
Improving Mobile Program Performance

Through the Use of a Hybrid Intermediate

Representation

Chandra Krintz

Computer Science Department
University of California, Santa Barbara

Abstract
Abstract. We present a novel transfer format for mobile programs that
is a hybrid of two existing formats: bytecode and SafeTSA. Java byte-
code offers a compact representation and ease of interpretation (fast-
compilation); SafeTSA offers amenability to optimization. We use pro-
gram profiling to guide format selection at the method-level. Methods
deemed “hot” are those for which optimization should be expended and
as such, are encoded using the SafeTSA format. All other methods are
encoded using bytecode. Our hybrid format exploits the benefits of each
constituent format to reduce compilation, execution, and transfer over-
head.

1 Introduction

The Internet is a constantly changing set of high-performance computational,
communication, and storage devices, the aggregation of which offers tremendous
performance potential. Users of the Internet can employ the vast processing
power that is available using a programming methodology called Mobile Com-

puting in which code is transferred from where it is stored to where it is executed
automatically by the execution environment. Currently, however, the utility of
mobile computing is limited by poor performance. This is due to three primary
sources of overhead introduced during mobile program execution:

– Transfer delay: the transfer time between the source and destination ma-
chines for all non-local code and data. Internet performance can be highly
variable across links as well as for the same link making it extremely difficult
to maintain acceptable transfer times.

– Compilation delay: the translation time from transfer format (source, inter-
mediate form, etc.) to native code of the target architecture. Optimization
time (if any) contributes to this overhead.

– Execution delay: the opportunity cost (loss of optimization potential) in-
troduced by the use of dynamic compilation and optimization time. It has
proven to be extremely difficult to achieve efficient execution without intro-
ducing significant compilation delay.



These overheads are experienced by the executing program as long startup times,
intermittent interruption, and slow execution speeds. The degree to which trans-
fer, compilation, and execution delay impact performance is dictated by the
choice of mobile program transfer format.

Java bytecode [1] is the most pervasive mobile program transfer format in
use today. It has prospered, among other reasons, since it is highly portable and
enables type-safe execution. Bytecode is an architecture-independent interme-
diate format that, once written, can execute on any machine on which there is
an execution environment (a Java Virtual Machine (JVM) [1]). The bytecode
format is a 0-address, or stack-machine, representation in which operations are
performed using a single data structure called a stack.

The use of the bytecode format as well as other similar formats, e.g., the Com-
mon Intermediate Language (CIL) [2] from the Microsoft .Net Framework [3],
introduces significant compilation and execution delay. Since most of the hard-
ware architectures in use today implement a register machine model, bytecode
programs must be translated from the stack model to the register model. This
is not a straight-forward transformation and requires abstract execution and
aggressive optimization to enable high-performance. Since the compilation and
optimization of mobile Java programs occurs while the program is running, sig-
nificant overhead is required to achieve high-performance. Existing Java exe-
cution environments that implement highly optimizing compiler and adaptive
optimization technology, have yet to enable the high-performance of similar C
and Fortran programs [4, 5].

An alternative transfer format, called SafeTSA [6], is more amenable to op-
timization. SafeTSA implements a virtual register model (as opposed to the
stack-based model used in bytecode) and encodes instructions using an exten-
sion to the Static Single Assignment (SSA) [7, 8] form, an intermediate form
used extensively in static, highly-optimizing compilers. The use of an SSA-like
mobile transfer format has the potential of enabling optimized execution time
with reduced compilation delay. However, SafeTSA is larger than bytecode (in-
troducing transfer delay) and it cannot be directly interpreted (fast-compiled)
as bytecode can. Fast-compilation is vital for effective adaptive optimization of
mobile applications [9, 4, 5].

Both bytecode and SafeTSA must trade off one source of mobile program
overhead for another: bytecode trades off compilation overhead for transfer delay;
SafeTSA trades off transfer and compilation delay for execution performance.
With this work, we present a novel mobile program format that uses

both bytecode and SafeTSA that exploits the benefits yet avoids the

overheads of each.

2 Hybrid Intermediate Representation for Mobile Java

Programs

To reduce the transfer, compilation, and execution delay that is imposed on
mobile Java programs, we present a novel intermediate representation for mobile



Java programs. Our format is a hybrid of two existing formats: Java bytecode
and SafeTSA. In this section, we describe each of these formats then show how
they can be combined to improve mobile program performance.

