamp. If there is data

dropout, i.e, if one of the three temperature values is missing,

we skip all measurements for that five-minute interval.

B. Linear Regression Models

We model the outdoor temperature that surrounds a single

RPi, using one or more predictors. Predictors can include

the CPU temperature of RPi itself, the CPU temperature of

neighboring RPis, and the outdoor temperature reported by

a high-quality, remote weather station. We estimate model

parameters θ ∈ Rn by minimizing the residual sum of

squares:

RSS(θ) = (y −Xθ)T (y −Xθ)

where yi ∈ R, i ∈ {1, . . . , N} represents the ground truth

outdoor temperature and X ∈ RN×n represents the entire

training set, where each row xi ∈ Rn represents the values

that predictors take, and n is the number of predictors.

In Section III, we analyze models with testing windows

of size one hour to two weeks, which correspond to 12 and

4032 data points respectively. To measure error, we compute

the mean absolute error (MAE) (versus R-squared) because

of its direct utility in our IoT agriculture applications. In
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particular, we are interested in using the models to make

predictions and not in their explanatory power. We compute

MAE as the average absolute distance between estimated

temperatures and their corresponding ground truth values.

Finally, we evaluate the efficacy of smoothing the training

data prior to performing regression. We investigate rolling

mean, minimum, and median smoothing methods. In our

experiments, rolling mean produces the smallest error for

the datasets we investigate. We thus report results using only

this smoothing technique, for brevity. To implement rolling

mean, we use a window of size w and replace each element

with the mean value of the previous w elements including

the current element. More formally, we replace X in the

RSS equation with S where

sij =

{∑j
l=j−w

xil

w j >= w∑j
l=o

xil

j j < w

For all the experiments presented in Section III we use a

window size w = 6, which corresponds to 30 minutes.

III. EMPIRICAL EVALUATION

In our experiments, we use four RPi-based, single board

computers (SBCs) deployed outdoors as described in Sec-

tion II-A. We denote the processor temperature measure-

ments from each as CPU-1, CPU-2, CPU-3, CPU-4. We refer

to the outdoor temperature measurements from a nearby

WeatherUnderground stations as WU-T.

The goal of this evaluation is to illustrate the degree

to which it is possible to make an accurate prediction

of outdoor temperature based on a combination of CPU

temperature measurements and temperature measurements

from the WeatherUnderground station. In this study, “ground

truth” – the true outdoor temperature – comes from DHT22

sensors connected externally to each RPi. We do not use the

measurements from the DHT22 sensors in any prediction.

However, we use them to determine the mean absolute error

(MAE) between a prediction based on CPU and WU-T

values and ground truth as established by the DHT value

and thereby determine our prediction accuracy. Our RPis are

equipped with a 1GHz ARMv7 processor, 512MB memory,

32GB of SSD storage, and Wifi communication. All the

temperature readings in the experiments are reported in

degrees Fahrenheit.

A. Experimental Results

As a baseline, the upper triangle of the matrix in Ta-

ble I shows the average difference in temperature, pairwise,

between all pairs of temperature measurement traces we

include in our study. Thus, for example, the average differ-

ence in temperature between CPU-1 and DHT-1 (the DHT

connected directly to the RPi hosting CPU-1) is given in

row 2, column 6 of the table as 29.23◦F marked in bold

in the table (assuming the header and row labels are row

1 and column 1 respectively). This data spans 72 hours

beginning August 27th, 2018 and includes 864 temperature

measurements gathered at 5-minute intervals.
Overall, this baseline illustration shows that

• CPU and external DHT measurements differ by approx-

imately 30◦F ;

• average differences among DHT22 sensors (ground

truth) vary from 1◦F to 2.6◦F (despite their proximity);

and

• the differences in local temperature from the one re-

ported by the nearby weather station vary from 3.61◦F
to 4.31◦F .

