
Application-level Prediction of Battery Dissipation

Chandra Krintz Ye Wen Rich Wolski

Computer Science Department
University of California, Santa Barbara

{ckrintz,wenye,rich}@cs.ucsb.edu

ABSTRACT
Mobile, battery-powered devices such as personal digital assis-
tants and web-enabled mobile phones have successfully emerged
as new access points to the world’s digital infrastructure. How-
ever, the growing gap between device capabilities and battery
technology requires novel techniques that extend battery life. Key
to the success of such techniques, is our ability to accurately pre-
dict the power consumption of a program.

In this paper, we investigate the degree to which battery dissi-
pation induced by program execution can be measured by applica-
tion-level software tools and predicted by a compiler and runtime
system. We present a novel technique with which we can accu-
rately estimate whole-program power-consumption for an arbi-
trary program by composing battery dissipation rates of bench-
marks. We empirically evaluate our technique using an iPAQ
hand-held device and a number of MiBench and other programs.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Sys-
tems—Modeling Techniques

General Terms
Measurement, Performance

Keywords
Battery Life Estimation, Resource-restricted devices, Application-
level prediction

1. INTRODUCTION
While hand-held, battery-powered devices have emerged as

new access points to the world’s digital infrastructure, their cost
and short battery life are factors that are holding back their enor-
mous potential. While economic factors will reduce the former,
mechanisms are needed to enable executing programs to adapt to
dwindling battery life. Many such techniques have been proposed
that facilitate energy conservation through different modes of op-
eration at both the device and device component level, i.e., active,
idle, standby, and sleep modes [2, 16, 13, 12, 25]. Other tech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

niques select instructions based on their energy consumption [14,
22, 23, 21].

Key to the success of such techniques, is our ability to ac-
curately predict the power consumption of a program. Much
work [22, 23, 14, 21, 15] has focused on the power consumed
by a CPU when executing a particular instruction. We observe,
however, that the battery dissipation caused by a program when
running on a hand-held device will involve many internal sub-
systems. Further, even if efficient models for all subsystems are
available, their independence is not obvious making a compre-
hensive compositional model potentially complex.

We address the problem of predicting program power con-
sumption from a different perspective. Our method relies on app-
lication-level observations of battery dissipation for a represen-
tative set of benchmarks when running on the entire device (and
not any subsystem in isolation). We show how these benchmark
dissipation rates can be combined to form an estimate for an ar-
bitrary program. By observing the power consumed by the whole
device as a “black-box”, our technique does not require a com-
position of subsystem models. At the same time, we use only
measurements that are available via standard operating system
interfaces making the methodology practical for implementation
in a runtime compilation system using currently available hard-
ware, i.e., without new hardware features for measuring power
consumption. For this study, we use the iPAQ hand-held device
with a StrongARM SA-1110 processor [6] — a popular Personal
Data Assistant (PDA) that is commonly available.

To combine individual benchmark values into an estimate for
a non-benchmark program, our work

• Identifies the relevant set of instruction categories that are
necessary to make accurate battery dissipation estimates
for the iPAQ.

• Demonstrates the way in which benchmark readings for
these categories can be composed into a dissipation esti-
mate for a target program.

• Details the accuracy of these estimates by comparing them
to observed dissipation values for a set of target application
programs.

• Presents empirical, non-simulated, results that show that
with relatively few instruction categories, accurate estimates
of battery lifetime can be derived.

As such, our results attempt to describe, as directly as possible,
the efficacy that would be observed by a dynamic (runtime) com-
pilation system deployed on currently available devices.

In the next section, we provide an overview of our approach
and describe the empirical platform that we used for this study.
We then describe our benchmark programs and present observed

battery drain curves for each. In Section 4, we then detail how we
compose battery dissipation curves from the benchmarks to pre-
dict the drain behavior of an arbitrary program. We then present
the efficacy of our approach using empirical data in Section 5 and
conclude in Section 6.

2. APPLICATION-LEVEL
POWER PREDICTION

Our objective with this work is to determine the degree to
which the impact a program has on battery dissipation (more
specifically, the battery drain curve) can be predicted using appli-
cation-level measurements of battery drain that could be made
available to a runtime compilation system. Note that the battery
dissipation of a program is a compositional effect caused by both
the program’s energy consumption and the characteristics of the
battery itself. Previous work [22, 23, 14, 21, 15] has studied
the power consumption characteristics at the processor instruc-
tion level. Combined these with battery models [7, 3, 10, 19,
18, 17, 20], one can estimate the battery dissipation of a program.
However, due to the limitations of battery models, such as high
computational cost and complex parameterization [26], composi-
tional model-based methods are not suitable for runtime compi-
lation systems. Furthermore, it is unclear how the composition
process will impact prediction accuracy.

