
Distributed Dataflow Across the Edge-Cloud
Continuum

Tyler Ekaireb
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

Lukas Brand
HAW Landshut

Landshut, Germany

Nagarjun Avaraddy
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

Markus Mock
HAW Landshut

Landshut, Germany

Chandra Krintz
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

Rich Wolski
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

Abstract—Internet of Things (IoT) applications span the edge-
cloud continuum to form multiscale distributed systems. The
heterogeneity that defines this architecture, coupled with the
asynchronous, event-triggered and failure-prone nature of these
deployments create significant programming and maintenance
challenges for developers of IoT applications.

To address this impediment to innovation, we present LAM-
INAR, a dataflow programming model for IoT applications
implemented using a novel log-based and concurrent runtime
system that spans all resource scales. We describe the properties
that underpin LAMINAR’s design and compare it to a lower-
level event-based approach. We show that LAMINAR’s dataflow
model hides many of the complexities of “lock-free” event-driven
programming. Through an empirical evaluation of LAMINAR, we
find its design and implementation are both more straightforward
for developers and more performant.

I. INTRODUCTION

The “Internet of Things” (IoT) is a distributed computing
infrastructure in which collections of devices (all network-
enabled) communicate with each other and with services at
the network edge or in the cloud, to perform data acquisition,
analysis, and intelligent actuation and control. To use this
paradigm, developers must design their applications to be both
robust to failures (which are common) and multiscale, i.e., able
to leverage battery-powered or resource-constrained sensors,
single-board computers, mobile devices, and public/private
clouds that comprise the edge-cloud continuum. Current IoT
application development technologies [1], [2], [3], [4], [5], [6]
are commonly derived from cloud technologies and combine
independently-developed software stacks that interoperate via
a diversity of network protocols. Such amalgamations are non-
portable, error-prone, require significant developer expertise,
and are difficult to deploy and maintain at scale. New pro-
gramming systems are needed to ease this burden and expedite
development of robust, multiscale IoT applications.

Toward this end, we present LAMINAR, a log-based, unified,
distributed dataflow programming system for IoT. LAMINAR
uses a two-tier approach to simplify distributed IoT applica-
tion development by using a high-level distributed dataflow

programming model to hide the low-level details of a failure-
resilient (but very difficult to program) multiscale, log-based
runtime (the MLR). The MLR is a distributed serverless
system in which stateless functions are invoked in response to
events. Program state is persisted via network-transparent logs
that are append-only and lock-free (i.e., logs cannot be locked
while an append is in progress). Logs are less complex and
more resilient than their file system and database counterparts,
and they facilitate causal tracking and failure recovery [7],
[8], [9]. They can also be implemented efficiently at all
device scales, even as low level as microcontrollers [10]. As a
result, the MLR supports execution on heterogeneous devices
– from very resource-limited devices to resource-rich cloud
servers. This combination of distributed programming features
makes the MLR both portable and extremely robust to failures.
However, it also makes it very difficult to program correctly:
its programming model is event-driven, highly concurrent,
lock-free, log-based, and distributed over devices with a wide
range of resource constraints.

To tame such a platform, we design and implement a
universal execution model for multiscale, distributed dataflow
that sits atop the MLR. Dataflow is a programming paradigm
that formulates programs as directed graphs in which nodes
are data-parallel functions and edges represent the flow of data
between them. Nodes fire when all their inputs are present;
thus function execution order is determined solely by the pro-
gram’s data dependencies. Focusing on data instead of control
flow makes this paradigm well-suited to stream processing,
event-driven computing, and highly parallel and concurrent
workloads (all characteristics of modern IoT applications).
Dataflow has been used successfully for asynchronous sys-
tems [11], [12], [13], parallel computing [14], [15], [16], and
more recently for big data analytics [17], [18], [19] and visual
programming [20], [21], [22].

We posit that despite these advantages, dataflow has hereto-
fore yet to be explored as a distributed programming model
in multiscale IoT settings primarily because it is difficult to
implement its runtime semantics efficiently in heterogeneous

and error-prone networked environments. Dataflow semantics
do not include ways to represent typical distributed systems
modalities, such as partial failures, duplicated messages, and
network partitions.

To address this challenge, LAMINAR separates the concerns
of the runtime from those of the programming model. In
particular, we show that it is possible to express dataflow
programming semantics using append-only logs. By specify-
ing stateless computations and append-only persistent storage
as abstractions supported by the MLR, LAMINAR programs
exhibit referential transparency [23], [24], which is useful for
optimization and for building fault-tolerant applications [25],
[26], [27]. Finally, LAMINAR can leverage the dataflow rep-
resentation to provide visualization tools that aid the analysis
and debugging of distributed programs.

With this paper, we make the following contributions:
• We describe the properties of the MLR and provide a

brief rationale for its design.
• We describe the efficient implementation of typed

dataflow programs using the MLR as a target runtime.
• We develop program optimizations that exploit the com-

positional properties of dataflow to control concurrency.
• We measure the efficiency of the approach using IoT

applications and benchmarks.
We find that LAMINAR simplifies the development of dis-
tributed event-based programs. Combined with its type system,
this yields substantial performance benefits, further enhanced
by the parallelism management that dataflow enables. Despite
the pessimistic assumptions about resource availability, we
find LAMINAR’s performance to be comparable with other IoT
technologies that assume failures are rare. Thus, we conclude
that LAMINAR is an effective, unifying programming system
for distributed IoT applications.

II. RELATED WORK

LAMINAR has several antecedents. Early functional lan-
guages, such as Id [28], FP [29], Haskell [30], ML [31],
SISAL [32], and Lucid [33] all demonstrated the feasibility
of using dataflow as a runtime system, either with hardware
support such as i-structures [34] or purely in software. LAM-
INAR shares the goal of automated and/or programmer-guided
management of parallelism and robust distributed execution
with these early systems. Modern functional languages (in-
cluding Haskell), such as Miranda [35] and Purescript [36]
can also use dataflow as a runtime system, although they
often compile to a more imperative language variant, such as
JavaScript [37]. LAMINAR’s visual programming component
is inspired by programming systems such as GNURadio [20],
LabView [21], Keysight VEE [38], KNIME [39], and Node-
RED [22]. LAMINAR includes a similar graphical represen-
tation capability but is distinct from these systems in that it
implements a dataflow runtime using a log-based, append-only
storage model and triggered execution.

More recent distributed dataflow systems target big data
workloads [17], [40], [18], [19]. These systems provide a sim-
ple programming model for large-scale, parallel processing of

structured and semi-structured data on commodity clusters or
cloud servers. Their execution engines automatically schedule,
place, synchronize, and manage faults for these workloads.
MapReduce [17], [40] represents programs as a bipartite graph
and Dryad [18] uses a more general directed acyclic graph
(DAG) (like LAMINAR). These early systems have been ex-
tended in multiple ways to reduce their restrictions and support
a wider range of algorithms with greater efficiency [41],
[42], [43], [44]. Ciel [19] extends these programming models
with better support for iterative computations. Specifically, it
adds dynamic control flow creation while maintaining fault
resiliency. Unfortunately, none of these past works support
multiscale or wide-area settings because they were designed
for resource-rich systems. Although Ciel is more dynamic,
we find that static specification of a deployment that is fault
resilient (nodes can come and go) works well for IoT appli-
cations. Moreover, as Section III-I shows, LAMINAR provides
support for iteration within the dataflow language without the
added complexity of dynamic DAG generation.