Since the matrix of comparisons is symmetric, we only show

values in the upper triangle.
For frost prevention, the application is attempting to

determine when a small difference in temperature between

warm air aloft and colder air near the ground will result

in frost avoidance if the air is mixed. Specifically, large

wind machines move the warm air downwards to raise the

temperature enough near the ground to prevent frost from

forming. The temperature differences are on the order of

a few degrees Fahrenheit putting a premium on accurate

measurement. The baseline in Table I shows the errors that

result when each temperature sensor is used directly to

predict another. That is, it is the “worst case” prediction

in the sense that it includes no prediction mechanism – only

the raw data.
In order to provide a more accurate prediction of local

temperature based solely on the devices’ CPU tempera-

tures and the nearby weather station, we combine multiple

linear regression with smoothing. We hypothesize that the

relationship between outdoor temperature and nearby CPU

temperatures measured at the same time is linear. Further,

particularly if one or more of the CPUs are loaded, we use

one-dimensional smoothing of the CPU temperature series

to improve the “signal” from the CPU temperature sensor.
For the regressions, the explanatory variables are a subset

of CPU and a weather station temperature (CPU-1, CPU-

2, CPU-3, CPU-4, WU-T), as indicated at the top of each

results tables. Also, when smoothing is performed, we

indicate this in the table header.
In each case, we separate the experimental period under

study into a “training” period followed immediately by a

“testing” period. The regression coefficients are computed

only from data in the training period. We then use the

coefficients for the entire duration of the testing period.
Table II shows the MAE between the temperature that

our method predicts and the outdoor temperature for two

“ground truth” sensors – DHT-1 and DHT-3 – using two

separate subsets of explanatory variables for each. On the

lefthand side of the table, we show the MAE (both with and

without smoothing) when predicting DHT-1 using CPU-1

alone (a univariate regression) and also when using all CPUs

and WU-T (a multiple linear regression, denoted as All). On

the righthand side of the table, we show the same results for
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Device CPU-1 CPU-2 CPU-3 CPU-4 DHT-1 DHT-2 DHT-3 DHT-4 WU-T
CPU-1 0.00 4.78 7.15 3.20 29.23 30.12 30.78 29.84 32.26
CPU-2 - 0.00 4.07 3.40 24.51 25.37 26.06 25.12 27.55
CPU-3 - - 0.00 4.86 23.09 23.99 24.68 23.71 26.16
CPU-4 - - - 0.00 27.87 28.76 29.45 28.50 30.95
DHT-1 - - - - 0.00 2.07 2.60 2.15 3.61
DHT-2 - - - - - 0.00 1.32 1.23 4.31
DHT-3 - - - - - - 0.00 1.00 3.75
DHT-4 - - - - - - - 0.00 4.01
WU-T - - - - - - - - 0.00

Table I: Average absolute difference in temperature measurements among CPU and DHT22 sensors from four RPi’s (Pi1,

Pi2, Pi3, and Pi4) measured during the 72 hours period on August 25th, 26th, and 27th, 2018.

DHT-1 DHT-3
Original Smoothed Original Smoothed

TE CPU-1 All CPU-1 All CPU-3 All CPU-3 All
1 0.55 0.39 0.38 0.40 0.32 0.32 0.37 0.21
3 0.45 0.34 0.38 0.33 0.50 0.32 0.47 0.20
6 0.46 0.32 0.41 0.28 0.78 0.41 0.83 0.28
12 0.48 0.46 0.44 0.43 0.70 0.48 0.74 0.37
24 0.55 0.43 0.55 0.44 0.95 0.57 0.99 0.46
48 0.62 0.47 0.62 0.46 1.04 0.63 1.04 0.51
72 0.70 0.49 0.70 0.49 1.28 0.69 1.21 0.55
96 0.75 0.52 0.78 0.53 1.36 0.72 1.31 0.62
168 0.85 0.72 0.92 0.69 1.68 0.83 1.64 0.80
336 0.79 0.81 0.77 0.66 1.54 1.26 1.56 1.24

Table II: MAE for different sets of smoothed and non-

smoothed explanatory variables and lengths of Test Window

(TE) when predicting DHT-1 and DHT-3 temperature based

on a 72h train window and a test start day on Aug. 25th.

DHT-3 using CPU-3 in the univariate case. The experiment

(testing period) start date is Aug. 25th. For all experiments,

we use a training window of 72 hours (864 readings). As

mentioned in section II-B, we use MAE as our measure

of accuracy since it captures the “distance” between the

predicted temperature and the DHT-measured temperature.

