
Improving Mobile Program Performance Through the Use of a
Hybrid Intermediate Representation

Chandra Krintz
Computer Science Department

University of California, Santa Barbara

Abstract
We present a novel transfer format for mobile programs that is a hybrid of two existing formats: bytecode
and SafeTSA. Java bytecode offers a compact representation and ease of interpretation (fast-compilation);
SafeTSA offers amenability to optimization. We use program profiling to guide format selection at the
method-level. Methods deemed “hot” are those for which optimization should be expended and as such,
are encoded using the SafeTSA format. All other methods are encoded using bytecode. Our hybrid format
exploits the benefits of each constituent format to reduce compilation, execution, and transfer overhead.

1 Introduction
The Internet is a constantly changing set of high-performance computational, communication, and storage
devices, the aggregation of which offers tremendous performance potential. Users of the Internet can employ
the vast processing power that is available using a programming methodology called Mobile Computing in
which code is transferred from where it is stored to where it is executed automatically by the execution
environment. Currently, however, the utility of mobile computing is limited by poor performance. This is
due to three primary sources of overhead introduced during mobile program execution:

� Transfer delay: the transfer time between the source and destination machines for all non-local code
and data. Internet performance can be highly variable across links as well as for the same link making
it extremely difficult to maintain acceptable transfer times.

� Compilation delay: the translation time from transfer format (source, intermediate form, etc.) to
native code of the target architecture. Optimization time (if any) contributes to this overhead.

� Execution delay: the opportunity cost (loss of optimization potential) introduced by the use of dy-
namic compilation and optimization time. It has proven to be extremely difficult to achieve efficient
execution without introducing significant compilation delay.

These overheads are experienced by the executing program as long startup times, intermittent interruption,
and slow execution speeds. The degree to which transfer, compilation, and execution delay impact perfor-
mance is dictated by the choice of mobile program transfer format.

Java bytecode [16] is the most pervasive mobile program transfer format in use today. It has pros-
pered, among other reasons, since it is highly portable and enables type-safe execution. Bytecode is an
architecture-independent intermediate format that, once written, can execute on any machine on which there
is an execution environment (a Java Virtual Machine (JVM) [16]). The bytecode format is a 0-address, or
stack-machine, representation in which operations are performed using a single data structure called a stack.

The use of the bytecode format as well as other similar formats, e.g., the Common Intermediate Lan-
guage (CIL) [8] from the Microsoft .Net Framework [13], introduces significant compilation and execution
delay. Since most of the hardware architectures in use today implement a register machine model, bytecode



programs must be translated from the stack model to the register model. This is not a straight-forward trans-
formation and requires abstract execution and aggressive optimization to enable high-performance. Since
the compilation and optimization of mobile Java programs occurs while the program is running, significant
overhead is required to achieve high-performance. Existing Java execution environments that implement
highly optimizing compiler and adaptive optimization technology, have yet to enable the high-performance
of similar C and Fortran programs [2, 7].

An alternative transfer format, called SafeTSA [3], is more amenable to optimization. SafeTSA imple-
ments a virtual register model (as opposed to the stack-based model used in bytecode) and encodes instruc-
tions using an extension to the Static Single Assignment (SSA) [9, 6] form, an intermediate form used
extensively in static, highly-optimizing compilers. The use of an SSA-like mobile transfer format has the
potential of enabling optimized execution time with reduced compilation delay. However, SafeTSA is larger
than bytecode (introducing transfer delay) and it cannot be directly interpreted (fast-compiled) as bytecode
can. Fast-compilation is vital for effective adaptive optimization of mobile applications [14, 2, 7].

Both bytecode and SafeTSA must trade off one source of mobile program overhead for another: bytecode
trades off compilation overhead for transfer delay; SafeTSA trades off transfer and compilation delay for
execution performance. With this work, we present a novel mobile program format that uses both
bytecode and SafeTSA that exploits the benefits yet avoids the overheads of each.

2 Hybrid Intermediate Representation for Mobile Java Programs
To reduce the transfer, compilation, and execution delay that is imposed on mobile Java programs, we
present a novel intermediate representation for mobile Java programs. Our format is a hybrid of two existing
formats: Java bytecode and SafeTSA. In this section, we describe each of these formats then show how they
can be combined to improve mobile program performance.