III. LAMINAR

LAMINAR uses a two-tier approach to simplifying dis-
tributed IoT application development. The lower layer is a
distributed runtime system (called the MLR) that executes
across a vast diversity of IoT devices that span the edge-cloud
continuum, i.e., it is multiscale. This runtime layer provides a
set of properties and abstractions that facilitate fault-tolerant,
event-driven computing. We describe how to extend these
features to also support the programming model of the upper
layer. The upper layer is a dataflow execution engine that hides
many of the details of the lower layer while benefiting from
its robustness. We first overview the runtime system and then
describe how we integrate these two layers to simplify the
development of robust IoT applications.

A. Multiscale Log-based Runtime (MLR)
To support a dataflow programming model, LAMINAR re-

quires the following properties from the MLR:
• program state variables, i.e., the data values that flow

along the edges in a DAG, are single-assignment,
• stateless computations synchronize only as a result of the

communication of data between them,
• names of state variables are network-transparent,
• and computations cannot use locks to implement

message-based synchronization.
The first two are generic requirements for any system im-
plementing dataflow language semantics. The latter two are
motivated by our experiences implementing IoT applications
in low-infrastructure or weak-infrastructure settings. In these
environments, power and network infrastructure may be inter-
mittently available, devices routinely fail, or malfunction, and
undetected device “upgrades” or replacements can cause latent
data integrity errors. It must be possible to redeploy state in
response to these dynamics, e.g., using network transparency
and threads or other concurrency abstractions should not
hold locks waiting for data communication (that may never

arrive). Our experience with POSIX “timed” locks and thread
cancellation [45] further supports this requirement.

It is possible to meet many of these design requirements us-
ing cloud-based and edge-based Functions-as-a-Service (FaaS)
or serverless technologies. By restricting their use to trigger
stateless computations in response to single-assignment stor-
age events, e.g., using a database to implement a log, it is
possible to implement the MLR using CloudPath [46], tiny-
FaaS [47], AWS Greengrass [48], and Azure IoT Edge [49].
Heavier-weight FaaS systems, e.g., AWS Lambda [50], Azure
Functions [51], Google Functions [52], OpenWhisk [53], and
OpenFaaS [54] can also be used. However, they require special
purpose libraries, systems, and protocols (e.g., AWS SDK,
FreeRTOS, MQTT, etc.) to support very resource-restricted
edge devices. In this paper, we use CSPOT [10] to implement
the MLR. CSPOT is a simple, lightweight, distributed server-
less runtime (available as open source) that executes FaaS
applications across heterogeneous IoT deployments [10]. It
uses logs to hold program state and track events across the
system. Logs are circular buffers with programmable history
and element size optionally persisted to disk via memory-
mapped files (i.e., for devices with file system support).

B. MLR Properties and API
LAMINAR leverages the following MLR properties.
• All program state variables communicated between com-

putations are implemented as append-only logs. Compu-
tations are otherwise stateless.

• A successful log-append returns a unique sequence num-
ber for the resulting log entry, and sequence numbers are
strictly increasing.

• Computations (referred to herein as functions or handlers)
can only be triggered in conjunction with a single log-
append event.

• Logs are named using a network-resolvable name (e.g.,
a Universal Resource Name) for network transparency.

• Computations can only synchronize using log sequence
numbers explicitly. That is, the MLR is lock-free and
includes no provision for locking one or more logs while
an append is in progress.

LAMINAR requires support (via an API) for log create and
delete, log read (with or without a sequence number), log ap-
pend (with and without triggering a handler function), and the
ability to get the latest sequence number of a log. LAMINAR
assumes that an append event has a monotonically increasing
sequence number associated with it, which it uses for log
scans. Synchronization between computations is in terms of
log sequence numbers (i.e. computations decide whether to
proceed based on a comparison of log sequence numbers
associated with log elements). Further, computations can only
be triggered as a result of some log advancing. That is, only
new state (appended to some log) results in a new computation
being initiated. Finally, log wraps, if any, must be detected and
reported as errors if/when they occur.

From the perspective of an applicative functional language,
and equivalently, dataflow, logs and append-only semantics

correspond to single-assignment variables. In effect, each
variable in an MLR program is versioned, and each version
is immutable. Thus, an implementation of dataflow in which
MLR functions are stateless and all program state is stored in
logs, layers applicative programming semantics atop the MLR.

C. Log-based Synchronization
The MLR design is “lock-free” in that there are no provi-

sions for a computation to block and wait (perhaps in a loop)
for one or more events to transpire. For example, it includes no
explicit primitives for implementing mutual exclusion, “test-
under-lock” (e.g., pthread_cond_wait/signal) control
blocks, or concurrent computation “joins.” While convenient
and undoubtedly useful in a single-machine setting, such
a facility can present difficulties in a distributed setting.
Specifically, it is possible for computations to “block on the
tail” and for the system to crash. When it is restarted, these
computations would need to be recovered in the state they
were in and re-blocked before any log appends originating
from remote machines are accepted.

In short, computations would need a checkpoint facility that
is synchronized with the log to implement a persistent “wait
for advance” capability when a node failure does not imply a
fail-stop. The MLR exposes this facility through the log APIs.
As a result, the MLR itself need not include lock-timeouts,
explicit critical section detection and recovery, computation
cancellation, etc., all of which can be an impediment to
implementation in resource-restricted environments.

Further, an MLR program can never “deadlock” due to node
failure with computations holding locks. It certainly can stop
because a computation that is responsible for advancing the
state of the overall program has been permanently lost, but
when it does, there are no pending threads (address spaces,
stacks, etc.) that are suspended, indefinitely holding resources
pending a full reset of an entire deployment. When an MLR
program stops, all of the program, state is “at rest” in the
MLR logs, and none is stored in the address spaces or stacks
of pending computations.

This design decision enables two essential features. The
first is that a (distributed) MLR program can be paused and
resumed based on the contents of the logs. The second is that
(with the optional inclusion of dependency information in each
log entry) it tracks causal dependencies as a debugging aid.
That is, the logs can be configured to record the identity (log
name and append sequence number) of each state advance
that triggers a computation. A complete log, then, captures
the causal order for all program state changes.

These features come at the expense of program clarity
(relative to modern concurrency abstractions) and, as a result,
programmer productivity. While serverless runtime systems
enable higher-level programming approaches to be applied
in distributed settings, our early experiences with using such
systems to develop IoT deployments “by hand” have confirmed
their productivity costs when used as a primitive distributed
event-based programming platform. To overcome this lim-
itation, we layer a dataflow framework atop of the MLR

to hide its complex programming model, abstractions, and
interface from developers, so that more familiar, high-level
programming languages can be used.

