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Abstract

Jalapeiio is a virtual machine for JavaT? servers written
in Java.

A running Java program involves four layers of function-
ality: the user code, the virtual-machine, the operating sys-
tem, and the hardware. By drawing the Java / non-Java
boundary below the virtual machine rather than above it,
Jalapefio reduces the boundary-crossing overhead and opens
up more opportunities for optimization.

To get Jalapefio started, a boot tmage of a working Jala-
pefio virtual machine is concocted and written to a file.
Later, this file can be loaded into memory and executed.
Because the boot image consists entirely of Java objects, it
can be concocted by a Java program that runs in any JVM.
This program uses reflection to convert the boot image into
Jalapefio’s object format.

A special MAGIC class allows unsafe casts and direct ac-
cess to the hardware. Methods of this class are recognized
by Jalapefio’s three compilers, which ignore their bytecodes
and emit special-purpose machine code. User code will not
be allowed to call MAGIC methods so Java’s integrity is pre-
served.

A small non-Java program is used to start up a boot
image and as an interface to the operating system.

Java’s programming features — object orientation, type
safety, automatic memory management — greatly facilitated
development of Jalapefio. However, we also discovered some
of the langauge’s limitations.

1 INTRODUCTION

In December 1997, a group at IBM’s T. J. Watson Re-
search Center began a three month pilot study to determine
the feasibility of writing a virtual machine in Java™ [8]. At
the end of that period, we had a minimal Java virtual ma-
chine (JVM) [14] running, convincing us that such a JVM
was both feasible and desirable.
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This led to a full-scale project with the goal to invent,
construct, and evaluate the best technology for Java virtual
machines on large computational servers. (A server JVM’s
requirements — high-performance, scalability in an SMP
environment, continuous availability, rapid response, grace-
ful degradation under load, and support for a very large
number of threads — that are less important for client, em-
bedded, or personal systems JVM’s. On the other hand, the
real memory constraints on a server JVM are not as tight.)
A subsidiary goal is to create a flexible research platform
on which to investigate and evaluate novel virtual machine
ideas. Portability is explicitly not a design goal — we feel
obliged to exploit any performance advantage available on
our target architecture: PowerPC [15] multiprocessors run-
ning the AIX operating system [10]. Realizing, however,
that we may someday want to port Jalapefio to a differ-
ent architecture, we strive to make Jalapefio as portable as
possible without compromising performance.

There are advantages and challenges to building a JVM
in Java. The major development advantages are those that
follow from using a modern, object-oriented, type-safe, and
memory-safe programming language. In addition, we hope
to realize two kinds of performance advantages. First, we
need no extra code to adapt the call stack between user code
and frequently called runtime services: conventional JVM’s
implement these services using “native” methods (typically,
written in C, C++, or assembler) incurring an overhead
adapting Java state to native state for each call. Second,
Jalapefio’s seamless operation allows simultaneous dynamic
optimization of user code and runtime services. Finally, we
hoped that implementing Jalapefio in Java would give us
more experience with the language, help us to identify some
of its problematic features, and give some insight into how
to implement them efficiently.

The primary challenges to building Jalapefio in Java in-
volve: creating a minimal JVM that can be expanded to a
complete system, bootstrapping the system into operation,
bending restrictions of the Java language without compro-
mising its integrity, and exploiting — and sometimes care-
fully skirting — the advanced features of the language by
the very code that implements them.

Development of Jalapefio is guided by a performance
driven methodology that seeks to avoid premature optimiza-
tion. Initially, simple mechanisms are used to implement re-
quired functionality. As these mechanisms are measured and
identified as performance bottlenecks, they are replaced with
more sophisticated techniques. This methodology, while
generally followed, is not rigorously adhered to: some fore-
thought is used to avoid pervasively poor performance. (Also,



skilled programmers do not always resist the temptation to
take some methodological shortcuts.)

The design of Jalapefio is presented elsewhere [3, 1]. This
paper relates our experience building Jalapefio in Java. An
appendix presents a brief overview of Jalapefio’s design, mo-
tivating its data layout and its compilation, memory man-
agement, and multithreading strategies.

Section 2 describes our minimal JVM more or less as
it existed at the end of our pilot study, including a baseline
compiler, a class loader with dynamic loading capability, two
primitive garbage collectors, and support for bootstrapping
and debugging. This minimal JVM is the seed from which
Jalapefio evolved.

Section 3 explains the process of bootstrapping Jalapefio
into operation. This is done by building the image of a
working system in another JVM, writing it to a file, loading
it into memory, and branching to the start of a static boot ()
method.

Section 4 outlines the mechanism that allows Jalapefio
to evade some of Java’s constraints while protecting Jala-
pefio’s users from these evasions. Implementation of Jala-
pefio’s runtime, memory management, and multithreading
subsystems require circumventing Java’'s type system and
memory model. Jalapefio’s compilers employ a novel ap-
proach to effect these transgressions and to limit their use.

Section 5 reviews those few components of Jalapefio that
are not implemented in Java, and explains why we believe
they cannot, or should not, be.

Section 6 considers related work, including two other
JVM’s that have been written in Java [6, 18]. These run
on top of other virtual machines. Jalapefio runs on bare
metal (with modest operating system support).

Section T discusses the limitations we found in Java as a
language for writing Java virtual machines.

Section 8 reviews our experience writing Jalapefio in
Java.

2 AN INITIAL JVM

Our implementation philosophy was to get something
running as soon as possible and then to extend and enhance
it. We knew this would involve considerable rework and
reorganization as the system evolved, but we felt that design
and architectural issues would surface sooner and at a point
when rework was possible and not too costly.

The initial design for Jalapefio is depicted in figure 1.
This figure dates from December 1997. If you squint a lit-
tle, the outlines of the mature Jalapefio are clearly visible.
The “POOF!” cloud indicates the output of the boot-image
writer discussed in section 3. Method invocation stacks are
now allocated as ordinary objects (arrays of ints). Code
generation is performed by Jalapefio’s three compilers. The
“Ezecutor” has become Jalapefio’s virtual processors. And,
we have yet to tackle JNI.