In our work, we chose a black-box approach in which we at-
tempt to observe the dissipation characteristics at the application-
level. In particular, we profile the battery drain behavior for a set
of hand-coded benchmarks that each execute a single type of in-
struction. We then use this data to estimate the impact that the
execution of an arbitrary program will have on battery lifetime.

To predict the battery dissipation behavior for an arbitrary
program, we compose the dissipation curves obtained from our
benchmark profiles. Note that we are not computing the con-
sumption of individual instructions in the program from the bench-
mark measurements. Since the dissipation curve changes over
time, so does the impact an instruction will have on remaining
battery life. As such, we construct a complete battery dissipation
curve for the target application. We compute the rate of drain for
an arbitrary program directly from the rate of drain of the bench-
marks that implement the constituent instruction types of the pro-
grams. A compilation system can then use this constructed dis-
sipation curve to extract an estimate of battery dissipation for the
program, given the current battery level.

We do not consider the effect of using the display, wireless
communication, or file I/O. Our initial goal is to understand whether
battery dissipation curves from single-instruction benchmarks can
be used to estimate the dissipation curve of arbitrary, more com-
plex program power consumption behavior. We plan to investi-
gate other hand-held subsystems as part of future work.

In the next section, we describe our hand-coded benchmarks
and their battery consumption characteristics. First though, we
detail the experimental methodology that we use for the bench-
mark performance results that we present.

Experimental Platform and Methodology
To determine the observable power consumption characteristics
of applications, we chose the Compaq iPAQ H3600 personal dig-
ital assistant (PDA) as a test platform. The iPAQ’s processor
is the StrongARM SA-1110 that uses two on-chip data caches
(DCache) and one on-chip 16KB instruction cache (ICache). The
device can use AC or DC power; the battery that supplies the lat-
ter is a Danionics Lithium-Ion Polymer Battery (#DLP 305590) [1].
The voltage range for the battery is specified as 3.0 to 4.2 Volts.

We employ Familiar Linux [9] 0.5.1 with kernel version 2.4.16-
rmk1. Familiar implements battery management using the Hard-
ware Abstraction Layer (HAL) which exports battery data via the
/proc file system. The data values exported by HAL can be di-
rectly converted to millivolts: Given the voltage range of our bat-
tery and observed HAL maximum and minimum values of 953
and 705, respectively, we multiply the HAL raw data value by
4.2 to compute millivolts. A similar computation is performed
by the Familiar kernel for power management and visualization
facilities [5]. We use millivolts throughout this text (since it is the
metric exported) to describe battery level.

3. BENCHMARKING BATTERY
DISSIPATION BEHAVIOR

Our methodology uses a set of observed drain-rate curves from
a suite of benchmarks to determine the battery dissipation rate as-
sociated with a particular kind of instruction. Using the observed
dissipation curves for individual instruction categories, we com-
pose an estimate of overall program dissipation for an arbitrary
program. Throughout this text we distinguish benchmarks from
programs in this way.

We identified four general categories of relevant instruction
types: integer register operations, integer loads and stores, float-
ing point register operations, and floating point loads and stores.
In the remainder of this text, we refer to these benchmarks as
IReg, IMem, FPReg, and FPMem, respectively. In addition, we
examine the effect of cache-only data access versus full mem-
ory subsystem access. To do so, we varied the address range of
the IMem and FPMem benchmarks between 8000 bytes (cache
partially filled), 16000 bytes (cache full) and 32000 bytes (com-
plete cache flush). We refer to the in-cache versions of the IMem
and FPMem benchmarks as IMem Cache and FPMem Cache;
in addition, the address range in bytes are given in context. We
verified that all benchmarks exercised only the CPU and memory
subsystems we intended using a StrongARM version of the Sim-
pleScalar simulator [4]. All of the results we present, however,
were generated by executing directly on the device.