D. Programming Model
LAMINAR implements strict dataflow semantics [55] using

the MLR. A LAMINAR program is represented as a directed
acyclic graph (DAG). Nodes in the graph represent compu-
tations, and edges represent data values transmitted between
nodes. A node becomes executable by the runtime system
when the values corresponding to all of its input edges are
available. Its outputs are available to other nodes only when
the node has completed executing.

Developers specify a program as a hierarchical set of DAGs.
They also implement the computations associated with each
node as an MLR function that “fires” when the node is exe-
cuted in a LAMINAR program. More specifically, a LAMINAR
program consists of:

• Sources, which are external computations that introduce
data into a LAMINAR program. These include sensor
readings (in an IoT context), database reads, remote API
calls, or arbitrary program functions from a program or
script capable of exercising LAMINAR’s API.

• Nodes, which perform operations on data using stateless
functions written by the programmer.

• Edges, which express data flow between nodes.
• Sinks, which transmit data outside a LAMINAR program,

e.g., database writes, remote API calls, or arbitrary pro-
gram functions that consume data via LAMINAR’s API.

A node can have an arbitrary number of inputs and outputs,
each represented by a unique “port”. A directed edge links
nodes (output port to input port) and represents a “subscrip-
tion” on the output of a node by the input node. Output ports
can have fan-out, but input ports receive data from a single
output. Sources and sinks are special nodes. Sources have no
input ports but ingress data from outside the program, e.g.,
program inputs, to the program.

Each node is implemented using two logs: a subscription
log and a subscriber log. The subscription log records node
inputs that are available to the node (i.e., have been produced
as outputs by predecessor nodes in the DAG). A subscription
event is triggered for every input that arrives at a node (i.e.,
every time a data item is appended to the subscription log).
The handler checks if all inputs have arrived; if not, it exits.
On arrival of the last input, the handler extracts all input values
from the subscription log, executes the computation associated
with the node and populates its output ports. When a datum
is appended to an output port, a subscription event is posted
to the subscription log of each node subscribing to that port.

Figure 1 shows a LAMINAR C++ code snippet for imple-
menting a + b using the LAMINAR API and corresponding
DAG. The API provides support for DAG specification, ini-
tialization, and execution. Developers add hosts (add host),
nodes (add node), sources (add operand), and edges (sub-
scribe) to construct an application. They also use the API to
initiate compilation (setup), computation (by assigning values

Fig. 1. Using the LAMINAR API: C++ code snippet (left) for the DAG (right)
implementing (a+ b) for host hd.

Machine 2

LAMINAR Log Hashmap
key:

value:
node_id (src)
list<subscriber>

LAMINAR Log Hashmap
key:

value:
node_id (dst)
list<subscription>

Log
idx:

value:
node_id
node

Node 1 Node 2

Node 3

Node 4 Node 5 Node 6

subscriptions[3]

nodes[3]

subscribers[3]

Registry QueriesSubscriptions

Nodes

Subscribers

idx:
value:

host_id
(IP, namespace)

hosts[2]

Sample LAMINAR Program Graph

Log
Hosts

Machine 1

Fig. 2. Data structures associated with a LAMINAR registry. The example
indicates which program elements are referenced when each data structure is
queried for information regarding Node3.

to sources, e.g., fire operand), and to read results (get result).
In this example, there is one host (hd). Node n1 (on hd) is
specified to perform the computation (ADD; add node). There
is a source node for both a and b created using add operand.
An edge between the source node outputs is connected to
the input edges of n1 (in0 and in1) via subscriptions to n2
and n3, respectively. Each host in the deployment is assigned
a unique ID, and all hosts receive a copy of the program;
hosts execute the program selectively based on their local host
ID. fire operand initiates execution by assigning the boundary
values 7 and 10. We use graphviz [56] to automatically
generate hierarchical drawings of LAMINAR program graphs
to aid program analysis and debugging.

E. LAMINAR Program Registry
The LAMINAR registry consists of four data structures that

track Nodes, Subscriptions, Subscribers, and Hosts, as shown
in Figure 2. The registry implements these data structures
using MLR logs. The Nodes log stores both the node ID and
the host ID to uniquely identify the machine on which the
node is running, and an operation ID that is used to dispatch
the node’s computation when all inputs are available.

Note that the program registry is immutable with respect
to the program. That is, even though LAMINAR is using the
MLR to implement the registry, the registry contents are fixed
when the LAMINAR program is defined. A LAMINAR program
executes a preamble to populate the registry (logically part

1

values:

seq:
d
a
t
a

subscription {
 src_subgraph: 1,
 src_node_id: 1,
 ingress_port: 0
}

2
subscription {
 src_subgraph: 1,
 src_node_id: 2,
 ingress_port: 1
}

3
subscription {
 src_subgraph: 2,
 src_node_id: 3,
 ingress_port: 0
}

4
subscription {
 src_subgraph: 2,
 src_node_id: 3,
 ingress_port: 0
}

5
subscription {
 src_subgraph: 2,
 src_node_id: 3,
 ingress_port: 0
}

- -

1 2seq (node id):

index:

m
a
p(1, 2) (3, 3)

3 4

(4, 4)

5

(5, 5)

6

Fig. 3. Detailed view of the Subscriptions structure of the sample LAMINAR
program shown in Figure 2. Each consumer node ID is mapped to a list of
subscriptions. Each subscription associates a consumer node input port with
the producer node’s output.

of its compilation and deployment process) before executing
DAG computations. The registry is also global, i.e., it must
be replicated on all potential execution sites in a LAMINAR
deployment. In the current LAMINAR prototype, all program
components are compiled, the preamble is executed on one
site (usually the compilation site), and the resulting MLR logs
and handlers are copied to other hosts in the deployment.

The Subscriptions data structure maps node IDs to those of
its input edges, enabling fast access when determining whether
all inputs have arrived. Subscription information is stored as
a hashmap implemented using two MLR logs, as shown in
Figure 3. The map log maps a range of sequence numbers
in the data log to the node to which those subscriptions
pertain. Each node’s ID is used as an index into the map log
(the ReadLog function takes a sequence number indicating
the specific log entry to return). The data log stores all
subscriptions for each node contiguously in the sequence
number space of the log. Each element of the data log contains
a C++ subscription structure that associates an input port
of the consumer node with the output of a producer node.

For the example in Figure 3, sequence number 3 in the map
log (which corresponds to Node3 in Figure 2) contains (1, 2),
indicating that Node3’s input port edges can be found by
scanning the data log sequentially from sequence numbers
1 through 2. The input ports for Node4 begin at sequence
number 3 in the data log, and so on.

The hashmap of the Subscribers uses the same two-level
log encoding to access subscriber structures to represent the
relationship of the output ports of each node to their consumer
nodes. The Hosts log stores the information necessary to locate
an MLR log remotely, e.g., the host network address and path
to the MLR log storage. The LAMINAR runtime uses this log
for host discovery and dataflow across hosts.

F. Subgraphs
Nodes can be grouped to implement scoping and modular

composition. A subgraph represents a functional “subprogram”
that acts as a node in any LAMINAR program in which it is
embedded. That is, no node within a subgraph fires until all of
the inputs to the subgraph are available, and no outputs from
the subgraph can be consumed as inputs by other nodes or
subgraphs until all subgraph outputs have been produced.