We started writing code from the beginning and the first
“proto-JVM?” was running a few weeks into the project. This
first system could only generate a boot image and boot itself
(see section 3), execute a few simple bytecodes, and return.
It quickly evolved into a single-threaded system with a sim-
ple class loader, an object allocator (no garbage collection),
a baseline compiler that translated an ever enlarging subset
of Java’s bytecodes, and a primitive debugger. The debug-
ger’s functionality was sufficient to allow us to verify that
the machine code produced by the baseline compiler for each
bytecode performed as intended.
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Figure 1: The initial design of Jalapefio.

The remainder of this section describes our JVM as it
existed about the beginning of March 1998.

2.1 The baseline compiler

The baseline compiler translated bytecode to machine
code by religiously implementing the stack-based definition
of the Java virtual machine [14]. (Compilation is performed
in a single-pass using an pseudo-assembler containing a mech-
anism for resolving forward branches and emitter methods
for each PowerPC instruction we required.)

This approach has much to commend it. It was very
easy to implement. This greatly contributed to early devel-
opment of our minimal JVM. The compiled code was simple
enough that we were reasonably confident that we could “get
it right.” It also allowed graceful integration and validation
of Jalapefio’s other compilers. When one of these encounters
a situation it can’t handle yet, it throws an exception and
the offending method gets compiled by the baseline com-
piler. The close correspondence between machine code and
the original bytecode allowed Jalapefio’s debugger to exploit
information in Java’s classfiles. Finally, since the baseline
compiler (like all of Jalapefio) is written in Java, it runs on
either a traditional JVM or on Jalapefio. This was crucial
for our bootstrapping strategy.

Unfortunately, the code produced by the baseline com-
piler performs poorly. The simple assignment a = b + ¢
gets translated as follows. Local variable b is loaded into a
register, then pushed on the stack. Local variable c is loaded
into a register, then pushed on the stack. The values of b
and c are loaded from the stack back into registers. Their
sum is formed in a register and then stored on the stack
(adjusting the stack pointer). This value is popped from
the stack into a register, then stored in local variable a.

This poor code quality motivated development of Jala-
pefio’s optimizing and quick compilers. These compilers
make much more effective use of registers than the base-



line compilers. Following our development methodology, we
were forced to change our calling conventions [1] to pass pa-
rameters in registers rather than on a stack in May and June
of 1998. This was a painful transition. Particularly tricky
to implement was reflective method invocation.

2.2 A class loader

The first version of the system had only static linking:
all classes had to be loaded before the JVM started execut-
ing. A primitive class loader ran in the boot-image writer
that loaded these classes from a given list before any code
was compiled. Since all the necessary class information was
available during compilation, no dynamic linking code was
required.

When the baseline compiler had progressed to the point
that this class loader could run in the booted image, we
added support for dynamic linking. When the baseline com-
piler encountered a bytecode (e.g. getfield) that men-
tioned a class that had not yet been loaded, the compiler
emitted code to call a runtime method that would do the
linking. This method would first verify that the class had
been loaded. (If not, it would load it.) Then, it would over-
write its call site with code that performed the desired oper-
ation (so that the linking operation would only be performed
once). Finally, it branched to the newly back-patched code.
We tripped on a common problem of dynamic linking at this
point: we failed to flush the instruction cache properly. Fur-
ther intricacies of dynamic linking in a multi-threaded multi-
processor environment are addressed in a separate paper [2].
Suffice it to say here that this code was severely error prone
and that the resulting bugs were difficult to track down. (In
ironic mockery of our professed development methodology,
a simpler, but less efficient, table-based scheme for dynamic
linking was developed for the optimizing compiler which is
less tolerant of register usage by the back-patching code.)

2.3 Minimal memory managers

The initial object allocator was quickly replaced by a
memory manager with a simple copying garbage collector.
This collector was neither type accurate nor conservative.
It could perhaps be charitably characterized as optimistic:
any value that could be interpreted as an address within
the JVM’s image was treated as an object reference. It
would happily move an “object” pointed to by a large integer
(“updating” the value of the integer in the process).

We briefly considered modifying the baseline compiler
to emit code for integer operations that checked that the
result was not a valid address. However, at this stage Jala-
pefio didn’t produce any large integers anyway and the copy-
ing manager was soon joined by a conservative non-copying
memory manager. By the end of March, reference maps for
the baseline compiler allowed both managers to be made
type accurate.

2.4 The debugger

We recognized that a customized debugger would be
necessary, especially in the early phases of the project. Jala-
pefio’s debugger is a Java program. It runs on a conventional
JVM as a separate AIX process. It connects to Jalapefio
through a JNI interface to AIX’s ptrace facility. The ini-
tial version supported only register and memory display and
breakpoints at absolute addresses.

Stackframe and traceback displays were implemented.
Support was added to set breakpoints on entry to specified

methods and at line numbers in source files. The baseline
compiler supplied a simple map of bytecode indices into an
array of corresponding machine instructions. The debugger
exploits this and the debug information in Java’s classfiles
to support symbolic names for classes, methods, fields, and
local variables.

To provide similar functionality for dynamically loaded
classes, a customized interpreter now executes the debugger.
Although this interpreter runs on a different JVM, it oper-
ates on Jalapefio’s internal data and methods. This allows
the debugger to use Jalapefio’s own methods to interrogate
the contents of its data structures.

3 GETTING STARTED

A fairly substantial set of services — a class loader, an
object allocator, a compiler — must exist before a JVM can
load all remaining services required for normal operation.
The initial services for a JVM written in native code or
one that runs on top of another JVM are available from an
underlying runtime. Jalapefio is not written in native code
and it has no underlying runtime. Therefore, we assemble
the essential core services into an executable boot image prior
to running the JVM. This boot image is a snap-shot of a
Jalapefio virtual machine written into a file. Later, this file
is loaded into memory and executed.

The boot image is created by a Java program called a
boot-tmage writer. It constructs a mockup of a running Jala-
pefio virtual machine and then packages it into a boot image.
The boot-image writer is an ordinary Java program and it
can run on any JVM. The JVM that runs the boot-image
writer will be called the source JVM, and the resulting Jala-
pefio virtual machine, the target JVM.

The boot-image writer resembles a cross-compiler and
linker: it compiles bytecodes to machine code and rewrites
machine addresses to bind program components into a run-
nable image. However, since Jalapefio’s compilers, class
loaders, and runtime data structures are all in Java, it, un-
like most compilers, must also bind live objects into the boot
image.