It is this distance that concerns farmers who are deciding on

whether to trust their crops to the methodology.

Note that columns CPU-1 and CPU-3 under the Original

column show values corresponding to results based on the

method proposed in prior work [1]. Note also that we

highlight the minimum and maximum MAE in each column

using boldface type.

When predicting DHT-1, we see that errors from univari-

ate regression using only the CPU temperature from Pi1

(CPU-1) are in the range from 0.45◦F to 0.85◦F . MAE

for multiple linear regression with CPU temperatures from

all four devices and a nearby weather station data range

from 0.32◦F to 0.81◦F . When predicting DHT-3 from its

Pi3’s CPU sensor deployed in a similar manner we see MAE

values between 0.32◦F to 1.68◦F (listed in the left DHT-

3 sub-table as CPU-3 column). MAE decreases to a range

from 0.32◦F to 1.26◦F when we introduce multiple linear

regression (All column). Note that even though the setup is

similar (the same set of devices and outdoor conditions), the

readings are influenced by other environmental factors (tree

coverage, sun exposure, etc.).

We find that multiple linear regression which includes

CPU and nearby weather station temperatures as its pre-

dictors reduces prediction error. For DHT-1, the minimum

error decreases from 0.45◦F (minimum error in CPU-1
column) to 0.32◦F (minimum error in All column) while the

maximum error decreases from 0.85◦F (maximum error in

CPU-1 column) to 0.81◦F (maximum error in All column).

For DHT-3 the minimum error is 0.32◦F for both columns

(CPU-3 and All) while the maximum error decreases from

1.68◦F for CPU-3 to 1.26◦F for All. If we compare errors

per test window length, we note that for DHT-1 all errors

but for the 2 weeks test window were reduced (where

0.79 < 0.81) and for DHT-3 all errors but for 1h test window

were reduced (1h row had the same error of 0.32◦F in both

columns).

These results indicate that it is possible to make pre-

dictions with an average absolute error of under 1◦F that

require infrequent model refitting (e.g. once per several

days) using a combination of CPU and weather station data.

Indeed, the accuracy of DHT22 sensors is approximately

0.5◦F . Thus this methodology is approaching the limit of

accuracy that is possible using DHT22 sensors as ground

truth. Under 1◦F is acceptable for frost prevention where

current manual methods use measurements in the 3◦F range.

For the smoothing results in Table II, each value (except

the first 6) in the training period is replaced by the average of

the 6 preceding it in the period (i.e. we use a sliding window
average to smooth the data in the training period). When

comparing the All column from Original and Smoothed
columns, we see that the smoothing decreases the mean

absolute error (MAE) from the range of 0.32◦F to 0.81◦F
(original) to the range of 0.28◦F to 0.69◦F (smoothed).

Similarly, for DHT-3 prediction, the MAE goes from the

range 0.32◦F to 1.26◦F (original) to the range 0.20◦F to

1.24◦F (smoothed).

B. Computational Load: the Effect of Smoothing and Mul-
tiple Linear Regression

CPU temperatures are correlated with the CPU load [7],

[8] and while the CPUs are idle for much of the time in

our setting temporary computational load at the time of

temperature recording might influence the prediction error

(e.g. if the CPU were performing encryption as part of

transmitting the data over the network). We next analyze
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Figure 1: CPU-1 temperature under load and DHT-1 tem-

perature in ◦F .
DHT-1 DHT-3

Original Smoothed Original Smoothed
TE CPU-1 All CPU-1 All CPU-3 All CPU-3 All
1 0.85 0.54 0.19 0.46 0.75 0.39 0.23 0.32
3 0.71 0.49 0.42 0.36 0.78 0.53 0.30 0.34
6 0.73 0.55 0.47 0.37 0.70 0.44 0.27 0.34
12 0.73 0.53 0.60 0.42 0.74 0.53 0.42 0.50
24 0.85 0.57 0.76 0.54 0.70 0.52 0.57 0.49
48 0.84 0.58 0.69 0.51 0.67 0.50 0.62 0.48
72 0.82 0.55 0.66 0.50 0.66 0.50 0.61 0.48
96 0.80 0.54 0.66 0.53 0.66 0.52 0.61 0.49
168 0.80 0.53 0.62 0.51 0.66 0.53 0.62 0.50
336 0.85 0.53 0.60 0.51 0.65 0.51 0.61 0.50

Table III: Prediction error when CPU-1 and CPU-3 expe-

rience periodic load. The data shows MAE for different

sets of smoothed and non-smoothed explanatory variables

and lengths of Test Window (TE) when predicting outdoor

temperature for DHT-1 and DHT-3 based on a train window

of 72h and with a test start day on Sep 20th.

the effect of the CPU load on the temperature prediction

error.