In LAMINAR, a subgraph implements scope for identifiers
and state. Multiple LAMINAR programs can be developed
in isolation and deployed together by grouping nodes into

subgraphs. Moreover, subgraphs can encapsulate implemen-
tation details and provide communication interfaces between
programs without exposing graph internals, i.e., to support
modular design. LAMINAR uses subgraphs to implement it-
eration, conditionals, and placement partitioning.

G. Type System

The LAMINAR type system maps program data structures
to MLR logs. We refer to these data structures as LAMINAR
Typed Values (LTVs). The type system supports both primitive
and complex LTVs (e.g. arrays, strings, records, maps, etc.),
and for the latter, transparently provides (de-)serialization of
typed values to/from logs. The current LAMINAR prototype
supports C primitive types, arrays, vectors, and strings.

The in-memory representation of an LTV is a tagged union
that contains the type identifier and a union of the possible
LAMINAR value types. For primitive types, the union holds
the primitive value. For complex types, the union type holds a
structure that contains type-specific information. This includes
data structure size, a pointer to its memory representation
(managed by LAMINAR), and a unique ID that identifies an
additional MLR log that is used to implement the complex
type. This log (called head) can contain the literal data value
or further substructure descriptors (referring to additional logs)
depending on the type.

Figure 4 overviews how the type system works. Data flows
from Node1 to Node2, and Node2 has a single input and
output port. When Node1 completes and appends to its Sub-
scribers log, it triggers Node2’s subscription event handler.
The handler calls Load Value to read and deserialize the
data. It also creates the Loaded LTV in memory for use in the
operation which uses getters/setters to access the value. The
operation uses a separate Loaded LTV for its output port which
the handler serializes and appends to Node2’s Subscribers log
via Save Value, when generated. Primitive types require no
(de-)serialization.

For complex types, the Subscribers log LTV contains the
unique ID of the head log. Load Value uses it to read 1+
logs and deserialize values as it constructs the Loaded LTV.
For instance, for an array of integers, all array values will be
loaded in this step, fully constructing the array in memory.

The unique ID is a 16-byte UUID generated by the type
system for each log used in a data structure. To construct
the log name, the system concatenates the LTV type and this
UUID. It stores the UUID (along with the data structure size)
in the LTV for easy access and loading.

Figure 5 exemplifies this process using a 2x3 matrix (2 rows
of 3 elements each). The matrix is produced by a producer
node and appended to its Subscribers log. Its LTV structure
is shown on the left and contains the UUID of the head log
(UUID1), its LTV type, the element type, and the size (number
of rows). The head log contains the UUIDs and structure of
two rows: both contain 3 elements (specified in size), and their
respective UUIDs. The sub-logs hold the row data which has
integer element type.

Time

ReadLog

Load Value
(deserialize)

log
Create/App

Save Value
(serialize)

Loaded
LTV

Loaded
LTV

Node OperationAdditional
WooFs

Getter
API

Setter
API

LTV

Node 2: Subscription Event HandlerNode 1
Subscribers log

LTV

Node 2
Subscribers log

AppendLog
w/Handler

Append
Log

Fig. 4. Overview of the interaction of LAMINAR typed values and the
underlying MLR logs.

Subscription Event Handler

Getter
API

Loaded
LTV

Load Value
(deserialize)LTV

Subscribers
log

[4, 5, 6]

Array Value log
UUID3

[1, 2, 3]

Array Value log
UUID2

[{
 uuid: UUID2
 type: TS_ARRAY
 el_type: TS_INT
 size: 3
},

Array Value log
UUID1

Array Value LTV

{
uuid: UUID1
type: TS_ARRAY
el_type: TS_ARRAY
size: 2
}

{
 uuid: UUID3
 type: TS_ARRAY
 el_type: TS_INT
 size: 3
}]

Fig. 5. Storage-persisted representation of a LAMINAR 2x3 matrix.

When the matrix is appended to the Subscribers log, it
triggers the consumer node’s subscription event handler as
in the previous example. This handler allocates space for the
matrix and constructs its value using the Array Value log
(UUID1) and its sub-logs (UUID2 and UUID3). The handler
then implements the node’s operation using getters/setters to
access the matrix directly in memory.

In general, for an NxM matrix, (N+1) memory allocations
and ReadLog MLR API calls are necessary. Similarly, when
a matrix is written, the same number of CreateLog and
AppendLog API calls are performed, in addition to writing
the Subscribers log representing the matrix LTV.

The LAMINAR string data type is similar (omitted due to
space constraints). We represent strings (with a configurable
maximum size) using a single log entry in the common
case. When a string exceeds this size, LAMINAR splits it
across multiple log entries (and uses an additional field in
the proceeding substring log to link them).

H. Integrating Data Sources
A typical IoT application will consume data from multiple

sources. As described above, input (i.e. boundary) data is
represented via Source nodes. Developers link input data to
source nodes using the LAMINAR API (as shown in the earlier
example in Figure 1). Our current prototype supports arbitrary
C and C++ functions so that the code can link different
data sources (e.g., sensors, GPIO pins, streaming services,

databases) to a LAMINAR program. We plan to extend the
API with Python bindings as part of future work.

I. LAMINAR Structured Programming Constructs

In addition to traditional dataflow, LAMINAR supports con-
structs that facilitate the development of more complex pro-
grams with control flow and iteration.
Conditionals. LAMINAR supports conditional statements
SELECT and FILTER. A SELECT node uses its first port as
a selector, whose value is used to index the remaining ports
to be forwarded as output. The second construct, FILTER,
accepts a boolean value on its first port, determining whether
or not the data on the second port is forwarded.
Iteration. The asynchronous and event-driven nature of LAM-
INAR naturally supports powerful node-level, i.e., function-
level, parallelism since each node operates independently.
LAMINAR also supports loop iteration using an approach
inspired by IF1 [57], [58] via nested subgraphs. A loop con-
sists of four subgraphs. Initialization sets up the loop. Body
performs the computation that resides within a traditional loop
body. Test calculates a boolean value, determining whether
to exit the loop. Result produces the result once the loop
finishes. This looping construct and its variants can be used to
achieve the same functionality of the popular for or while
constructs in imperative programming languages.

IV. EVALUATION

We evaluate LAMINAR in two ways: comparative perfor-
mance using IoT benchmarks and clarity of program represen-
tation (versus programming events and logs directly). We use a
campus cloud, an edge cloud, and resource-constrained single-
board computers (SBCs) for this evaluation. The campus cloud
VMs run on HP 2.5Ghz x86-blades via KVM. Each VM has
eight virtual CPUs and 32 GB of memory and runs CentOS
7.2. The edge cloud (located at a remote research reserve) is
equipped with Intel NUCs [59]) each with 3.2 GHz processors
is configured to host 2-core VMs with 512 megabytes of
memory and large secondary storage for data acquisition. Co-
located at the remote site is a Raspberry Pi 3 B+ with 1 GB of
memory and a 4-core ARM V7 CPU (running in 32-bit mode)
clocked at 1.2 GHz. It is connected to the edge cloud by 1
Gb switched Ethernet. All MLR functions corresponding to
LAMINAR nodes are written in C++ and compiled with g++9.