2.1 Java Bytecode

The Java transfer format, bytecode, is the most common mobile program format currently used. It is a
0-address, or stack-machine, representation in which operations are performed using a single stack data
structure. The stack format is extremely simple; We can easily implement interpreters (and fast-compilers)
as many have [12, 1, 2, 17]. Method code in this format are very compact since multiple operations are
implicitly encoded into a single instruction. However, access to values is restricted to the top of the stack.
For example, the add instruction indicates that the top two values on the stack should be extracted (popped),
moving all other stack values up. The values should then be added and the result should be placed on the
top of the stack (pushed), moving all other values down. Ease in interpretation (fast translation for adaptive
compilation) and compactness (fast transfer) are vital to mobile program performance.

However, bytecode is not amenable to optimization. It requires considerable effort (and hence compila-
tion delay) to convert methods to an intermediate form that can be used directly by an optimizing compiler.
Difficulties arise, among other reasons, since the stack model does not directly map to the register model
used by commonly available architectures. In addition, the stack model serializes computation and prevents
reuse of values (since only the value at top of the stack is accessible at any given time).

2.2 SafeTSA

A mobile transfer format proposed recently, called SafeTSA, replaces the stack-based model with a virtual
register model. The format uses an extension to the Static Single Assignment [9, 6] (SSA) form, an inter-
mediate representation used extensively in static, highly-optimizing compilers. SSA is a representation in
which each variable value is assigned a name. SSA simplifies optimization by limiting the number of reach-
ing definitions (an assignment to a variable name that reaches a program point at which there is a use of



that variable name) and enabling efficient data-flow algorithms to be used for optimization. Since SafeTSA
is an extension of SSA form, SafeTSA programs need not be converted to SSA form by a compilation sys-
tem. That is, optimization algorithms can operate directly on the transfer format. As such SafeTSA has the
potential of enabling optimized execution time with reduced compilation delay.

However, an SSA representation of a program is significantly larger than the original program [9]. This is
reflected in the size of SafeTSA programs. In [3], the authors present reductions in SafeTSA program size
over bytecode, however, SafeTSA is compressed and the bytecode programs are not. SafeTSA is encoded
using a prefix encoding that is similar to Huffman encoding with equal symbol probabilities; the instruction
stream is organized to improve the compression ratio of the algorithm [3, 10]. In the programs we studied
(for which results are presented below), SafeTSA is 3 times larger than compressed bytecode.

Another limitation of SafeTSA is that it cannot be directly interpreted or quickly translated. There is no
direct mapping between a phi-node in SSA form (used for join points in the control flow graph [9]) and an
instruction in any popular architecture instruction set. SafeTSA therefore, requires translation of phi-nodes
prior to interpretation or fast-compilation. As a result, SafeTSA programs cannot be adaptively optimized
as effectively as bytecode programs. Adaptive optimization is a popular dynamic optimization strategy
(described below) that reduces compilation overhead while enabling highly optimized execution speeds by
combining both fast-compilation and aggressive optimization.

2.3 Combining Java Bytecode and SafeTSA to Form a Hybrid Representation

The use of Java bytecode as an intermediate format, imposes optimization and execution delay yet enables
compactness, and direct, fast, unoptimized compilation for use in adaptive optimization. Use of the SafeTSA
format introduces transfer and compilation overhead (for fast compilation) but enables improved execution
performance. We believe that by combining these two formats into a hybrid representation, we can exploit
the benefits that both enable yet avoid much of the overhead that is introduced by the use of each.

To enable this, we incorporate many of the ideas from existing adaptive optimization systems [2, 7, 12,
11, 15, 17]. Adaptive optimization is a technique in which a fast, non-optimizing compiler (or interpreter)
is used to compile a method the first time it is invoked. Instrumentation is inserted into the method and
on-line measurements are made to determine when program execution characteristics warrant optimization.
When a threshold for a method is reached, e.g., due to number of method invocations or the amount of
time spent in a method, an optimizing compiler is used to re-compile the method using various levels of
optimization (or just a single level in some systems). Such systems are called adaptive optimization systems
since they use optimization to enable program performance to adapt as program execution behavior changes.
Adaptive systems reduce compilation overhead since optimization is only performed as deemed necessary
by the measurement system.