In addition, we developed memory benchmarks that imple-
mented only loads or only stores to determine whether the differ-
ence between battery consumption for loads and stores is signifi-
cant. The IMem, FPMem, IMem Cache, and FPMem Cache use
only load instructions. We developed IMemW and IMemW Cache
benchmarks that use only store instructions. We did not imple-
ment FPMemW or FPMemW Cache since, on the iPAQ we
chose there is no floating point (FP) unit (FP operations are imple-
mented via a trap instruction). As such, we assume that FP loads
and stores have equivalent battery dissipation characteristics. The
entire set of benchmarks is freely available.

To measure benchmark battery dissipation, we modified our
benchmarks so that each looped infinitely. We then fully charged
the iPAQ battery (to approximately 4000 mV) and executed each
benchmark until the battery died (at approximately 3000 mV).
We periodically polled (every 20 seconds) the Linux HAL re-
source interface and logged the result. We performed this experi-
ment repeatedly for each of the benchmarks. We varied the array
sizes (address ranges accessed) for both the in-cache and out-of-
cache benchmarks; we report on only 8000B (IMem Cache) and
32000B (IMem (out of cache)) here for brevity. However, curves
for other array sizes were nearly identical to the in-cache and out-
of-cache representatives that we present here.

We present a set of results that is representative of those we
collected in Figure 1. The x-axis is the time in seconds since
power was disconnected. The y-axis is the percentage of bat-
tery available as reported by HAL (converted to millivolts). We

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time Since Power Disconnect (sec.)

B
at

te
ry

 L
ev

el
 (

m
ill

iv
o

lt
s)

IReg

IMem-Cache

FPReg

IMem

IMemW

IMemW-Cache

FPMem

Figure 1: Comparison of battery drain rates for our bench-
marks: IReg, FPReg, IMem, and FPMem. The memory
benchmarks implement different types of memory accesses:
cache-only (8000B) and memory only (32000B).
include arrows to help distinguish the different benchmark dissi-
pation curves.

The graph contains many interesting details. First, as expected,
the rate at which the battery is consumed is considerably slower
when registers (IReg) are used than when the memory system is
accessed. Shutdown occurs 3553 seconds earlier for IMem than
for IReg. Secondly, floating point register operations consume
battery power at a rate very similar to that of floating point loads
and stores.

We do not include FPMem Cache in this graph for clarity.
However, the curves exhibit similar behavior to FPMem. Like-
wise FPMem and FPReg are very similar. This is due to the lack
of a floating point unit: Each floating point instruction traps to
the operating system kernel which uses library routines to emu-
late floating point operations. As such, in the remainder of this
study, we consider all floating point operations equal: We predict
the consumption rate of these operations using only the FPReg
benchmark.

Next, load instructions that miss the cache (IMem) drain the
battery 993 seconds earlier than those that hit the cache (IMem
Cache). However, this relationship does not hold for in-cache
and out-of cache store instructions. This seems to indicate that
our benchmark causes the iPAQ to exhibit ”write-through” be-
havior. This is due to a combination of the ”no write-allocate”
cache implementation of the iPAQ’s StrongARM processor. and
our IMemW benchmark implementation: Since we only use store
instructions, a load is never executed and hence a cache line is
never allocated.

As with floating point operations, we assume that all stores are
equal and as such predict their consumption using the IMemW
benchmark. We detail the implications (in terms of prediction
error) of these assumptions in Section 5. In summary, the bench-
marks consumption rates that we will compose to make predic-
tions in this study are IReg, IMem, IMem Cache, IMemW, and
FPReg.

4. COMPOSING BENCHMARK
POWER CONSUMPTION RATES

Given the HAL millivolt curves for the benchmarks, we set
out to predict this curve for arbitrary programs using only our
benchmark data and various program execution statistics. The
latter includes program execution time for a single run, and the

percentage of time spent executing in each of aforementioned cat-
egories (integer register operations, floating point operations, in-
teger loads, and integer stores). For example, if a program spends
30% of its execution performing memory operations and 70% on
integer operations, we use these times to find the corresponding
dissipation in each benchmark curve (IReg and IMem).

For our predictions to be accurate, the dissipation rate for reg-
ister instructions and memory instructions must compose. That is,
the battery dissipation curves for benchmarks implementing indi-
vidual instruction categories must sum to equal the battery dissi-
pation curve of the program of interest. To our knowledge, this is
the first such work that evaluates empirically the degree to which
battery dissipation composes to form the overall dissipation for
arbitrary programs given only application-level information.