We first demonstrate generality by evaluating IoT bench-
marks and comparing LAMINAR against a popular stream-
processing-based approach. We then demonstrate how LAM-
INAR reduces the complexity associated with distributed IoT
programming, validate the performance of the type system,
and show the potential for performance optimization, using
matrix multiply. We choose to include matrix multiply for this
programmability study since it is well-understood (has well-
understood scaling properties), and provides a familiar exam-
ple for demonstrating the use, complexity, and optimization
potential of LAMINAR.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25 30 35
ms

"Storm"
"Laminar"

Fig. 6. CDF of end-to-end ETL Benchmark performance for RIoT and
LAMINAR implementations. The sample is 100 separate runs of each, and
the units on the x-axis are milliseconds.

A. RIoT Benchmarks

To empirically evaluate LAMINAR’s performance and versa-
tility, we used it to implement a subset of the RIoTBench [60]
suite. RIoTBench provides a set of realistic applications to
benchmark distributed stream processing systems for IoT
applications, implemented using Apache Storm and Microsoft
Azure [61], [62]. RIoTBench consists of various pipelines for
data processing and analysis. We compare the ETL pipeline,
which consumes and re-formats sensor data for analysis. The
pipeline comprises a source and six microservice stages (parse,
range filter, bloom filter, interpolation, annotate, and persist).
The source is a workload from the MHEALTH (Mobile
Health) dataset [63], a real-world IoT dataset with body motion
and vital sign measurements of ten volunteers.

Figure 6 shows a comparison of the empirical cumulative
distribution functions (CDFs) for 100 executions of the RIoT
ETL benchmark, and the LAMINAR version of the ETL
benchmark. Note that the original results reported in [60]
are 2 to 3 orders of magnitude slower than the LAMINAR
results shown in the figure. To make a fair comparison in this
paper, we replaced the Azure storage access at the end of the
pipeline in the original benchmark with an additional program
node that persists the benchmark results to a local file in the
same file system used by LAMINAR to generate results.

The mean execution time for the original RIoT version
is 18.6 milliseconds compared to 18.0 milliseconds for the
LAMINAR version and a student-t test indicates no statistical
difference. However, the data indicates that the standard devi-
ation for the LAMINAR version is lower than for the original.

Note that LAMINAR is persisting the state of every operation
in every stage of the benchmark. If the Storm version were
to replicate this persistence behavior (for the purposes of
crash recovery), then the persist stage would be absent, and
every other stage would incur its own persistence overhead.
We did not feel it reasonable to modify the Storm stages to
include such persistence (since there are many ways to do so).
Instead, we measured the average duration of the persist stage
as 4.6 milliseconds, which is the approximate time necessary

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 20 30 40 50 60 70 80
ms

"edge-only"
"cloud-only"
"edge-cloud"

Fig. 7. CDFs of end-to-end ETL Benchmark performance for the LAMINAR
implementation of the RIoT benchmark in three different deployments. The
sample is 100 separate runs of each, and the units on the x-axis are
milliseconds.

to persist the final result of the ETL benchmark to a file. If
the Storm-based original implementation were to persist every
stage to a file, we estimate the end-to-end latency would be
37 milliseconds (5⇥ 4.6 + 18.6� 4.6 ms).

More abstractly, LAMINAR’s persistence behavior assumes
that in an IoT context, node failures are likely and expected,
and that recovery speed should be optimized. At the same time,
it can achieve the same performance as the Storm in memory
version, which assumes that node failures are rare and only
the final results need to be persisted. When this optimistic
assumption is relaxed for the Storm version the performance
of the LAMINAR version is nearly a factor of two better.

To better understand LAMINAR’s ability to operate at differ-
ent resource scales we deployed it to an edge cloud located in
a utility closet at a remote ecological study site approximately
50 miles from our university campus. Network connectivity
between the site and the university is via a dedicated, 150-
megabit long-range microwave link that (because of the in-
tervening topology and the need for line-of-sight) traverses
approximately 120 miles of linear distance.

Figure 7 shows three empirical CDFs of the end-to-end
latency for different deployments of the LAMINAR benchmark
version. The “edge-only” deployment shows the end-to-end
latency for the LAMINAR version of the benchmark when
executed entirely in a small VM at the remote site. The CDF
marked “cloud-only” is the same CDF shown in Figure 6 for
the LAMINAR implementation, and the CDF marked “edge-
cloud” shows the end-to-end latency when the first stage of
the pipeline in the benchmark is executed at the remote site
and the other stages are located in the campus cloud.

Note that we cannot show comparative results for the
original RIoT implementation that uses Storm as a runtime
platform. Apache Storm does not include a documented way
to assign a Storm “bolt” (representing a computation) to a
specific host in a Storm cluster. Thus, a distributed deployment
(similar to “cloud-edge in the figure) is not possible. Further,
the memory available in the VM hosted in the edge cloud is
insufficient to execute the Storm benchmark in its entirety.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

50 100 150 200 250 300 350
ms

"device-only"
"device-edge"

"device-edge-cloud"

Fig. 8. CDFs of end-to-end ETL Benchmark performance for the LAMINAR
implementation of the RIoT benchmark in three different deployments that
link a Raspberry Pi to an edge-cloud VM to a campus cloud. The sample is
100 separate runs of each, and the units on the x-axis are milliseconds.

In contrast, the LAMINAR implementation supports both a
specific deployment of LAMINAR nodes to hosts and also is
memory parsimonious enough to execute the full benchmark
in the small edge VM. Further, the only code change needed is
to update the host ID in the VM hosted in the edge cloud That
is, the LAMINAR code expressing the computation is identical.

It is also noteworthy that the end-to-end latency at the
edge is lower than in the campus cloud when the benchmark
is hosted entirely in either venue. The reason is that the
LAMINAR code “fits” inside the 512-megabyte limit at the
edge, making it entirely CPU limited. Thus, its multiscale
capability can exploit the faster edge processor in this de-
ployment setting. Also, predictably, when the network link
is introduced between stages, its performance dominates the
end-to-end latency. Indeed, we have omitted a fourth CDF that
places the first four stages of the benchmark in the edge cloud
and the fifth in the campus cloud. It is almost indistinguishable
from the CDF marked “edge-cloud” in the figure and thus
obscures those results at the graph scale shown.

Similarly, to further demonstrate the deployment versatility
of LAMINAR, we deployed the LAMINAR implementation of
the RIoT benchmark to a Raspberry Pi 3 that is also located at
the remote site. This Raspberry Pi is used to gather sensor data
that it forwards to the edge cloud VM discussed previously and
to reconfigure the sensor duty cycle. We temporarily pause this
sensing function during benchmarking.