The boot-image writer instantiates, in the source JVM,
Java objects that represent the target JVM. Then it uses
Java’s built-in reflection facility to translate these mockup
objects from the object model of the source JVM to Jala-
pefio’s object model. This self-referencing aspect of the
boot-image writer makes it relatively simple — it’s really
just an object-model translator.

Since Jalapefio is a Java program, each of its components
is a Java object and the boot-image writer can construct the
mockup by executing special init methods in each of Jala-
pefio’s major subsystems. A custom classloader makes sure
that any classes needed to execute this code are loaded into
the mockup as well as into the source JVM. As a class is
loaded, its methods are compiled (by the baseline compiler
running in the source JVM) and included in the mockup.

This strategy of loading classes into both the source JVM
and its mockup of the target JVM requires a complete class
list to succeed. If, when Jalapefio starts running, a method
of the core runtime references any class not in the boot im-
age, an endless recursion results: the runtime needs to load
part of itself in order to load part of itself ... and so on.

The problem of determining the minimal set of classes
needed in the mockup to prevent this was solved using a
combination of careful planning and trial and error. All of
Jalapefio’s core classes were named with a VM_ prefix. These



are the classes needed to provide enough machinery to al-
low the virtual machine to perform compilation, memory
management, and dynamic class loading. The special prefix
is recognized by Jalapefio’s compilers and used to suppress
normal dynamic linking rules: they never generate dynamic
linking code between methods whose classes have this prefix.
The core classes were also carefully written to avoid unneces-
sary use of Java library classes. The fundamental classes —
java.lang.0Object, java.lang.Class, java.lang.String,
and a few I/O classes — were unavoidable exceptions. To-
gether, the VM_ classes and fundamental Java classes formed
a starting set of classes that we thought needed to appear
in the boot image.

A small number of additional dependencies (for example,
Integer, Float, Double, and various array and exception
classes) were then identified by trial and error. We built
a boot image and attempted to execute it. If it crashed
trying to (recursively) load class X, then we added X to the
list of classes written into the boot image and repeated the
exercise. This process converged with a small number of
retries and did not prove to be a maintenance problem once
the implementation of the core VM_ classes stabilized.

When the mockup is complete it is transformed into a
boot image. This involves finding all the objects in the
mockup, converting them to Jalapefio’s object format, and
storing them in a boot-image array. All components of a run-
ning Jalapefio virtual machine can be reached from a single
JTOC array (see appendix A.2). This is true of the mockup
as well. The structure rooted in the JTOC array is walked
recursively and the values, both reference and primitive, en-
countered are translated into the boot-image array. Since
the Type Information Block (again, see appendix A.2) for
each loaded class is referenced from the JTOC, all necessary
compiled method bodies will be included in the boot image.

The translation process uses reflection. The boot-image
writer obtains the java.lang.Class object for each object
in the mockup and iterates over the fields returned by the
getFields method. For each field, it extracts the field value
from the source object and extracts the target field offset
from Jalapefio’s class description for the object. Then, it
writes the value at that offset from the index of the object
in the boot image. When object references are encountered,
the we cannot use any value from the mockup. The refer-
ences in the mockup are converted to boot-image addresses
using a hash-table maintained as boot-image space is allo-
cated. (An array containing the addresses of all references in
the boot image can be included in the boot image to support
relocation of the image at boot time.)

Overall, the boot-image writer copies Java objects field-
by-field from the mockup into the boot image, simultane-
ously translating from the source JVM’s to the target JVM’s
object model. Relying on Java’s reflection capability, we ran
into one inconvenience: Sun’s JDK 1.1.4 did not permit re-
flective access to private fields. This is not a problem in
Java 1.2 which allows such access. We solved the problem
in the earlier version by preprocessing the classfiles, turning
the private bits off.

In addition to the objects reachable from the JTOC ar-
ray, two other objects are needed in the boot image: an
initial thread object containing an empty stack ready to run
the first instruction of the boot () method when Jalapefo
starts up and a “boot record” to interface the boot image
with the boot-image runner (see below). This boot record
contains the start, end, and last-used addresses in the im-
age, four register values used to start Jalapefio, the address
of the boot () method, and the addresses for AIX’s system

calls. When these values are stored in the boot-image array,
it 1s written to disk.

A short program called a boot-image runner starts Jala-
pefio running. It reads the boot image into memory, sets
the four registers to the indicated values, and branches to
the boot () method. The boot-image runner is written in C
(with a little assembler to set the registers and perform the
final branch) not Java so it does not require a JVM to run
on.

When the boot () method starts executing, the virtual
machine is in a fragile state: it can run a single thread of
machine instructions, but it has not yet created the external
operating-system resources it needs to support its own exe-
cution. These operating-system resources cannot be created
by the boot image writer, because they refer to external
state that will not exist until the boot image is executed.
Thus, Jalapefio must perform additional initialization.

At boot time, the virtual machine initializes hardware
specific addresses (for example, it will eventually establish
a hardware guard page on its own stack), opens files corre-
sponding to the Java library’s System.in, System.out, and
System.error stream objects, parses command line argu-
ments, and creates a System.Properties object correspond-
ing to the current execution environment. Then, the mul-
tithreading subsystem is initialized by creating operating-
system threads to serve as the virtual processors upon which
Java threads are multiplexed. Finally, timer interrupts are
enabled to support thread preemption and a Java thread
is spawned to run the application program specified on the
command line.

Jalapefio runs until the last (non-daemon) Java thread
terminates or System.exit () is called.

4 INTERFACE TO THE HARDWARE

To implement Jalapefio, a number of special facilities
needed to be provided. These facilities were low-level virtual-
machine operations outside the Java program model. In
particular, a JVM must be able to:

e access machine registers and memory,
e use architecture-specific machine instructions,
e transfer execution to an arbitrary address,

e coerce object references to raw addresses and vice versa,
and

e invoke operating system services.

Jalapefio needs these capabilities to effectively utilize the
underlying hardware (and operating system), but, in order
to preserve the integrity of the language, the users of the
JVM must be prevented from accessing them.

Jalapefio’s compilers enable such transgressions with the
help of a special MAGIC class. The methods of this class
correspond to the illegal operations we wish to perform. The
bodies of these methods are empty. Java’s source (Java to
bytecode) compilers can compile them. However, Jalapeiio’s
(bytecode to machine code) compilers ignore the resulting
bytecodes. Rather, they recognize the name of the MacIc
class and inline the necessary machine code. To make sure
that user code does not evade Java’s restrictions, Jalapefio’s
compilers will verify that the method they are compiling is
an authorized part of the JVM, when they encounter a call
to a MAGIC method.