Notice that the HAL millivolt curves in Figure 1 are not linear;
they drop off sharply when battery power gets low. As such, a
dynamic compilation or runtime system will require a predicted
drain rate curve from which it can extract an estimate of battery
dissipation given the current battery level.

This methodology assumes that we have battery dissipation
samples for the benchmark drain curves at a sufficiently fine gran-
ularity. However, since the measurement itself consumes energy,
we cannot sample too often. For this study, our sample rate is
every 20 seconds. Given this frequency, we are unable to make
predictions at a granularity finer than 20 seconds. As such, we
construct our predicted rate curve in a piecewise fashion, using
the average millivolt change over each 20 second interval.

Notice also that we are only able to compute the predicted rate
curve until the underlying benchmark rate curves terminate. That
is, when the IMem benchmark ends (which is earlier in time that
our IReg benchmark curve), our predicted rate curve ends also.
As such, our predicted rate curves will terminate earlier than do
the observed curves.

5. EMPIRICAL EVALUATION
To verify (or disprove) this thesis (that the battery dissipa-

tion curves of individual instructions composes for arbitrary com-
binations of different types of instructions), we predicted and
observed the dissipation curves of seven C programs from the
MiBench embedded program suite [11] and from hand-coded im-
plementations of other well known algorithms from [8]. We first
describe our experimental setup and then present our results.

5.1 Experimental Setup
The programs that we used to evaluate our technique and their

various statistics are shown in Table 1. Column one is the ex-
ecution time of each program in seconds. The second column
is the dynamic instruction count (IC) in millions of instructions.
The third through sixth columns show the percentage of these
dynamic counts that constitute each of the four instruction cate-
gories: integer register operations (IReg), integer loads (IMem),
integer stores (IMemW), and floating point operations (FPReg).
As mentioned previously, we consider floating point loads and
stores equivalent to floating point register operations (FPReg) in
terms of battery drain rate. Programs with 0 in the FPReg col-
umn perform no floating point operations and as such, are integer
programs (BitCount, Dijkstra, and MMult); all others are floating
point programs. In addition, we executed each program using the
StrongARM version of the SimpleScalar simulator to determine
L1 DCache miss rate for the programs. On average the miss rate
is 1.4%.

The last column in the table shows the observed millivolt bat-
tery drain for a single run of each program when invoked with
a battery level of 3864mV (almost fully charged). The starting

Exec Dyn I- I- I- FP- mV
ET Insts Reg Mem MemW Reg drain

Program (secs) (*1M) (pct) (pct) (pct) (pct)
BasicMath 153.96 214 57 11 12 20 7.35
BitCount 46.56 6576 50 32 17 0 2.12
Dijkstra 39.43 5061 45 49 6 0 1.88
FFT 121.73 341 51 9 13 27 6.09
LU 92.31 302 44 31 6 18 4.03
MMult 18.14 1789 70 27 3 0 1.04
QSort 45.29 161 73 8 15 4 2.32

Average 73.92 2063 56 24 10 10 3.55

Table 1: Execution statistics for the programs used for our
empirical evaluation. The last column shows the observed
millivolt battery drain for a single run of each program when
invoked with an arbitrary battery level of 3864mV (almost
fully charged).

point (battery level) is arbitrary and we include the values to give
the reader an example of program battery dissipation for a single
execution.

We measured each program (modified to loop infinitely) as we
did for the benchmarks to obtain an observed dissipation curve.
We then compared this curve to the predicted curves we obtain
by composing the drain curves from the constituent instruction
types.

5.2 Results
The integer programs (BitCount, MMult, Dijkstra), implement

two types of instructions: register operations and memory oper-
ations. As such, we composed the dissipation rate curves of the
IReg and the IMem benchmark to construct the predicted drain
curve. By using IMem, we are assuming that loads and stores in
the program consume battery power at a rate equivalent to our
benchmark that performs only loads that miss the cache. We
refer to the resulting predicted curve as IReg-IMem. We also
computed this predicted rate curve using IMem Cache instead
of IMem. This configuration assumes that loads and stores in
the program consume battery power at a rate equivalent to our
benchmark that performs only loads that hit in cache. We refer to
the resulting predicted curve as IReg-IMem Cache. These curves
(IReg-IMem and IReg-IMem Cache) provide a lower and upper
bound on prediction error, respectively.