In our hybrid model, we encode programs at the method-level with either bytecode or SafeTSA. We use
bytecode for its compactness and direct interpretation (fast-compilation) to reduce transfer delay and to
enable adaptive optimization. We use SafeTSA for its amenability to optimization to reduce compilation
delay and to improve execution speeds. In concurrent work [4], researchers experiment with combining
SafeTSA and bytecode in programs at the class level to reduce compilation delay. To our knowledge, our
hybrid approach is the first to propose such encoding at the method-level to reduce compilation, execution,
and transfer delay. Another distinguishing feature of our hybrid model is that we incorporate off-line pro-
file information, much like that performed by adaptive optimization systems on-line, to guide selection of
method-level encoding.

We generate a profile of the dynamic characteristics of each program, off-line. We insert instrumentation
into programs and monitor their execution. From this information we can identify popular, or hot, methods.
Hot methods are those that account for the majority of the program execution time. Since most of the



OptCT OptCT OptTT BaseCT BaseTT Method Methods Hot
Benchmark (Secs) (No SSA build) (Secs) (Secs) (Secs) Count Execd Methods
DB (209) 2.00 1.48 19.53 0.00 22.91 34 27 8
Jack (228) 6.60 5.02 8.85 0.04 9.16 315 265 10
Javac (213) 13.28 9.50 13.98 0.08 12.12 1190 740 36
Jess (202) 7.04 5.70 7.29 0.04 8.82 690 412 29
Average 7.23 5.42 12.41 0.04 13.25 557 361 21

Table 1: Benchmark Statistics Using JikesRVM.

execution time is spent in these methods, we postulate that these are the methods that should be optimized.
We use the JikesRVM Controller and sampling system [5] to generate our profiles.

We encode hot methods in the SafeTSA format. All other methods are implemented with bytecode.
During execution (using JikesRVM), the dynamic compilation system determines which format a method
is in using bytecode annotation [14]. A bit associated with each method is set in the class file if a method
is encoded using SafeTSA. An optimizing compiler is used to optimize an annotated method (in SafeTSA).
All other methods (in bytecode) are fast-compiled (without optimization) or interpreted.

2.4 Discussion of Hybrid Performance Potential

Currently, there is no freely available Java compilation system that has a SafeTSA front-end; we plan to im-
plement one as part of this continuing project. In addition, SafeTSA tools are not freely available. To enable
evaluation of our hybrid format, we assume that SafeTSA performance characteristics are similar to those
of bytecode executed using the JikesRVM optimizing that (at Level 2) performs SSA-based optimizations.
To evaluate the performance potential of our hybrid format, we extrapolate the performance potential of our
hybrid technique from actual JikesRVM performance measurements.

We measured compilation (optimization) and execution time for four SpecJVM programs using the
JikesRVM compilation system on a 2GHz x86 machine with 512KB of memory and Debian Linux ver-
sion 2.4.16. The measurements are shown in Table 1. The first column of data is the time for optimized
JikesRVM compilation. All times in the table are in seconds. The second column is column 1 without the
time required for building the SSA form in JikesRVM. On average, SSA-form construction accounts for
20% of the total compilation time by the optimizing compiler. The third column of data is the total number
of seconds for both compilation and execution. The fourth and fifth columns are the same as the first and
third, only for the JikesRVM fast (baseline) compiler. The sixth column shows the total number of static
methods in the program; the seventh column indicates the number of these methods that are executed. The
last column shows the number of methods that our profile indicates are hot. More information about how
hot methods are identified can be found in [5].

To estimate the performance potential of our hybrid model, we make several assumptions using these
measurements. First, we assume that SafeTSA compilation time is the same as that for the JikesRVM
optimization without the overhead of converting the JikesRVM high-level intermediate representation to
SSA-form (column 2 in Table 1). Actual results for this comparison support this assumption [4], in which
compilation time for class files in SafeTSA is 20% faster than when they are in bytecode format. Second, we
assume that SafeTSA execution speed is similar to that for the code generated by the JikesRVM optimizing
compiler (Level 2).

To compute the performance potential of programs in our hybrid format, we measured the time required
for JikesRVM execution of the benchmarks during which only the hot methods are optimized. Figure 1
indicates the performance potential of our hybrid model on compilation and execution delay. The first
bar for each benchmark is the total time (compilation plus execution time) for fast-compiled, unoptimized



0

5

10

15

20

25

DB (209) Jack (228) Javac (213) Jess (202) Average

T
o

ta
l T

im
e 

in
 S

ec
o

n
d

s

Bytecode
SafeTSA
Hybrid

Figure 1: Performance Potential of the Hybrid Model on Total Time (compilation plus execution delay).

bytecode programs. Times (y-axis) are in seconds. The second bar is the total time for SafeTSA (level 2
optimized bytecode programs). The last bar is the performance potential of our hybrid model: hot methods,
in SafeTSA, are optimized and cold methods, in bytecode, are fast compiled. The right-most set of results
indicate the average performance potential. On average, the hybrid model reduces total time (compilation
plus execution delay) by 28% over unoptimized bytecode and by 20% over optimized SafeTSA.