4.1 Uses of Magic

A number of services — object allocation, garbage col-
lection, dynamic linking, dynamic type checking, exception
handling, reflection, and I/O — require the above mentioned
special facilities. The following are examples:

e Object Allocation — To allocate an object, Jalapeiio’s
memory managers must transform a piece of raw mem-
ory into a object. They obtain a chunk of available
space of the required size and initialize the new ob-
ject’s header and body. To achieve this initialization,
the manager must be able to compute (load, store and
manipulate) with memory addresses.

Garbage Collection — The collectors must access ob-
Jject headers to mark objects during garbage collection.
They must walk the thread stacks to identify object
references in the stackframes. In addition, memory
allocation and work queues must be maintained. Par-
allel collector’s must synchronize. And, of course, a
copying manager must access raw memory to copy an
object.

Dynamic Linking — To perform dynamic linking it
is necessary to overwrite (back-patch) the original site
and to do a transfer of control to the back-patched site.
To synchronize the data and instruction cache and
(on multiprocessors) to clear the instruction prefetch
buffer, it is necessary to execute special hardware op-
erations.

Exception Handling — The exception handler (like the
garbage collector) uses the memory access facilities to
walk the thread stack. It also uses special services to
restore the register state and transfer control whenever
a catch block of the proper type is encountered.

Reflection — In order to pass parameters to and from
the caller, Jalapefio constructs additional frames on
the thread stack. The construction and removal of
these frames require the use of extra-Java memory ac-
cess services.

Input/Output — Jalapeiio uses special method calls
to communicate I/O requests to the operating system.
The primary purpose of the calls are to pass parame-
ters and return the necessary responses.

Most conventional JVM’s provide these services with run-
time routines written in native code. To request these ser-
vices, a Java program must call a native routine. One advan-
tage to this approach is that frequently used runtime services
can be heavily optimized using mature (static) optimizing
compiler technology. However, often the calling conventions
of the two languages differ, and a bridging stackframe in the
native convention must be concocted. Either two different
call stacks (per thread) must be maintained or every Java
method invocation must pay a price to support host operat-
ing system and native language functionality that Java does
not require. The inter-language boundary is also a barrier
to optimization: runtime services cannot easily be inlined
into user code.

Except in order to handle I/O requests, Jalapefio avoids
these difficulties by providing most runtime services in Java.
The overhead of crossing from one language to another is
eliminated. An optimizing compiler is free to inline runtime
services. The exposure of this approach is that dynamic

optimization of Java must be competitive with the older
technology.

There is also a challenge to implement each service in a
subset of Java that does not use the service it implements.
Obviously, the memory management subsystem can’t use
new to create its objects. Similarly, dynamic type-checking
code cannot use casts, and the code that implements aastore
cannot store object references into arrays. On the other
hand, the baseline compile can translate the 1div bytecode
into a call on a Java method that implements long division
as a series of shifts, adds, and subtracts.

4.2 Computing with raw addresses

Even with the ability to inline machine instructions, some
operations require systemic considerations. Consider, for
example, computing with raw addresses. Casts from object
reference to raw address are merely identity transformations
needed to fool Java’s type system: Jalapefio’s compilers sim-
ply ignore the corresponding method calls. This functional-
ity is needed, for instance, to perform dynamic linking. It
is, however, problematic.

Jalapefio’s copying memory managers update object ref-
erences when they move the referenced object, but raw ad-
dresses are not updated. Care must be taken to avoid garbage
collection when computing with raw addresses lest a copying
collector invalidate them. This is done by calling a method
that disables garbage collection.

A thread that has disabled garbage collection cannot try
to create an object because the system would hang if there
weren’t enough memory. (Other threads are free to request
memory; if it is unavailable, these threads are delayed and
a collection will be initiated as soon as garbage collection is
re-enabled.) Similarly, if the thread were to synchronize on
a shared object currently owned by a thread waiting for a
garbage collection, the system would deadlock.

There are subtle implications of the restriction that a
thread that has disabled garbage collection may not create
objects. Classes cannot be loaded, since objects are created
during class loading. This means dynamic linking must be
avoided. It follows also that casts (and stores into object
arrays) cannot be allowed either. Thus, a thread must op-
erate in a tightly restricted subset of Java when computing
with raw addresses.

Assertions are used to detect attempts to create objects
or to lock shared objects when collection is disabled even
if there is sufficient memory available to service all pending
requests. It is vitally important to catch code that might
lead to a disaster before the disaster occurs.

One difficulty remains: what if execution reaches a yield
point with garbage collection disabled? If the thread were
to yield control to another thread, a needed collection could
be arbitrarily delayed until the yielding thread gets another
opportunity and finish its (supposedly short) critical sec-
tion. To prevent this, thread-switching is postponed on a
virtual processor anytime garbage collection is disabled for
that processor.

Fortunately, only a small number of JVM methods need
Magic. These methods already require extraordinary care.
The restrictions imposed by its use do not add significant
problems to the overall JVM development.



5 INTERFACE TO THE OPERATING SYSTEM

The Jalapefio virtual machine was designed to run as a
user-level AIX process. As such, it must interface with the
host operating system to access the underlying file system,
network, and processor resources. To access these resources,
we were faced with a choice: we could call the AIX kernel
directly, using low level system calling conventions, or we
could access kernel services via the standard C library. We
chose the latter path to isolate ourselves from release-specific
operating system kernel dependencies. This required that
we write a small portion of Jalapefio in C rather than Java.

To date, the amount of C code required has been small (~
1000 lines). About half of this code consists of simple “glue”
functions that relay calls between Java methods and the C
library. The only purpose of this code is to convert param-
eters and return values between Java format and C format.
For example, filenames are represented as counted arrays
of 16-bit unicode characters in Java, but as null-terminated
arrays of 8-bit characters in C.

The other half of the C code consists of the boot-image
runner (see section 3) and two signal handlers. The first
signal handler captures hardware traps (generated by null
pointer dereferences) and software traps (generated by Jala-
pefio’s compilers for array-bounds and divide-by-zero checks),
and relays these into the virtual machine, along with a snap-
shot of the register state. The other signal handler captures
timer tick interrupts (generated every 100ms), and sets a
global flag. This flag is periodically checked in method pro-
logues and on the back-edge of loops. These checks will
eventually cause the current thread to relinquish control to
the Jalapefio scheduler, allowing another thread to be dis-
patched.