For the floating point programs (BasicMath, FFT, LU, QSort),
we computed the predicted curves using the drain curves from
three benchmarks: IReg and IMem only (IReg-IMem), IReg and
IMem Cache only (IReg-IMem Cache), and IReg, IMem, and
FPReg only (IReg-IMem-FPReg).

We first present four of the seven resulting curves in Figure 2
(two integer (top row) and two floating point (bottom row) pro-
grams). We omit the graphs for the other programs due to space
constraints. These graphs, however, are representative of both
types of programs that we studied. We report error rates of the
predicted curves for all benchmarks at the end of this section.

The Observed curves show the measured drain rate curves;
the Predicted curves show the predicted drain rate curves that
we composed using the benchmarks described above. The x-axis
in each graph is time (in seconds) since the battery was discon-
nected. The y-axis is the battery life in millivolts exported using
the HAL interface.

For the integer programs, we can observe that the IReg-IMem
predicted curves are nearly indistinguishable from the observed
curve for all benchmarks. As such, these results indicate that for
integer programs, benchmark battery dissipation for constituent
instruction types can be composed to accurately predict the dis-
sipation of arbitrary programs.

For the floating point programs, IReg-IMem and IReg-IMem
Cache again bound the observed curves (providing lower and up-
per bounds, respectively, on prediction error). When we include
FPReg in the composition, the resulting predicted curve is re-
markably similar to the observed curves. This set of results in-
dicates that floating point operations should be considered in bat-
tery dissipation prediction. In addition, doing so results in an
accurate prediction of floating point program battery dissipation.

We next present results for all of the programs in terms of
prediction error. Table 2 shows the errors in millivolts for the
various prediction techniques for both integer and floating point
programs. In addition to the various compositions shown in the
above graphs, we also provide error values that result when we
consider store instructions.

The first seven columns of data in the table show the mean
absolute error of the predictions over the predicted drain curves.
IReg-IMem, IReg-IMem Cache, and IReg-IMem-FPReg are the
same as presented in the graphs above. IReg-IMem-IMemW pre-
diction uses the IReg curve to compute the drain due to the per-
centage of integer register operations, the IMemW curve for the
percentage of stores in the program, and IMem for all other in-
structions; this assumes that all memory accesses miss the cache.
Since the IMemW curve ends at 12000s, so does our prediction
(and error measurement). The final row of data shows the aver-
age values. For the IReg-IMem-FPReg columns we only average
the values of the floating point programs (BasicMath, FFT, LU,
QSort).

Each of these data sets includes two error values, one for the
entire curve (”Curve”) and one for the curve up to 12800 seconds
(”12800s”). As shown previously, HAL dissipation curves drop
off sharply when battery power gets low. As such, this dramatic
change in slope (a small change in time is a very large change in
millivolts) causes a large error values in our prediction data which
is reflected in the average (”Curve” data). The 12800s data indi-
cates the mean absolute prediction error up to this point. In other
work, we have developed a technique which allows us to trans-
form the dissipation curve to enable more consistent and accurate
prediction across the entire curve [26].

The results in Table 2 indicate that for these programs, we
achieve the most accurate prediction when we compose the dissi-
pation rate for the appropriate percentage of register instructions
with the dissipation rate of IMem for all other instructions (IReg-
IMem). On average, the absolute error is 15 millivolts. We can
obtain additional accuracy for floating point programs when the
FPReg dissipation rate is used for the percentage of floating point
operations in the programs. The average absolute error across
floating point programs only is 14 millivolts.

Our predicted rate curves can be used by a dynamic compiler
or runtime system to accurately predict the battery dissipation of
a program. For example, if the current battery level is 3864mV,
an estimate of battery dissipation for a program can be obtained
using an appropriate predicted rate curve. We performed this ex-
periment using the IMem-IReg curves for each program. The
absolute prediction error (not averaged) for each program (if ex-
ecution is to begin at 3864mV) is shown in the final column of
the table. The observed millivolt drain for each program during
this period is included as the last column of Table 1. On average,
for a single program execution at this battery level, our predic-
tion error is 0.64mV. We believe that this technique will be useful
for many different applications, e.g., to guide optimization and
dynamic code generation, migration, quality-of-service, voltage
scaling, etc. We plan to investigate the efficacy of our techniques
for such services as part of future work.

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time�Since�Power�Disconnect�(sec.)