Figure 8 shows 3 empirical CDFs of three different deploy-
ment configurations. The CDF marked “device-only” shows
the end-to-end latency distribution when the LAMINAR im-
plementation of the RIoT benchmark is deployed entirely on
the Raspberry Pi. The CDF denoted “device-edge” shows the
end-to-end latency when the first stage of the 5-stage pipeline
comprising the benchmark is hosted on the Raspberry Pi, and
the other 4 stages are hosted on the edge-cloud VM. Finally,
the CDF marked “device-edge-cloud” shows the deployment
of the first stage on the Raspberry PI, stages 2, 3, and 4 on the
edge-cloud VM, and stage 5 in the campus cloud. Note that the
network connection between the edge cloud and the campus

cloud traverses the microwave network discussed previously.
From the figure, comparing “device-only” to “device-edge”

shows the effect of using the faster edge-cloud VM for 4 stages
of the benchmark. However, because of the network variability
between the Pi and the edge-cloud VM, approximately 20% of
the execution runs were slower in the distributed configuration.
The “device-edge-cloud” curve shows the effect of traversing
the slower and lossier microwave link between stages 4
and 5. Note that the “device-edge” and “device-edge-cloud”
CDFs have similar shapes, but the latter is shifted right by
approximately 45 milliseconds. Note that we cannot include
comparative results for the original RIoT implementation on
the device alone because it will not execute on the ARM
processors in 32-bit mode.

B. Programming LAMINAR versus MLR Events and Logs

To highlight the programmer productivity features of LAM-
INAR, we compare square two-dimensional matrix multiply
implementations at the finest granularity possible, using native
MLR directly (i.e. coded “by hand”) and LAMINAR. The
comparison is for illustrative purposes only, depicting simple,
i.e., “naı̈ve” implementations that have not been optimized.
They are both intended to show the “baseline” programming
model for each approach, i.e., the implementation that is
maximally concurrent and includes no optimizations.

At the finest level of granularity (i.e., with maximal possible
concurrency), one MLR handler must be “fired” for every
multiplication of a pair of matrix elements and another handler
is required to sum the multiplications to create the dot product
stored in the matrix resulting from the matrix multiplication.
All functions receive the unique sequence number of the
append that fired it as input, but the sequence number order
does not necessarily correspond to the order in which handler
functions are executed. Further, because the MLR is lock-free
and handlers are stateless, there is no way for handlers to block
their execution pending log advance. Each function executes
to completion, without blocking, once triggered.

For example, consider the depiction of a 2⇥2 implementa-
tion of matrix multiply shown in Figure 9. To compute A⇥B

for 2⇥ 2 matrices A and B, the algorithm must compute the
dot product for each element el in the result corresponding
to el’s row in A and el’s column in B. The figure shows the
computation of the [0, 0] element of the result using row 0 of
A and column 0 of B.

In the example, the values of the elements in A and B

are stored in separate logs along with their row and column
coordinates. The matrix multiply computation is started when
a control program appends a record to a log indicating that
the C[0, 0] element is to be produced (shown as the box
marked control in the figure). An MLR handler fires as a
result of this append operation and performs two appends
to a different log (marked multiply in the figure) to trigger
the multiplications of A[0, 0] ⇥ B[0, 0] and A[0, 1] ⇥ B[1, 0]
respectively in separate handler invocations. Each of the two
elements that are appended indicates that the multiplication

multiply task
matrix A: (0, 0)
matrix B: (0, 0)
matrix C: (0, 0)

multiply task
matrix A: (0, 1)
matrix B: (1, 0)
matrix C: (0, 0)

Fig. 9. Direct MLR implementation of 2⇥2 matrix multiplication, with logs
and operations used to generate the first element of the result matrix.

× ×

+
×

×

Multiplication
Results

Fig. 10. LAMINAR implementation of 2⇥ 2 matrix multiplication, with logs
and operations used to generate the first element of the result matrix.

is for the result C[0, 0] which will be used in a subsequent
handler to gather the dot product terms.

Note that the dot-product handler must logically “wait” for
the terms to be appended before performing an individual dot
product and storing the result. Without the ability to block
handlers, each dot product handler must scan the log (as
described in Section III-A) to “join” the computations that are
producing the operands necessary to complete the dot product
(C[0, 0] in the figure).

The LAMINAR implementation of the same matrix multiply
step is shown in Figure 10. Instead of log-appends and events,
LAMINAR uses subscriptions and subscribers logs as buffers
between computations. Recall that these data structures are
created statically by the LAMINAR preamble when the appli-
cation is deployed and accessed via a hashmap (as described
in Sec. III) so that the runtime system can limit the number of
elements that must be scanned to determine when a LAMINAR
dataflow node is ready to fire.

0 20 40 60
0

2

4

·104

N ⇥N matrix

Ex
ec

ut
io

n
tim

e
[m

s
/e

le
m

en
t] Direct MLR

LAMINAR

y=:2.9 · x� 7.18

Fig. 11. LAMINAR matrix multiply performance. Execution time per element
increases quadratically with matrix size using the direct MLR implementation
due to log scans. LAMINAR execution time per element scales linearly.

This comparison illustrates how LAMINAR can improve
programmer productivity over a highly concurrent event sys-
tem such as the MLR. Specifically, the LAMINAR program
abstracts away logs and handlers in favor of a high-level
dataflow representation. LAMINAR does not require the user
to understand MLR logs, tails, sequence numbers, or scans in
the context of an application. An application is specified using
dataflow, and the runtime system handles all log manipulation,
joins, and synchronization.

1) Performance Comparison: Not only is matrix multi-
plication easier to write, but we also find that the code
generated by LAMINAR is more efficient than the naı̈ve MLR
equivalent, illustrating the benefits of simplified programming
and attesting to the efficiency of LAMINAR’s type system
implementation. Figure 11 compares the average time (in
milliseconds) to compute a single element of the result matrix
(on the y-axis) as a function of the dimensions of the matrix
multiplicands (shown on the x-axis).

Simple matrix-multiply is an O(N3) algorithm where each
of the dimensions of the multiplicands is N . The naı̈ve MLR
application must do N scans for each dot-product so the time
to compute a single element of the result scales as O(N2).
dimension N . In contrast, LAMINAR’s use of a hashmap limits
the scans to a small constant value.

As such, the average time to compute a single element
(sample size 30) scales linearly with the dimension N . To
clarify the linear relationship, a regression line is shown
for LAMINAR because the units on the x-axis, which are
⇥104, obfuscate the linearity, making the execution time for
LAMINAR appear constant in the figure. The regression R

2

value is 0.96.
We emphasize that this scalability difference is purely due to

the naı̈ve but “straight-forward” direct MLR implementation.
Since LAMINAR is using MLR as a target, it is certainly
possible for a developer to implement the same (or better)
scan-elimination optimizations than LAMINAR implements.
However, hand-optimized MLR code is more complex to de-
velop and more onerous to maintain. In the same way modern
compilers generate machine code that is efficient enough to
obviate hand-assembly programming for most applications,
LAMINAR can generate simple yet efficient MLR code.

The examples shown in Figures 9 and 10 are intention-

0 10 20 30 40 50 60 70

100

102

N ⇥N matrix

Ex
ec

ut
io

n
tim

e
[m

s
/e

le
m

en
t]

LAMINAR full-decomposition
LAMINAR vector

Fig. 12. LAMINAR per-element latency for fully-decomposed matrix multi-
plication versus a vector implementation.