Out of the four devices that we consider, we keep Pi2

and Pi4 unloaded and add hourly jobs to Pi1 and Pi3, which

increase the CPU load by encrypting and copying a 1GB file

on Pi1 and a 512MB file on Pi3. Figure 1 illustrates CPU

temperature measurements from Pi1 with hourly spikes due

to the load. The load testing for Pi1 and Pi3 started mid

September and we use September 20th as a test start date.

Note that Pi2 and Pi4 have no artificial load and are kept idle

for comparison. We observe that, compared to the August

test, all four Pi’s show smaller errors on average, however,

we omit these averages for brevity.

Table III shows the MAE for predicting DHT-1 and DHT-

3 based on different sets of explanatory variables (listed

on the top of the table) for different duration of the test

window (TE), while both Pi1 and Pi3 are loaded. For

predicting DHT-1 based on CPU-1, we see MAE in the

range of 0.71◦F to 0.85◦F and for the DHT-3 of 0.65◦F to

0.78◦F . The effect of the CPU load is more pronounced in

univariate prediction. Moreover, this effect is mitigated when

we include nearby devices’ CPU temperature measurements.

Including nearby devices in the DHT-1 prediction (All)
results in MAE in the range of 0.49◦F to 0.58◦F for DHT-1

and in the range of 0.39◦F to 0.53◦F for DHT-3.

Similar to the results for the unloaded experiments, when

the CPUs are loaded we also see improvement in prediction

error when we apply smoothing, as shown in Table III. The

two columns show MAE for DHT-1 and DHT-3 temperature

prediction with the same smoothing technique explained

earlier (rolling mean with a window size of 30 minutes or 6

readings). Note that this type of smoothing is computation-

ally simple enough to be performed on each device (rather

than as a remote computation requiring a more powerful

computational resource (used in past work)).

We see that for any length of test window the error

when all the predictors are used (All column) is smaller

than when any single predictor counterpart is used: CPU-

1 for DHT-1, and CPU-3 for DHT-3. With smoothing,

the prediction MAE decreases from the range of 0.71◦F
to 0.85◦F to the range of 0.36◦F to 0.54◦F for DHT-

1, and from the range 0.65◦F to 0.78◦F to a range of

0.32◦F to 0.50◦F for DHT-3. While not strictly lower or

higher, these results are similar (in terms of accuracy) to

the results for the unloaded case. We conclude that, using

a combination of multivariate regression and smoothing, it

is possible to obtain high degrees of prediction accuracy

(relative to measurement error) regardless of whether the

CPU is loaded or not.

To account for the possibility that the specific timeframe

may have influenced the results (i.e. outdoor conditions

might have been more dynamic in late August than late

September), we show comparative results for the September

timeframe for loaded and unloaded experiments in Figure 2.

The data shown in this figure is taken during the same period

as the results shown in Table III. That is, we use the 72-hour

period ending on September 20th, 2018 as a training period

and the remaining time as a test period (ranging from 1h

to 2 weeks). The bars in the figure corresponding to CPU-

1 and CPU-3 show the same data as in Table III from the

Smoothed All columns. For comparison, we show data for

two other CPUs – CPU-2 and CPU-4 – taken at the same

time, again using smoothing and all explanatory variables in

each regression (i.e. Smoothed All).
Figure 2a shows the comparison when only the CPU

directly attached to the DHT is used as a single explanatory

variable (i.e. the “nearest” CPU). In Figure 2b, we show the

the results when all explanatory variables are used to predict

each DHT.