We also considered the potential effect of our hybrid model on transfer delay. These transfer character-
istics are shown in Table 2. Column 1 of data shows the size of the benchmarks in bytecode format. All
sizes are in kilobytes (KB). Column 2 shows the size of the benchmarks archived using the UNIX tar utility
and compressed using UNIX gzip compression utility. The third column shows the size of SafeTSA pro-
grams. This number is extrapolated from the results reported in [3]; the authors present results that indicate
that SafeTSA programs are 26% smaller than bytecode files on average. The final column indicates the
performance potential of our hybrid model on transfer delay. For these values we computed the size using
compressed bytecode for cold methods and SafeTSA for hot methods. On average, the hybrid model has
the potential to reduce transfer size over SafeTSA programs by over 250%.

3 Conclusion
We present an alternative transfer format for mobile programs that is a hybrid of two existing formats:
Java bytecode and SafeTSA. Java bytecode offers a compact representation and ease of interpretation (fast
or non-optimized compilation) and SafeTSA offers amenability to optimization. Using our hybrid model,
class files are encoded in SafeTSA or bytecode at the method-level. We select the SafeTSA format for
methods that warrant optimization overhead to improve execution performance, i.e., are hot. We measure
hotness using off-line profiling. We encode hot methods with SafeTSA and all others with bytecode. A
dynamic compilation system then optimizes only SafeTSA methods and fast-compiles bytecode methods.
Our preliminary evaluation of the performance potential of this hybrid model indicates that it can reduce
both compilation and execution delay as well as transfer delay.

References

[1] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and J. Stichnoth. Fast,Effective Code Generation in a Just-In-
Time Java Compiler. In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design
and Implementation, October 2000.



Size in KB
Compressed

Benchmark Bytecode Bytecode SafeTSA Hybrid
DB (209) 20.00 5.41 14.76 7.61
Jack (228) 170.00 50.74 125.46 53.11
Javac (213) 2480.00 732.19 1830.24 765.41
Jess (202) 500.00 83.99 369.00 95.97
Average 792.50 218.09 584.87 230.53

Table 2: Benchmark Size Statistics and Performance Potential of the Hybrid Model on Transfer Delay.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM
Systems Journal, 39(1), 2000.

[3] W. Amme, N. Dalton, J. Ronne, and M. Franz. SafeTSA: A Type Safe and Referentially Secure Mobile-Code
Representation Based on Static Single Assignment Form. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, pages 137–147, June 2001.

[4] W. Amme, J. von Ronne, and M. Franz. Using the safetsa representation to boost the performance of an existing
java virtual machine. Technical Report UC Irvine 06/02, University of California, Irvine, 2002.

[5] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization in the jalaepeño jvm. In ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Oc-
tober 2000.

[6] J. Choi, R. Cytron, and J. Ferrante. Automatic Construction of Sparse Data Flow Evaluation Graphs. pages
55–66, January 1991.

[7] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java Under Dynamic Optimizations. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, October 2000.

[8] ECMA standardization of the Common Language Infrastructure. http://msdn.microsoft.com/net/ecma/.

[9] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

[10] Personal communcation with Michael Franz, author of [3]. http://www.ics.uci.edu/˜franz/.

[11] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Dyc: An expressive annotation–directed dynamic
compiler for c. Technical Report Tech Report UW-CSE-97-03-03, University of Washington, 2000.

[12] The Java Hotspot performance engine architecture.

[13] Microsoft Inc. Microsoft Explorer. http://www.microsoft.com/net/.

[14] C. Krintz and B. Calder. Using Annotation to Reduce Dynamic Optimization Time. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation, October 1998.

[15] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the Overhead of Dynamic Compilation. Software—
Practice and Experience, 31(8):717–738, 2001.

[16] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1997.

[17] M. Plezbert and R. Cytron. Does just in time = better late than never? In Proceedings of the SIGPLAN’97
Conference on Programming Language Design and Implementation, January 1997.