10 20 30 40 50 60

20

40

N ⇥N matrix

%
Im

pr
ov

em
en

t

Fig. 13. Percentage improvement in per-element latency of LAMINAR
partitioned vector implementation (with 8 partitions) over the fully-concurrent
vector version (using an 8-CPU VM).

ally over-decomposed to compare the maximally concurrent
versions of the matrix-multiply algorithm. From a practical
perspective, they generate far too many fine-grained tasks for
commodity multiprocessors to exploit effectively, accentuating
potential LAMINAR overheads. LAMINAR’s type system (cf.
Sec. III-G) supports a vector data type that allows each handler
to compute a full dot product as its output.

Figure 12 compares the performance of the maximally
concurrent LAMINAR implementation (also shown in blue in
Figure 11) to the performance of a LAMINAR implementation
using the vector data type (shown in green in Figure 12) on a
log scale. The per-element scaling exhibited by the maximally
concurrent version is a linear slowdown, while the vector
version shows a slight speedup as a function of matrix size.
For example, the average time to compute a single element
of a 64 ⇥ 64 result matrix for the fully-decomposed version
scales up to 192.16 milliseconds compared to an average of
0.047 milliseconds for the vector version.

2) LAMINAR Performance Optimization: Finally, the vec-
tor version over-parallelizes the computation by assigning each
of the N dot products to a concurrently executable node in
the program. To show the effects of limiting parallelism to
exploit only the number of CPUs available, we implemented
a partitioned version of the LAMINAR vector code. This
partitioned version assigns the computation of a contiguous
“strip” of rows of the result matrix to each node of the
LAMINAR DAG.

Figure 13 shows the percentage improvement in the time
to compute a single element over the fully-concurrent vector
version with 8 partitions (1 assigned to each virtual CPU).
For example, the 64 ⇥ 64 per-element latency generated by
the fully-concurrent version is 0.047 milliseconds and the
latency for the same problem size generated by the partitioned
version is 0.023 milliseconds. This factor-of-2 improvement

is depicted as a 50% improvement in the figure. Note that
for values of N less than 8, both implementations assign a
single vector to each node in the LAMINAR DAG and thus are
equivalent. As a result, we show the percentage improvement
for 10 <= N <= 64.

The improvement trajectory shown in Figure 13 shows the
combined effect of eliminating unusable concurrency with
increasing computation-to-overhead ratio for each LAMINAR
node. While we have coded this example explicitly to il-
lustrate the ability to control concurrency as a performance
optimization, LAMINAR inherits and shares this capability
with its high-performance functional-language antecedents. As
such, it is possible to automate the aggregation of unusable
concurrency as system-implemented optimizations (the subject
of our ongoing work).

For reference, we implemented a version of the partitioned
vector algorithm using POSIX threads and C. A direct perfor-
mance comparison is difficult since the C version is neither
(easily) distributed nor crash-consistent and based on locks. In
the same VM (with eight virtual CPUs) with eight partitions,
for a 64 ⇥ 64 matrix product, the in-memory C is an order
of magnitude faster than LAMINAR. However, when the C
version logs each element to a Linux file to achieve the
same persistence characteristics as LAMINAR, it is an order of
magnitude slower. Analyzing this disparity is beyond the scope
of our current work since working with POSIX threads and
C as universal development and implementation technologies
has well-known programmer productivity and software main-
tenance drawbacks that LAMINAR is designed to address. It is
noteworthy, however, that LAMINAR is “somewhere between”
in-memory C and C with simple Linux-file-based persistence.

V. CONCLUSIONS

We have presented LAMINAR, a new programming sys-
tem for creating robust IoT applications. LAMINAR layers a
distributed, multiscale dataflow programming model over an
event-driven, highly concurrent, lock-free, log-based, multi-
scale runtime. LAMINAR combines triggered computation and
append-only, log-based persistent storage to implement its
dataflow semantics efficiently. By doing so, we show that it
is possible to use dataflow to hide many of the complexities
of “lock-free” event-driven programming while leveraging the
the portability and fault resiliency that such a system provides.

Our evaluation shows that LAMINAR simplifies the syn-
chronization of events leading to less complex and more per-
formant implementations. Further, the LAMINAR type system
facilitates effective scaling, which is enhanced by partitioning
optimizations enabled by its dataflow semantics. Designed for
distributed IoT applications that experience frequent device
and network failures, including its aggressive failure resiliency
and recovery features, LAMINAR achieves performance com-
parable to alternative IoT technologies that treat failures as rare
events and thus must incur greater recovery latencies. These
features add to minimizing downtime, enhancing application
reliability without developer intervention, thus making LAM-
INAR a robust dataflow application runtime.

REFERENCES

[1] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen,
“Orchestration of microservices for iot using docker and edge comput-
ing,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118–123,
2018.

[2] K. Vandikas and V. Tsiatsis, “Microservices in iot clouds,” in 2016
Cloudification of the Internet of Things (CIoT). IEEE, 2016, pp. 1–6.

[3] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2016, pp. 1–6.

[4] A. Kurniawan, Learning AWS IoT: Effectively manage connected devices
on the AWS cloud using services such as AWS Greengrass, AWS button,
predictive analytics and machine learning. Packt Publishing Ltd, 2018.

[5] B. Sharma and M. S. Obaidat, “Comparative analysis of iot based
products, technology and integration of iot with cloud computing,” IET
Networks, vol. 9, no. 2, pp. 43–47, 2020.

[6] S. Klein, IoT Solutions in Microsoft’s Azure IoT Suite. Springer, 2017.
[7] W.-T. Lin, C. Krintz, and R. Wolski, “Tracing Function Dependencies

Across Clouds,” in IEEE Cloud, 2018.
[8] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and

J. D. Davis, “Corfu: A shared log design for flash clusters,” in USENIX
NSDI, 2012.

[9] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A
scalable shared log for data management in multi-datacenter cloud
environments.” in EDBT, 2015, pp. 13–24.

[10] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “CSPOT:
Portable, Multi-scale Functions-as-a-Service for IoT,” in ACM Sympo-
sium on Edge Computing, 2019.

[11] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Transactions on
computers, vol. 100, no. 1, pp. 24–35, 1987.

[12] T. Meng, G. Jacobs, R. W. Brodersen, and D. G. Messerschmitt, “Asyn-
chronous processor design for digital signal processing,” in ICASSP-88.,
International Conference on Acoustics, Speech, and Signal Processing.
IEEE, 1988, pp. 2013–2016.

[13] B. Marr, J. Karl, L. Lewins, K. Prager, and D. Thompson, “An asyn-
chronous dataflow signal processing architecture to minimize energy
per op,” in 2013 IEEE 19th International Symposium on Asynchronous
Circuits and Systems. IEEE, 2013, pp. 50–57.

[14] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von Platen,
M. Mattavelli, and M. Raulet, “Opendf: a dataflow toolset for recon-
figurable hardware and multicore systems,” ACM SIGARCH Computer
Architecture News, vol. 36, no. 5, pp. 29–35, 2009.