B
at

te
ry

�L
ev

el
�(

m
ill

iv
o

lt
s)

Observed�(BitCount)
Predicted�(IReg+IMem)
Predicted�(IReg+IMem_Cache)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000
Time�Since�Power�Disconnect�(sec.)

B
at

te
ry

�L
ev

el
�(

m
ill

iv
o

lt
s)

Observed�(Dijkstra)
Predicted�(IReg+IMem)
Predicted�(IReg+IMem_Cache)

Integer Benchmarks BitCount (left) and Dijkstra (right)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time�Since�Power�Disconnect�(sec.)

B
at

te
ry

�L
ev

el
�(

m
ill

iv
o

lt
s)

Observed�(LU)
Predicted�(IReg+IMem)
Predicted�(IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

3000

3200

3400

3600

3800

4000

0 4000 8000 12000 16000

Time�Since�Power�Disconnect�(sec.)

B
at

te
ry

�L
ev

el
�(

m
ill

iv
o

lt
s)

Observed�(QSort)
Predicted�(IReg+IMem)
Predicted�(IReg+IMem_Cache)
Predicted(IReg+IMem+FPReg)

Floating Point Benchmarks LU (left) and QSort (right)

Figure 2: Predicted and observed battery dissipation curves for representative integer (top row) and floating point (bottom row)
programs studied.

IReg-IMem
IReg-IMem- mV drain

IReg-IMem IReg-IMem Cache IMemW IReg-IMem-FPReg (1 run)
Prog. Curve To 12800s Curve To 12800s To 12000s Curve To 12800s start: 3864mV
BasicMath 26.33 13.49 19.21 16.63 14.88 7.27 5.62 1.25
BitCount 10.75 10.60 54.88 40.61 2.31 0.00 0.00 0.60
Dijkstra 11.54 7.30 47.04 37.25 7.15 0.00 0.00 0.44
FFT 19.55 8.15 26.23 22.24 20.32 10.01 10.36 0.66
LU 11.88 2.78 37.45 31.60 29.21 19.40 19.11 1.20
MMult 17.00 7.05 28.52 23.06 6.75 0.00 0.00 0.11
QSort 9.58 3.01 36.70 27.94 24.90 17.61 15.03 0.24

Average 15.23 7.48 35.72 28.48 15.08 13.57 12.53 0.64

Table 2: Prediction error in millivolts for the various prediction techniques. The first seven columns of data are the mean
absolute errors for the entire drain curve for each program given predictions of different types. Columns entitled ”Curve” is the
average error for the entire battery drain curve. Those entitled ”12800s” show the average error prior to the battery drop off
that commonly occurs at 12800s. The final column is the absolute error (not averaged) due to drain prediction of a single run
of the programs. For each prediction, various benchmark curves (IReg, IMem, IMem Cache, IMemW, and FPReg) were used
according to the percentage of instruction categories executed by each program.

6. CONCLUSION
Tools that dynamically control program power consumption

on battery-powered devices are essential for the success of next-
generation mobile devices and applications. To enable develop-
ment of such tools we first must fundamentally understand appli-
cation power consumption and its impact on battery dissipation.
The techniques presented herein are an initial step.

Our work investigates the degree to which battery dissipation
can be sensed and predicted at the application-level. For each of
our techniques, we compare the power dissipation effects of dif-
ferent processor activities on measurable power drain. We show
how these benchmark dissipation rates can be combined to form
an estimate of battery dissipation for an arbitrary program. By
observing the battery life impact by the whole device as a “black-
box”, our technique does not require a composition of subsystem
and battery models. At the same time, we use only measurements
that are available via standard operating system interfaces mak-
ing the methodology practical for implementation in a compila-
tion system using currently available hardware, i.e., without new
hardware features for measuring battery consumption. Although
we have only tested our methodology on iPAQ, we believe it is
general and can be used with other processors and batteries since
our benchmark programs can be easily adapted and we are not
hardware-specific.

As part of future work, we plan to investigate further the limi-
tations of our approach, e.g., the impact of inter-instruction inter-
action and cache miss rate estimation. One such technique is to
add an offset to the prediction curve according to the isolated en-
ergy consumption of these effects in a way that is similar to that
used in [24]. We also plan to use dynamic feedback, e.g., about
cache miss rate and instructions executed, from the program to
improve the accuracy of our estimates. In addition, we plan to
extend our method by including the effects of other subsystems,
e.g., storage devices and the display.