In Figure 2b, the maximum MAE observed in any exper-

iment does not exceed 0.54◦F across all CPUs, DHTs, and

load patterns. These results indicate that the methodology

is robust with respect to typical loads that the CPUs might
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(a) Single CPU per DHT (b) All CPUs + WU

Figure 2: MAE when predicting DHT-1, DHT-2, DHT-3, and DHT-4 temperature based on a 72h Train Window for different

Test Window sizes (TE) and sets of smoothed explanatory variables (single CPU in the left and all variables of the right).

Test start date is Sep. 20th. Pi1 and Pi3 experience additional periodic load, Pi2 and Pi4 do not.

Figure 3: Comparison of MAE when predicting DHT-1

values for five different dates from April 20th to Dec. 7th.

experience in our IoT setting. Comparing Figure 2a to Fig-

ure 2b shows that multivariate regression improves accuracy

across all DHTs and load patterns.

C. Effects of Seasons and Precipitation

In addition to the two dates in August and September,

we observed very similar error rates when testing during

different seasons (Summer, Fall, and Winter). This is il-

lustrated in Figure 3 where we predict DHT-1 temperature

for different days from April to December. April 20th (04-

20) has a higher error because Pi3 and Pi4 were not yet

deployed and thus their CPU values were not available

as features. December 7th had variable weather conditions

with alternating rainy and sunny days, which may have

contributed to a somewhat higher MAE. However, even so,

the MAE for most of the days it was less than 1.25◦F .

We also tested the accuracy of the model when there

were changes in precipitation. From a time series perspec-

tive, precipitation could constitute a change-point in each

temperature series (due to the sudden onset of evaporative

cooling effects). Table IV shows the comparison of errors

when training and testing periods had different levels of

precipitation. For each column, the training period was 3

days and the test periods listed go from 1h to 3 days. In the

first column, both training and testing days were without any

precipitation (this data is the same data that is represented

graphically in Figure 2b as DHT-1-ALL). In the second

column, we show the effects of training using rainy days

to predict the temperatures during sunny days. December

4th, 5th, and 6th were rainy days with 2.54, 1.27, and 1.27

inches of rain respectively followed by three days without

precipitation that were used for testing the model. In the

third column, we show results for training during sunny

days followed by prediction during rainy periods. January

2nd, 3rd, and 4th were days without precipitation followed

by three days with 1.29, 1.06, and 1.0 inches of precipitation

respectively.

The results show that the model trained only on three

rainy days had errors slightly higher than when tested

on sunny days, while the model trained on sunny days

behaved similarly to the models we discussed before, even

when tested on rainy days. Part of our future work is to

expand test cases to more variable weather conditions (e.g.,

including changes in wind, solar radiance, etc.). However

these results indicate that the prediction errors are robust

to what are essentially “shocks” to the temperature time

series in the explanatory weather data (WU-T) and the

predicted variables (DHT values). Because the CPUs were in

sealed containers (and the DHT sensors were exposed to the

atmosphere) the effects of precipitation on the CPU series

is less pronounced. Still, the errors are largely unaffected by

precipitation.
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TE Sep. 20th Dec. 7th Jan. 5th
1 0.46 0.24 0.22
3 0.36 0.27 0.40
6 0.37 0.29 0.57
12 0.42 0.42 0.76
24 0.54 1.26 0.56
48 0.51 1.41 0.54
72 0.50 1.09 0.46

Table IV: MAE for models trained and tested during dry

periods (Sep. 20), training during a rainy period and testing

during a dry period (Dec. 7th) and training during a dry

period and tested during a rainy period (Jan. 5th). Models

are trained on 3 days to predict DHT-1 temperature based

on all five explanatory variables using smoothing.

Figure 4: Comparison of MAE when predicting DHT-1

values for different sets of features for Sep. 20th.

Figure 4 illustrates the errors when predicting DHT-1

temperature with different subsets of explanatory variables.

We see that if we only rely on the nearby weather station

(which is approximately 800m from the nearest DHT) the

error (WU-T) is much higher (2−3◦F ) than for a subset that

includes at least one of the CPU temperatures (< 1.15◦F ).

Farmers, today, often use only a weather station temperature

reading when implementing manual frost prevention prac-

tices. Often, though, the weather station they choose to use

for the outdoor temperature is even farther away from the

target growing block than the station we use in this study.