[15] E. C. Klikpo, J. Khatib, and A. Munier-Kordon, “Modeling multi-
periodic simulink systems by synchronous dataflow graphs,” in 2016
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE, 2016, pp. 1–10.

[16] E. Spertus and W. J. Dally, Experiments with Dataflow on a General-
Purpose Parallel Computer. Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, 1991.

[17] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Symposium on Operating System Design and
Implementation (OSDI), 2004.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
EuroSys, 2007.

[19] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand, “CIEL: a universal execution engine for distributed data-
flow computing,” in USENIX Symposium on Networked Systems Design
and Implementation, 2011.

[20] “GNURadio,” 2023, https://wiki.gnuradio.org/index.php/Tutorials [On-
line; accessed 10-Jul-2023].

[21] J. Kodosky, “Labview,” Proceedings of the ACM on Programming
Languages, vol. 4, no. 78, 2020.

[22] M. Blackstock and R. Lea, “Toward a distributed data flow platform
for the web of things (distributed node-red),” in Proceedings of the 5th
International Workshop on Web of Things, 2014, pp. 34–39.

[23] H. Søndergaard and P. Sestoft, “Referential transparency, definiteness
and unfoldability,” Acta Informatica, vol. 27, pp. 505–517, 1990.

[24] D. Matei, “Referential transparency tutorial,” 2023,
https://www.baeldung.com/cs/referential-transparency.

[25] Z. Xie, H. Sun, and K. Saluja, “Survey of software fault tolerance
techniques,” University of Wisconsin-Madison, Department of Electrical
and Computer Engineering, 2006.

[26] M. Kitakami, S. Kubota, and H. Ito, “Fault-tolerance of functional
programs based on the parallel graph reduction,” in Proceedings 2001
Pacific Rim International Symposium on Dependable Computing. IEEE,
2001, pp. 319–322.

[27] J. P. Morrison, J. J. Kennedy, and D. A. Power, “Fault tolerance in the
webcom metacomputer,” in Proceedings International Conference on
Parallel Processing Workshops. IEEE, 2001, pp. 245–250.

[28] R. S. Nikhil, “The parallel programming language id and its compilation
for parallel machines,” International Journal of High Speed Computing,
vol. 5, no. 02, pp. 171–223, 1993.

[29] J. Guttag, J. Horning, and J. Williams, “Fp with data abstraction and
strong typing,” in Proceedings of the 1981 conference on Functional
programming languages and computer architecture, 1981, pp. 11–24.

[30] P. Hudak and J. H. Fasel, “A gentle introduction to haskell,” ACM
Sigplan Notices, vol. 27, no. 5, pp. 1–52, 1992.

[31] J. D. Ullman, Elements of ML programming (ML97 ed.). Prentice-Hall,
Inc., 1998.

[32] J. T. Feo, D. C. Cann, and R. R. Oldehoeft, “A report on the sisal
language project,” Journal of Parallel and Distributed Computing,
vol. 10, no. 4, pp. 349–366, 1990.

[33] W. W. Wadge, E. A. Ashcroft et al., Lucid, the dataflow programming
language. Academic Press London, 1985, vol. 303.

[34] R. S. Nikhil and K. K. Pingali, “I-structures: Data structures for
parallel computing,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 11, no. 4, pp. 598–632, 1989.

[35] D. A. Turner, “Miranda: A non-strict functional language with poly-
morphic types,” in Functional Programming Languages and Computer
Architecture: Nancy, France, September 16–19, 1985. Springer, 1985,
pp. 1–16.

[36] “The purescript language,” 2023, https://www.purescript.org.
[37] “JavaScript,” ”http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM”.
[38] “Keysight vee,” 2023, https://www.keysight.com/us/en/home.html.
[39] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,

P. Ohl, K. Thiel, and B. Wiswedel, “Knime-the konstanz information
miner: version 2.0 and beyond,” AcM SIGKDD explorations Newsletter,
vol. 11, no. 1, pp. 26–31, 2009.

[40] “Hadoop MapReduce,” ”http://hadoop.apache.org/” Accessed Mar 2024.
[41] Y. Bu, B. Howe, M. Balazinska, and M. Ernst, “HaLoop: Efficient

iterative data processing on large clusters,” in Proc. VLDB Endow., 2010.
[42] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data intensive

scientfic analysis,” in eScience, 2008.
[43] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,

“Apache Tez: A Unifying Framework for Modeling and Building Data
Processing Applications,” in SIGMOD, 2015.

[44] “Apache TEZ,” 2024, https://tez.apache.org, Accessed Mar 1 2024.
[45] “Lwn thread cancel,” 2023, https://lwn.net/Articles/683118/.
[46] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, and E. De Lara,

“Cloudpath: A multi-tier cloud computing framework,” in Proceedings
of the Second ACM/IEEE Symposium on Edge Computing, 2017, pp.
1–13.

[47] T. Pfandzelter and D. Bermbach, “tinyfaas: A lightweight faas platform
for edge environments,” in 2020 IEEE International Conference on Fog
Computing (ICFC). IEEE, 2020, pp. 17–24.

[48] “AWS Greengrass,” 2019, https://aws.amazon.com/greengrass/ [Online;
accessed 12-Sep-2019].

[49] “Iot edge — microsoft azure,” 2023, https://azure.microsoft.com/en-
us/services/iot-edge/.

[50] “Aws lambda – serverless compute - amazon web services,” 2023,
https://aws.amazon.com/lambda/.

[51] craigshoemaker, “Azure functions overview,” 2023,
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
overview.

[52] “Cloud functions,” 2021, https://cloud.google.com/functions.
[53] M. Sadowski, L. Frantzell, and Sadowski, “Apache openwhisk–open

source project,” Serverless Swift: Apache OpenWhisk for iOS developers,
pp. 37–57, 2020.

[54] “OpenFaaS,” 2020, https://www.openfaas.com [Online; accessed 1-Sep-
2020].

[55] J. Herath, T. Yuba, and N. Saito, “Dataflow computing,” in Parallel
Algorithms and Architectures: International Workshop Suhl, GDR, May
25–30, 1987 Proceedings. Springer, 1987, pp. 25–36.

[56] “GraphViz DOT Language,” 2023, https://graphviz.org/docs/layouts/dot/,
Accessed Dec 1 2023.

[57] S. Skedzielewski and J. Glauert, “If1 an intermediate form for applicative
languages,” Lawrence Livermore National Laboratory Manual M-170,
Livermore, CA, 1985.

[58] S. Skedzielewski and M. Welcome, “Data flow graph optimization in
if1,” in Functional Programming Languages and Computer Architecture,
1985.

[59] “Intel NUC,” http://www.intel.com/content/www/us/en/nuc/overview.html
[Online; accessed 14-Feb-2015].

[60] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, p. e4257, 2017.

[61] “Apache Storm,” 2023, https://storm.apache.org/.
[62] “Microsoft Azure,” 2023, https://azure.microsoft.com/.
[63] O. Banos, R. Garcia, and A. Saez, “MHEALTH Dataset,” UCI Machine

Learning Repository, 2014, DOI: https://doi.org/10.24432/C5TW22.