6 RELATED WORK

We are aware of two other JVM’s written in Java [6, 18].
Both were written to run on top of conventional JVM’s.
IBM’s VisualAge for Java’s JVM [7] is written in Smalltalk.
Performance is not a critical design goal of these projects.
Other JVM’s [12, 9] are all written in native code. Runtime
services are provided by C routines.

The JavalnJava virtual machine [18] was written to be a
clean, extensible platform and to serve as a reference plat-
form for Java VMs. It interprets bytecodes and implements
a Java virtual machine stack. As a result its performance is
poor. Jalapefio on the other hand compiles code and runs
directly on the hardware. (The Jalapefio baseline compiler
implements a Java virtual machine stack). Both systems
do their own multithreading without operating system as-
sistance. JavalnJava uses the underlying virtual machine
for storage allocation and garbage collection while Jalapefio
does its own (since there is no underlying virtual machine).

The Rivet virtual machine [6] is written as a platform
to develop and make available new advanced debugging and
and analysis tools for the Java environment. Like Javaln-
Java it relies on the underlying JVM for allocation and
garbage collection. Since debugging and analysis are its
main objectives, performance is not a high priority.

Perhaps the most exciting of the conventional JVM is
HotSpot [9]. Hotspot is conventional in the sense that it
is written in native code. HotSpot initially interprets byte-
codes, compiling (and inlining) heavily executed methods.
Jalapefio’s quick compiler will play a role similar to HotSpot’s
interpreter. Java threads are implemented as operating-
system threads in HotSpot. Its per-thread method activa-

tion stacks conform to host operating-system calling con-
ventions. This should give Jalapefio a minor space and per-
formance advantage. Both HotSpot and Jalapefio support
type-accurate garbage collection. Jalapefio supports a fam-
ily of memory managers. None of Jalapefio’s collectors is
as sophisticated as HotSpot’s, but on an SMP Jalapefio’s
collectors run in parallel using all available CPU’s.
Jalapefio shares a similar approach with the Squeak sys-
tem [11]. Squeak is a Smalltalk virtual machine that is writ-
ten in Smalltalk. It however, produces a production version
by translating the virtual machine Smalltalk code to C code
for compilation and linking. (This translator is also written
in Smalltalk.) The C language was chosen as the interme-
diate language for performance and portability. Jalapefio
differs from the Squeak approach in that it uses its own
bytecode to machine code compilers (running in a different
virtual machine) to generate the JVM machine code. The
Jalapefio compilers are written in Java and as such can run

in any JVM.

7 DISCUSSION

While our use of Java as a systems programming lan-
guage has been, for the most part, pleasant and produc-
tive, it has also exposed a number of pitfalls and weaknesses
in the language. One source of perennial headaches is the
impedance mismatch between Java’s compilation strategy
and the make facility. There seems to be no way to ensure
that class files are up-to-date short of erasing them all and
rebuilding the whole system.

Another annoying deficiency in Java is the limited pro-
tection facility provided by the Java package mechanism:
methods of one package may only be accessed from another
package if those methods are declared “public”. There is
no notion of collaborative packages which can communicate
among themselves (in the sense of C++ “friend” functions)
to provide a service, while at the same time being hidden
from other unrelated classes. This deficiency has caused us
much grief: for reasons of clarity, maintainability, and flex-
ibility, we would like to divide our virtual machine imple-
mentation classes into various packages: MemoryManager,
ClassLoader, DynamicLinker, BaselineCompiler, etc.. But
to do so would require that we expose our implementation to
other, user-level, classes. This is unacceptable since it would
allow user code to escape Java semantics (e.g. a user-level
method that happened to call an internal Jalapefio method
which used MAGIC to write machine registers or memory
might corrupt the whole system). Thus, we are forced to
place all of our virtual machine classes into a single pack-
age name-space. Furthermore, because of Java’s “package-
name equals directory-name” approach to class lookup, we
would be forced to place all of our virtual machine’s source
code and class files (several hundred of them) into a single
file-system directory, if we were to put Jalapefio in a named
package. We find this alternative so repugnant that we have,
for the moment, placed all of our classes in the “unnamed”
package, so their sources can be distributed across multiple
directories, and have postponed the security issues.

This package problem has an impact on flexibility as
well. Jalapefio is, in fact, a family of JVM’s (parameter-
ized by the choice of memory manager, for example). There
are four mechanisms in Java that support developing and
maintaining such a family: interfaces, abstract classes,
static final fields, and the ~CLASSPATH option to Java’s
source compilers.

Perhaps we should have made greater use of Java inter-



faces than we did. Our initial impression was that the inter-
face invocation overhead would necessarily be prohibitively
expensive to use for frequently executed methods. This as-
sumption may have led to premature optimization: we now
believe this overhead can be reduced to the point it can be
ignored except for the most frequent of operations. (How-
ever, we do not yet see how to inline interface calls.)

There is another reason for neglecting Java interfaces:
they do not allow static methods. In many instances where
interfaces would have been useful, memory managers for
instance, a running system has exactly one class that would
implement the interface and that class has static methods.
Java has no way of associating these methods with the in-
terface.

(We do make use of one idiom involving interfaces. An
empty interface is used to communicate to Jalapefio’s com-
pilers that a method is to be treated in a special way. Thus,
if a method belongs to a class that implements uninterrupt-
able, the compilers will omit the test for thread-switching
from its prologue. This facility is quite useful but the gran-
ularity is slightly off: it would be nice to be able to desig-
nate individual methods as requiring special attention rather
than so designating all the methods in a class.)

We make heavy use of Java’s other features that sup-
port flexibility. Each compiler has a different mechanism
for reporting the object references in one of its stack frames.
These mechanisms are different realizations of the same ab-
stract class. A static boolean field distinguishes develop-
ment builds from performance builds. We use the idiom:
if (VM.VerifyAssertions) VM.assert (boolean ezpression);
to check conditions in development builds that are assumed
to hold in performance builds.