2.1 Java Bytecode

The Java transfer format, bytecode, is the most common mobile program for-
mat currently used. It is a 0-address, or stack-machine, representation in which
operations are performed using a single stack data structure. The stack format
is extremely simple; We can easily implement interpreters (and fast-compilers)
as many have [10, 11, 4, 12]. Method code in this format are very compact since
multiple operations are implicitly encoded into a single instruction. However,
access to values is restricted to the top of the stack. For example, the add in-
struction indicates that the top two values on the stack should be extracted
(popped), moving all other stack values up. The values should then be added
and the result should be placed on the top of the stack (pushed), moving all other
values down. Ease in interpretation (fast translation for adaptive compilation)
and compactness (fast transfer) are vital to mobile program performance.

However, bytecode is not amenable to optimization. It requires considerable
effort (and hence compilation delay) to convert methods to an intermediate form
that can be used directly by an optimizing compiler. Difficulties arise, among
other reasons, since the stack model does not directly map to the register model
used by commonly available architectures. In addition, the stack model serializes
computation and prevents reuse of values (since only the value at top of the stack
is accessible at any given time).

2.2 SafeTSA

A mobile transfer format proposed recently, called SafeTSA, replaces the stack-
based model with a virtual register model. The format uses an extension to
the Static Single Assignment [7, 8] (SSA) form, an intermediate representation
used extensively in static, highly-optimizing compilers. SSA is a representation
in which each variable value is assigned a name. SSA simplifies optimization by
limiting the number of reaching definitions (an assignment to a variable name
that reaches a program point at which there is a use of that variable name)
and enabling efficient data-flow algorithms to be used for optimization. Since
SafeTSA is an extension of SSA form, SafeTSA programs need not be converted
to SSA form by a compilation system. That is, optimization algorithms can
operate directly on the transfer format. As such SafeTSA has the potential of
enabling optimized execution time with reduced compilation delay.

However, an SSA representation of a program is significantly larger than the
original program [7]. This is reflected in the size of SafeTSA programs. In [6],
the authors present reductions in SafeTSA program size over bytecode, however,
SafeTSA is compressed and the bytecode programs are not. SafeTSA is encoded
using a prefix encoding that is similar to Huffman encoding with equal symbol
probabilities; the instruction stream is organized to improve the compression



ratio of the algorithm [6, 13]. In the programs we studied (for which results are
presented below), SafeTSA is 3 times larger than compressed bytecode.

Another limitation of SafeTSA is that it cannot be directly interpreted or
quickly translated. There is no direct mapping between a phi-node in SSA form
(used for join points in the control flow graph [7]) and an instruction in any pop-
ular architecture instruction set. SafeTSA therefore, requires translation of phi-

nodes prior to interpretation or fast-compilation. As a result, SafeTSA programs
cannot be adaptively optimized as effectively as bytecode programs. Adaptive
optimization is a popular dynamic optimization strategy (described below) that
reduces compilation overhead while enabling highly optimized execution speeds
by combining both fast-compilation and aggressive optimization.

2.3 Combining Java Bytecode and SafeTSA to Form a Hybrid

Representation

The use of Java bytecode as an intermediate format, imposes optimization and
execution delay yet enables compactness, and direct, fast, unoptimized compi-
lation for use in adaptive optimization. Use of the SafeTSA format introduces
transfer and compilation overhead (for fast compilation) but enables improved
execution performance. We believe that by combining these two formats into a
hybrid representation, we can exploit the benefits that both enable yet avoid
much of the overhead that is introduced by the use of each.

To enable this, we incorporate many of the ideas from existing adaptive
optimization systems [4, 5, 10, 14, 15, 12]. Adaptive optimization is a technique
in which a fast, non-optimizing compiler (or interpreter) is used to compile a
method the first time it is invoked. Instrumentation is inserted into the method
and on-line measurements are made to determine when program execution char-
acteristics warrant optimization. When a threshold for a method is reached,
e.g., due to number of method invocations or the amount of time spent in a
method, an optimizing compiler is used to re-compile the method using various
levels of optimization (or just a single level in some systems). Such systems are
called adaptive optimization systems since they use optimization to enable pro-
gram performance to adapt as program execution behavior changes. Adaptive
systems reduce compilation overhead since optimization is only performed as
deemed necessary by the measurement system.

In our hybrid model, we encode programs at the method-level with either
bytecode or SafeTSA. We use bytecode for its compactness and direct interpre-
tation (fast-compilation) to reduce transfer delay and to enable adaptive opti-
mization. We use SafeTSA for its amenability to optimization to reduce compila-
tion delay and to improve execution speeds. In concurrent work [16], researchers
experiment with combining SafeTSA and bytecode in programs at the class level

to reduce compilation delay. To our knowledge, our hybrid approach is the first
to propose such encoding at the method-level to reduce compilation, execution,
and transfer delay. Another distinguishing feature of our hybrid model is that
we incorporate off-line profile information, much like that performed by adaptive
optimization systems on-line, to guide selection of method-level encoding.