7. REFERENCES
[1] Lithium-ion polymer batteries - dlp 305590. http:

//www.danionics.com/products/index.asp.
[2] L. Benini, A. Bogliolo, and G. Micheli. Dynamic power

management of electronic systems. In International
Conference on Computer-Aided Design, 1998.

[3] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. A discrete-time battery model for high-level
power estimation. In Proceedings of Design, Automation
and Test in Europe, 2000.

[4] D. Burger and T. Austin. The simplescalar toolset, version
2. Technical Report 1342, University of Wisconsin
Madison Computer Science Department, Jun 1997.

[5] Conversion code from hal raw data to percentage battery
remaining and voltage: h3600 micro battery ack.
linux/2.4.18-rmk3/arch/arm/mach-sa1100
/h3600_micro.c.

[6] Compaq Computer Corporation. Compaq ipaq pocket pc
h3700 series, 2002.
http://www.compaq.com/products
/quickspecs/10973_na/10973_na.HTML.

[7] M. Doyle, T. F. Fuller, and J. Newman. Modeling of
galvanostatic charge and discharge of the
lithium/polymer/insertion cell. Journal of Electrochem
Society, 141(1):1–9, January 1994.

[8] W. Press et.al. Numerical Recipes in C. Cambridge
University Press, 1992.

[9] Familiar linux on ipaq.

http://familiar.handhelds.org/.
[10] S. Gold. A PSPICE macromodel for lithium-ion batteries.

In Proceedings of Annual Battery Conference on
Applications and Advances, pages 215–222, 1997.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In 4th IEEE
International Workshop on Workload Characteristics,
pages 3–14, Dec 2001.

[12] Intel corporation. Pentium III processors: Low Power
Consumption via SpeedStep.

[13] A. Iyer and D. Marculescu. Power aware microarchitecture
resource scaling. In Proc. IEEE Design, Automation and
Test in Europe Conf. (DATE), 2001.

[14] A. Krishnaswamy and R. Gupta. Profile guided selection of
arm and thumb instructions. In ACM SIGPLAN Conference
on Languages, Compilers, and Tools for Embedded
Systems (LCTES’02), Jun 2002.

[15] S. Lee, A. Ermedahl, and S. Min. An accurate
instruction-level energy consumption model for embedded
risc processors. In ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES’01), Jun 2001.

[16] R. Maro, Y. Bai, and R. Bahar. Dynamically reconfiguring
processor resources to reduce power consumption in
high-performance processors. In PACS, pages 97–111,
2000.

[17] D. Panigrahi, C. Chiasserini, S. Dey, R. Rao,
A. Raghunathan, and K. Lahiri. Battery life estimation of
mobile embedded systems. The 14th IEEE International
Conference on VLSI Design, 2001.

[18] D. Rakhmatov and S. Vrudhula. Time-to-failure estimation
for batteries in portable electronic systems. In Proceedings
of the International Symposium on Low Power Electronics
and Design, August 2001.

[19] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery
lifetime prediction for energy-aware computing. In
Proceedings of the International Symposium on Low Power
Electronics and Design, August 2002.

[20] P. Rong and M. Pedram. Remaining battery capacity
prediction for lithium-ion batteries. Conference of Design
Automation and Test in Europe, March 2003.

[21] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
J. Hu, C-H.Hsu, and U. Kremer. Energy-conscious
compilation based on voltage scaling. In ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’02), Jun 2002.

[22] V. Tiwari, S. Malik, and A. Wolf. Power analysis of
embedded software: A first step towards software power
minimization. In IEEE Transactions on VLSI Systems, Dec
1994.

[23] V. Tiwari, S. Malik, and A. Wolf. Instruction level power
analysis and optimization of software. Journal of VLSI
Signal Processing, pages 1–18, 1996.

[24] V. Tiwari, S. Malik, and A. Wolf. Instruction level power
analysis and optimization of software. Journal of VLSI
Signal Processing, pages 1–18, 1996.

[25] Transmeta corporation, crusoe processor. http://www.
transmeta.com/technology/index.html.

[26] Y. Wen, R. Wolski, and C. Krintz. History-based, online,
battery lifetime prediction for embedded and mobile
devices. In Workshop on Power-Aware Computer Systems
(PACS’03), Dec 2003.