Each of our memory managers provide the same func-
tionality. (They conform to the same interface in the gen-
eral sense, if not in the Java sense). Each is in a separate
directory, we use the ~CLASSPATH option to specify which to
include in a specific build. Notice that this would not be
possible if we were to combine Jalapefio into a named pack-
age, since all of the files in a package must be in the same
directory. Nor, would it work to make a memory manager
its own package, since the memory managers must have ac-
cess to methods of Jalapefio’s runtime that should not be
available to Jalapefio’s users.

Yet another deficiency in Java is the lack of preprocessing
support, in particular the inability to conditionally include
or exclude fields and methods of a class definition. This has
had a profound detrimental impact on the flexibility of Jala-
pefio. Consider, for example, a basic issue in object layout:
whether objects are accessed directly or through a table of
handles. Arguments can be made for either approach. For
example, handles may be particularly appropriate in a pag-
ing context where the added cost of accessing an object pales
in comparison to the benefit of being able to move the object
without needing to touch every page containing a reference
to it. We would have liked to be able to support multiple
object models. However, to do so would entail making every
object access through an interface method call. We reluc-
tantly concluded that the computational impact of such an
approach was prohibitive. (Until we find a way to effectively
inline interface calls, this assessment will be valid no matter
how cheap the interface dispatch becomes.) With a suitable
Java preprocessor, access could be made using static meth-
ods of an object-model class. A preprocess-time variable
would determine whether or not handles were used. The
methods of this class could be inlined by Jalapefio’s compil-
ers.

8 CONCLUSIONS

The viability of our decision to build Jalapefio in Java
hinged on the early availability of a rudimentary working
JVM. Key components of that minimal JVM were: a dy-
namic class loader (with back-patching capability), a base-
line compiler, a simple memory manager, a boot-image writer
and runner, and a debugger. All of these components were
in place within three months of the initial decision to ex-
plore building a JVM. From that point on, components
could be incrementally enhanced or added to a working sys-
tem. From this modest beginning, Jalapefio has grown into
a full-fledged multi-threaded Java virtual machine with a
family of type-accurate parallel memory managers, multiple
compilers to provide different levels of dynamic optimization
for methods with different computational intensities, and a
fairly sophisticated debugger. Jalapefio’s primary limita-
tion is an inability to execute library code not written in
Java. The initial and subsequent productivity of Jalapefio’s
development was due in large part to the Java language’s
simplicity, type-safety, and memory management features.

We are convinced that building Jalapefio in Java was
much more fun than it would have been if a conventional
systems programming language had been used. Of course,
part of the fun was figuring out how to implement the lan-
guage in itself. For the most part this turned out to be
surprisingly straightforward, although there were a few ar-
eas that caused difficulty.

We had to be careful implementing portions of the Java
runtime in which the full language facilities could not be
used at the source code level.

Bootstrapping Jalapefio is a complex operation. In a
non-Jalapefio JVM, we created a mock-up of a running Jala-
pefio JVM. This was fairly straight forward since Jalapefio
1s composed entirely of Java objects. We then translate from
the object model of the source JVM into Jalapefio’s object
model. This step exploits and, we believe, fully justifies
Java’s reflection capabilities.

Dealing with raw memory addresses, unsafe casts, and
special machine instructions turned out to be easy: we wrote
a special MAGIC class containing declarations for the meth-
ods that we wished toimplement using inlined machine code.
Jalapefio’s compilers recognize the MAGIC class name and
ignore the byte-codes for these methods, generating instead
special-purpose machine code. This approach allows Jala-
pefio to bend Java’s rules in order to implement its own core
functionality while preserving the integrity of Java in user
applications.

To interact with the operating system, we wrote a short
C program that passes kernel calls from Jalapefio to AIX
and passes interrupts from AIX to Jalapefio.

If we were to start over tomorrow, there is much that
we might do differently. We would probably make greater
use of Java interfaces. We might consider building an
object-oriented Java preprocessor to allow greater flexibility
in the family of JVM’s we support. We might try to devise a
better method for protecting against unsafe behavior while
garbage collection is disabled. We might implement a com-
mon assembler for Jalapefio’s three compilers. We would
pass parameters in registers right from the beginning. We
would probably at least start with a simpler dynamic linking
strategy than back-patching.

Although, building Jalapefio in Java was not without
drawbacks, we are well pleased with our decision to build
Jalapefio in Java and would happily do so again.



APPENDIX: OVERVIEW OF JALAPENO

The overall shape of a Java virtual machine can be de-
termined by five questions: Where is the boundary between
Java and non-Java code? How are data laid out? How are
bytecodes executed? How is memory managed? And, how
are threads scheduled and synchronized?

A.1 The Boundary

We decided early on that we wanted to write as much
of Jalapefio as possible in Java. A JVM has four layers:
user applications, runtime code, the underlying operating
system, and the base hardware. The Jalapefio runtime is
written in Java and is, in most respects, treated just like
user code. Special mechanisms are required to get Jalapefio
started and for interacting with the hardware and operating-
system layers. These were treated in sections 3, 5, and 4
respectively.

A.2 Data Layout

Data layout issues include: How are object fields and
array components accessed? How are virtual methods dis-
patched? How is information about the class of an object
obtained? And, how are static fields accessed and static
methods dispatched?

The initial impetus for Jalapefio’s object layout was a
desire for efficient array access. To accomplish this, a ref-
erence to an array object is represented as the machine ad-
dress of the first (zeroth) component of the array. The ith
component is stored at an offset of 7 times the component
size off this reference. The size of the array is stored in the
word preceeding the first component (at offset —4 from the
reference).

There is an interesting side-effect to this arrangement.
Java requires checking that array indices are within the
bounds of the array. This entails loading the array length
for each array access. If the array reference were null (that
is, address 0), this would mean loading the word at ad-
dress 0xFFFFFFFC. Normally, AIX generates a hardware
interrupt whenever an attempt is made to read (or write)
high memory. Thus, the null-pointer check (also required by
Java) on the array reference is done by the hardware. Unless
the reference is null, this check is free. On the other hand,
catching a null-pointer this way is expensive, involving a
couple of operating system calls.

The layout of scalar (non-array) objects was chosen to
achieve a similar hardware null-pointer check for field ac-
cesses: all fields are allocated at negative offsets from their
object reference.