We generate a profile of the dynamic characteristics of each program, off-line.
We insert instrumentation into programs and monitor their execution. From
this information we can identify popular, or hot, methods. Hot methods are
those that account for the majority of the program execution time. Since most
of the execution time is spent in these methods, we postulate that these are
the methods that should be optimized. We use the JikesRVM Controller and
sampling system [17] to generate our profiles.

We encode hot methods in the SafeTSA format. All other methods are imple-
mented with bytecode. During execution (using JikesRVM), the dynamic com-
pilation system determines which format a method is in using bytecode anno-
tation [9]. A bit associated with each method is set in the class file if a method
is encoded using SafeTSA. An optimizing compiler is used to optimize an anno-
tated method (in SafeTSA). All other methods (in bytecode) are fast-compiled
(without optimization) or interpreted.

2.4 Discussion of Hybrid Performance Potential

Currently, there is no freely available Java compilation system that has a SafeTSA
front-end; we plan to implement one as part of this continuing project. In addi-
tion, SafeTSA tools are not freely available. To enable evaluation of our hybrid
format, we assume that SafeTSA performance characteristics are similar to those
of bytecode executed using the JikesRVM optimizing that (at Level 2) performs
SSA-based optimizations. To evaluate the performance potential of our hybrid
format, we extrapolate the performance potential of our hybrid technique from
actual JikesRVM performance measurements.

OptCT OptCT (No OptTT BaseCT BaseTT Method Methods Hot
Benchmark (Secs) bldSSA) (Secs) (Secs) (Secs) Count Execd Methods

DB (209) 2.00 1.48 19.53 0.00 22.91 34 27 8
Jack (228) 6.60 5.02 8.85 0.04 9.16 315 265 10
Javac (213) 13.28 9.50 13.98 0.08 12.12 1190 740 36
Jess (202) 7.04 5.70 7.29 0.04 8.82 690 412 29

Average 7.23 5.42 12.41 0.04 13.25 557 361 21

Table 1. Benchmark Statistics Using JikesRVM. Column 1 of data is the time for
optimized JikesRVM compilation (secs). Column 2 (No bldSSA) is column 1 without
building SSA-form. Column 3 is compilation and execution time (secs) combined. Col-
umn 4 and 5 show the compilation and total time for the JikesRVM fast (baseline)
compiler. Column 6 is the static method count, column 7 the dynamic method count,
and the last column is the number of dynamic methods deemed hot by the JikesRVM
profile system.

We measured compilation (optimization) and execution time for four SpecJVM
programs using the JikesRVM compilation system on a 2GHz x86 machine with
512KB of memory and Debian Linux version 2.4.16. The measurements are



shown in Table 1. The first column of data is the time for optimized JikesRVM
compilation. All times in the table are in seconds. The second column (No
bldSSA) is column 1 without the time required for building the SSA form in
JikesRVM. On average, SSA-form construction accounts for 20% of the total
compilation time by the optimizing compiler. The third column of data is the
total number of seconds for both compilation and execution. The fourth and
fifth columns are the same as the first and third, only for the JikesRVM fast
(baseline) compiler. The sixth column shows the total number of static methods
in the program; the seventh column indicates the number of these methods that
are executed. The last column shows the number of methods that our profile
indicates are hot. More information about how hot methods are identified can
be found in [17].

To estimate the performance potential of our hybrid model, we make several
assumptions using these measurements. First, we assume that SafeTSA com-
pilation time is the same as that for the JikesRVM optimization without the
overhead of converting the JikesRVM high-level intermediate representation to
SSA-form (column 2 in Table 1). Actual results for this comparison support this
assumption [16], in which compilation time for class files in SafeTSA is 20%
faster than when they are in bytecode format. Second, we assume that SafeTSA
execution speed is similar to that for the code generated by the JikesRVM opti-
mizing compiler (Level 2).

To compute the performance potential of programs in our hybrid format, we
measured the time required for JikesRVM execution of the benchmarks during
which only the hot methods are optimized. Figure 1 indicates the performance
potential of our hybrid model on compilation and execution delay. The first bar
for each benchmark is the total time (compilation plus execution time) for fast-
compiled, unoptimized bytecode programs. Times (y-axis) are in seconds. The
second bar is the total time for SafeTSA (level 2 optimized bytecode programs).
The last bar is the performance potential of our hybrid model: hot methods, in
SafeTSA, are optimized and cold methods, in bytecode, are fast compiled. The
right-most set of results indicate the average performance potential. On average,
the hybrid model reduces total time (compilation plus execution delay) by 28%
over unoptimized bytecode and by 20% over optimized SafeTSA.