Notice, also, that when the CPU that is directly connected

to the DHT is not included (denoted CPU-234W in the

figure), the errors are higher than when it is included (all

other bars in the figure except for W). Thus, as one might

expect, proximity plays a role in determining the error.

However using only the attached CPU (CPU-1 in the figure

which is necessarily physically closest to DHT-1) generates a

higher MAE than all CPUs and the weather station (denoted

CPU-1234W in the figure). Indeed, the best performing

model is this one that uses all four CPU temperatures and

WU-T measurements as explanatory variables, yielding an

MAE < 0.5◦F across all time frames. Thus using the

nearest CPU improves accuracy, but using only the nearest

CPU does not yield the most accurate prediction. Finally,

while the weather station data does not generate an accurate

prediction by itself, including it does improve the accuracy

(slightly) over leaving it out.

In summary, our methodology is capable of automatically

synthesizing a “virtual” temperature sensor from a set of

CPU measurements and externally available weather data.

By including all of the available temperature time series, it

automatically “tunes” itself to generate the most accurate

predictions even when one of the explanatory variables

(WU-T in Figure 4) is, by itself, a poor predictor. These pre-

dictions are durable (lasting up to 2 weeks without refitting

the regression coefficients), with errors often at the threshold

of measurement error (for DHT sensors), on average, and

relatively insensitive to seasonal and meteorological effects,

as well as typical CPU loads in the frost-prevention setting

where we have deployed it as part of an IoT system.

IV. RELATED WORK

The proliferation of sensor network technologies enabled

more granular sensing of the environment and in turn

improved our abilities to model and predict future weather

events with greater accuracy. In recent years, we have

seen proposals of precision farming end-to-end edge cloud

systems that provide sensor integration, data analysis, and

actuation [9], [10], [11], [12], [13], [14]. In this work,

we focus on temperature prediction since it (together with

other weather parameters like humidity, wind speed, solar

radiation, cloud cover) influences some of the most energy

consuming practices: frost prevention and irrigation [15],

[16], [17], [18], [19], [20]. Moreover, our work does so at

no additional cost for sensors and frees up SBC ports for

use by other sensors.

The authors of the work most related to our own [1]

use univariate linear regression to estimate the outdoor

temperature based on the CPU temperature of a single co-

located SBC. In two experiments tested (non-smoothed and

smoothed with the single spectrum analysis [3]), the model

does not perform as well when the training window is

smaller than 6h (4.5 − 14.6◦F ) or larger than one week

(1.3 − 4.8◦F ). We overcame this limitation with multiple

linear regression that uses nearby devices’ CPU temperature

readings as well as the temperature of a close weather

station. This yielded more stable models and the error for

two weeks tests did not exceed 1.25◦F under similar training

and testing weather conditions. Even in the case of models

trained on consecutive rainy days and tested on sunny days,

the MAE did not exceed 1.25◦F . Our work also investigates

alternative smoothing techniques and the impact of processor

load on prediction.

More generally, linear regression [4] is used in sensor

networks for modeling, summarizing, and data analysis [21].

The work described in [21] was deployed indoors, where
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there was no need to consider seasonal or sudden weather

changes, or where such had a smaller impact on the regres-

sion coefficients. Our work differs in that it does not measure

the temperature directly but it estimates it from the CPU

temperatures of nearby devices, while considering different

smoothing techniques and sets of explanatory variables.

V. CONCLUSION

We have presented a new approach for predicting outdoor

temperature from the processor temperature of SBCs in

outdoor IoT settings. To enable this, we employ multiple

linear regression using nearby SBC processors and weather

stations. We use these models to predict microclimate tem-

peratures, which can be used (if sufficiently accurate) in agri-

cultural settings to guide irrigation, frost control, and other

IoT applications. We deploy our system in a citrus grove and

perform an extensive empirical study using the devices and

methodology. In addition, we consider the impact of loaded

and unloaded processors as well as alternative smoothing

techniques. We train our models for up to three days and

evaluate their accuracy for a duration of up to two weeks.

We find that our approach enables a prediction error that is

less than 1.5◦F , while past work resulted in errors of 1–14

degrees Fahrenheit for similar datasets.
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