(In AIX it is theoretically possible for another applica-
tion to load a shared library into the last segment of memory.
While this is not a concern for a research system, it would
constitute a security hole in a commercial system unless at
least the last page of addressable memory were read and
write protected. If an object has more than a page worth of
fields, accesses to those that don’t fit on the first page can be
checked explicitly with negligible impact on performance.)

One potential draw-back of this approach is that arrays
and scalar objects “grow” in different directions. This makes
it difficult to scan memory for objects. To date this has
not been a problem. There are two obvious approaches to
enabling memory scans: segregating scalar and array objects
into different heaps and appending a pseudo-header to the
high end of arrays or the low end of scalars.
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Figure 2: Jalapefio object layout

We initially planned to keep a reference to a virtual
method table in a header adjacent to each object. Since
method bodies (the compiled code for methods) are arrays
of ints, the type of such a table would be array of array
of int. We soon realized it would be convenient to be able
to get quickly from any object to another object describing
the class of the first. We adopted the expedient of includ-
ing a reference to this class object in the virtual method
table. The resulting structure, now an array of objects, was
rechristened a Type Information Block (TIB). This inverts
the, perhaps more natural, arrangement of having an object
header point to a class object and the class object point to a
virtual method table. The inverted arrangement saves one
level of indirection in virtual method dispatch at the cost of
an extra level of indirection to access class information.

The obvious way to address static fields and static method
bodies is at fixed absolute addresses. However, the PowerPC
instruction set does not provide for convenient access to ab-
solute addresses. Another natural approach would be to
include static fields with the appropriate class object and
its static methods in this object’s TIB. There are several
draw-backs to this approach. It imposes two additional lev-
els of indirection to get from an object to a static field (or
method) of its class. There must be some mechanism for
getting to the class object where there isn’t an instance of
the class at hand. Finally, it requires that the class objects
be of different types (since different classes have static fields
of different types).

The alternative which we adopted was to put all static
data — static fields, references to static method bodies, con-
stants, and the TIB for each class — into a single array,
the Jalaperio Table Of Contents (JTOC). (The name derives
from the Table Of Contents (TOC) register used by AIX to
achieve addressability to different load modules.) All of the
objects in Jalapefio are reachable from this array. This fa-
cilitates bootstrapping (section 3).

The JTOC is one of two Jalapefio constructs that breaks



Java’s type discipline (method invocation stacks being the
other). This does not present a barrier to accessing data
through the JTOC, since such data is not accessed by Java
code treating the JTOC as a Java object. Rather, Jala-
pefio’s compilers emit code that access the slots of the JTOC
directly at a fixed offset from a dedicated machine register.
A parallel descriptor array identifies those slots in the JTOC
that are references.

We considered factoring the JTOC into homogeneous ar-
rays. However, this would have entailed either using an ex-
cessive number of registers (one for object references and
one for each primitive type) or an added level of indirection
to some static accesses. An alternative, that would elimi-
nate the need for a descriptor array, would grow the JTOC
from both ends: static object references would go on one
end, primitive static fields on the other.

A.3 Compilation

The raison d’etre of a JVM is to execute Java bytecodes.
There are two basic approaches: bytecodes are either in-
terpreted or compiled. The initial JVMs were interpreters.
Later JVMs employed Just-In-Time (JIT) compilers to com-
pile heavily executed code. Code that was only occasionally
executed was still interpreted. Excepting its debugger, Jala-
pefio never interprets, it always compiles.

There are three quantities that can be optimized by a
compiler: execution-time of the compiled code, compile-
time of this code, or development-time of the compiler itself.
Jalapefio has three compilers. The baseline compiler is de-
signed to be as easy as possible to implement. It turns out
to be the fastest of the three. However, its code quality is
competitive with an interpreter (that is to say, poor). The
optimizing compiler [5] is designed to produce high-quality
code for methods that are computationally intensive and/or
often executed. The guick compiler is designed to care-
fully balance compile-time and execution-time: it performs
a small number of inexpensive high-impact optimizations,
principally register allocation.

Jalapefio’s compile-only strategy runs into a difficulty
with dynamically loaded classes. Certain bytecodes can re-
fer to classes that may not get loaded until the bytecode
is executed. Such bytecodes present no problem to an in-
terpreter, but confront a compiler with a dilemma: load
the class preemptively or defer class loading until execution.
Preemptive class loading is attractive because it simplifies
code generation, but it has two draw-backs. First, class load-
ing is expensive. If the bytecode is on an execution path that
is rarely if ever taken (e.g. handling a disk-full condition)
then this work will almost always have been done in vain.
Second, Java requires that if the class isn’t available that
this exception not be reported until the referring bytecode
is executed. For these reasons, Jalapefo defers class loading
when its compilers encounter a bytecode referring to a class
that has not yet been loaded. Executing each such bytecode
requires an offset value that only becomes available when
the class is loaded.

We are exploring two different approaches to obtaining
that value at runtime: getting it from a table or calling a
method for it. In the first case, if the slot of the table has not
been filled in then a method is called to load the class. To
avold repeated method call overhead in the other case, the
method overwrites it call site with code the compiler would
have emitted had the class been available at compilation.

A.4 Memory Management

Perhaps the most useful innovative feature of Java is
its provisions for automatic memory management. Besides
sparing programmers the necessity of implementing their
own memory management facility, Java has eliminated a
notorious source of pernicious and insidious bugs. A pointer
into memory that has been freed and reallocated can cause
untold havoc that may only become evident long after the
damage has been done. Detecting the culprit in such cases is
often very difficult because the evidence is cold by the time
the crime is discovered.

As useful a feature as automatic memory management is,
it presents many challenges to JVM implementors. There is
a wide variety of approaches to automatic memory man-
agement [13]. No one approach is clearly superior to all
others in all circumstances. We decided early on to pur-
sue a number of approaches in tandem with a view toward
understanding the trade-offs in each and toward perhaps de-
signing a hybrid suited to the specific needs of a particular
server environment. To this end, Jalapefio supports a family
of memory managers each consisting of an object allocator
and a garbage collector.

Most garbage collectors are either conservative or type
accurate. A conservative collector treats any value that “ap-
pears to be” an object reference as one. A type-accurate
collector must identify exactly those values that are object
references. It is possible that an int might happen to be
interpretable as a reference to an object that is garbage. A
type-accurate collector would collect the object, a conserva-
tive collector would not. This situation rarely occurs, so the
space impact of this limitation on conservative collectors is
slight. However, there is another implication: conservative
collectors cannot move an object if an apparent reference to
it could, in fact, be an int.