We also considered the potential effect of our hybrid model on transfer delay.
These transfer characteristics are shown in Table 2. Column 1 of data shows
the size of the benchmarks in bytecode format. All sizes are in kilobytes (KB).
Column 2 shows the size of the benchmarks archived using the UNIX tar utility
and compressed using UNIX gzip compression utility. The third column shows
the size of SafeTSA programs. This number is extrapolated from the results
reported in [6]; the authors present results that indicate that SafeTSA programs
are 26% smaller than bytecode files on average. The final column indicates the
performance potential of our hybrid model on transfer delay. For these values we
computed the size using compressed bytecode for cold methods and SafeTSA for
hot methods. On average, the hybrid model has the potential to reduce transfer
size over SafeTSA programs by over 250%.



0

5

10

15

20

25

DB (209) Jack (228) Javac (213) Jess (202) Average

T
ot

al
 T

im
e 

in
 S

ec
on

ds

Bytecode
SafeTSA
Hybrid

Fig. 1. Performance Potential of the Hybrid Model on Total Time (compilation plus
execution delay).

3 Conclusion

We present an alternative transfer format for mobile programs that is a hybrid
of two existing formats: Java bytecode and SafeTSA. Java bytecode offers a
compact representation and ease of interpretation (fast or non-optimized compi-
lation) and SafeTSA offers amenability to optimization. Using our hybrid model,
class files are encoded in SafeTSA or bytecode at the method-level. We select the
SafeTSA format for methods that warrant optimization overhead to improve
execution performance, i.e., are hot. We measure hotness using off-line profiling.
We encode hot methods with SafeTSA and all others with bytecode. A dynamic
compilation system then optimizes only SafeTSA methods and fast-compiles
bytecode methods. Our preliminary evaluation of the performance potential of
this hybrid model indicates that it can reduce both compilation and execution
delay as well as transfer delay.

Size in KB

Compressed
Benchmark Bytecode Bytecode SafeTSA Hybrid

DB (209) 20.00 5.41 14.76 7.61
Jack (228) 170.00 50.74 125.46 53.11
Javac (213) 2480.00 732.19 1830.24 765.41
Jess (202) 500.00 83.99 369.00 95.97

Average 792.50 218.09 584.87 230.53
Table 2. Benchmark Size Statistics and Performance Potential of the Hybrid Model
on Transfer Delay.



References

1. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley
(1997)

2. : (ECMA standardization of the Common Language Infrastructure)
http://msdn.microsoft.com/net/ecma/.

3. Inc., M.: (Microsoft Explorer) http://www.microsoft.com/net/.
4. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., P.Cheng, Choi, J.D., Coc-

chi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov, V.,
Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd, J.C.,
Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño virtual
machine. IBM Systems Journal 39 (2000)

5. Cierniak, M., Lueh, G., Stichnoth, J.: Practicing JUDO: Java Under Dynamic
Optimizations. In: Proceedings of the ACM SIGPLAN 2000 Conference on Pro-
gramming Language Design and Implementation. (2000)

6. Amme, W., Dalton, N., Ronne, J., Franz, M.: SafeTSA: A Type Safe and Ref-
erentially Secure Mobile-Code Representation Based on Static Single Assignment
Form. In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation. (2001) 137–147

7. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems 13 (1991) 451–490

8. Choi, J., Cytron, R., Ferrante, J.: Automatic Construction of Sparse Data Flow
Evaluation Graphs. (1991) 55–66

9. Krintz, C., Calder, B.: Using Annotation to Reduce Dynamic Optimization Time.
In: Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation. (1998)

10. : (The Java Hotspot performance engine architecture)
11. Adl-Tabatabai, A., Cierniak, M., Lueh, G., Parikh, V., Stichnoth, J.: Fast,Effective

Code Generation in a Just-In-Time Java Compiler. In: Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and Implementation.
(2000)

12. Plezbert, M., Cytron, R.: Does just in time = better late than never? In: Pro-
ceedings of the SIGPLAN’97 Conference on Programming Language Design and
Implementation. (1997)

13. : (Personal communcation with Michael Franz, author of [6])
http://www.ics.uci.edu/~franz/.

14. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.: Dyc: An expressive
annotation–directed dynamic compiler for c. Technical Report Tech Report UW-
CSE-97-03-03, University of Washington (2000)

15. Krintz, C., Grove, D., Sarkar, V., Calder, B.: Reducing the Overhead of Dynamic
Compilation. Software—Practice and Experience 31 (2001) 717–738

16. Amme, W., von Ronne, J., Franz, M.: Using the safetsa representation to boost
the performance of an existing java virtual machine. Technical Report UC Irvine
06/02, University of California, Irvine (2002)

17. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.: Adaptive optimization in
the jalaepeño jvm. In: ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA). (2000)