Another anomaly of conservative collectors can have a
noticeable space impact: phantom references in uninitial-
ized variables on method invocation stacks. Suppose method
A calls method B which has a local variable x containing
the only reference to an object. If B returns, the object is
garbage. But, suppose A then calls C. The slot for x is now
assigned to some local variable y of C. If y is not initialized
to a different value, a conservative collector will mistake y
for a reference to the object. Although we have at times
had conservative collectors to support early versions of our
compilers, we decided in the beginning that Jalapefio would
provide type-accurate garbage collection.

Java’s strong typing greatly simplifies the task of iden-
tifying references. However, the two places where we break
Java’s type system — the JTOC and method invocation
stacks — are problematic. A descriptor array parallel to
the JTOC identifies which components are references. Ref-
erences on method invocation stacks are located with the
help of stack maps provided by Jalapeiio’s compilers. Each
compiler must provide for each method it compiles a map
that shows where references are in the stack frame at each
place, called a safe point, that garbage collection might oc-
cur. Each compiler must also provide a register map for
each safe point, to track references in registers. The refer-
ence maps for a method are the combination of its stack and
register maps.

The computational impact of automatic memory man-
agement can be felt in throughput — the time devoted to
allocation and collection — and latency — the pause time
associated with a collection. It is important to keep both as
small as possible. It may be that in a server environment
pause times are most important, but this certainly does not



mean that throughput impact can be ignored. Garbage col-
lectors can be categorized as concurrent (running at the
same time as mutators) or stop-the-world (running only
when mutators are not). There may be throughput advan-
tages to stop-the-world collectors, but concurrent collectors
reduce pause times to their logical minimums. It is too early
to tell which of the two approaches is best. As a practical
matter, we felt stop-the-world collectors would be easiest to
implement first and we chose to do so. However, we have
tried not to make choices that would preclude going to con-
current collection later.

Collectors can be characterized as copying or non-copying
depending on whether or not they move objects. Copying
collectors have an advantage in allocating objects but need
to do more work during collection. We suspect that a non-
copying concurrent collector will be easier to implement and
possibly more efficient than a copying concurrent collectors.
We decided to support both copying and non-copying col-
lectors in Jalapefio.

It has been observed that most objects become garbage
very soon after they are allocated. Generational collectors
try to take advantage of this observation by categorizing
objects as old or young. Typically, an object is old if it
has survived a collection. Minor collections assume all old
objects are live and just collect new garbage. Major col-
lections collect all garbage. Minor collections have shorter
pause times but free less memory and thus may be required
more often. Usually, remembered set of old objects that may
point to young ones must be maintained. This slows down
mutation, but greatly speeds up collection. Jalapefio sup-
ports both generational and non-generational collectors.

Since Jalapefio is intended to run on multiprocessors,
memory management must not be a serial bottleneck. Ob-
Jects being allocated at the same time by different threads
are obtained from different regions of memory (conceptually
they reside in the same heap however). Jalapefio’s collectors
are also designed to run in parallel.

A.5 Threads and Synchronization

Memory management considerations played a determin-
ing role in shaping Jalapefnio’s multithreading strategy. Tran-
sitions between mutation and collection must be accom-
plished efficiently. Jalapefio must be able to handle thou-
sands of user threads. Type-accurate stop-the-world garbage
collection requires that each of these threads be stopped at a
safe point before collection can proceed. If each user thread
is a separate operating system thread, this can be an ardu-
ous task. (We initially assumed, perhaps prematurely [17],
that making every machine instruction a safe point would
not be feasible because of the space required to store the
reference maps. However, even if it were, merely stopping
thousands of system threads is non-trivial.)

This consideration was a major motivation for multi-
plexing user threads on wirtual processors implemented as
operating-system threads. By requiring that the points a
thread could lose control of a virtual processor be safe points,
we are assured that all threads, not currently running, are
stopped at safe points. It is only necessary to stop (at safe
points) those threads currently executing before beginning
garbage collection. Other considerations also supported the
choice to multiplex Java threads on virtual processors: it
helped minimize dependence on system services, it enabled
fast thread switching, and it allowed tight integration of
synchronization support with thread switching.

Our initial implementation of guasi-preemptive thread

switching proved to be relatively straight forward. Jala-
pefio’s compilers generate (as part of every method prologue
and, eventually, on backward branches as well) a test of a
reserved condition code bit. On a PowerPC this test can
usually be overlapped with other instructions and therfore
has “zero” cost. The condition code bit is set by a periodic
timer interrupt in the condition register of the processor
that handles the interrupt. When the set condition code
bit is detected, the method prologue transfers control to the
scheduler function. There the thread state is saved (using
Magic functions) and the next thread is dispatched (again,
using MAgIc functions).

This is an efficient and elegant solution to the problem of
how to interrupt Java threads in a timely manner but only at
safe points, and we are justifiably proud of it. Unfortunately,
it doesn’t work. In AIX, timer ticks are delivered at most
ten times a second. This is a long time for a thread to
execute before it gets context switched. On a SMP, only one
processor gets interrupted each timer tick. So, if there are
P processors, a thread gets interrupted on the average only
every P timer ticks. Furthermore, AIX makes no fairness
guarantees about how often any particular processor will
get interrupted. We observed significant runs of the same
processor being interrupted. Thus, our initial solution did
not guarantee sufficiently frequent thread-switching.

The revised solution was to have all processors perform
a thread switch at every timer tick. This seems to require
storing the thread switch flag in memory. This, in turn,
requires that the compiled code periodically load and test
the flag. These are not extremely costly operations by any
means, but they are no longer free.

When a garbage collection is required, the scheduler saves
the state of the running thread and dispatches a collector
thread. In a system with multiple virtual processors, the
collector threads wait until all the virtual processors have
dispatched collector threads; then the garbage collection be-
gins. Since there is one collector thread running on each
virtual processor, all the mutator threads must be at safe
points. When garbage collection completes, the collector
threads return to the scheduler and normal dispatching re-
sumes.

Synchronization in Jalapeiio is based on bimodal locks [4,
16]. Uncontended-for objects may be locked with thin locks
in the object headers. When two or more threads try to
lock the same object, its thin lock gets promoted to a thick
lock. The protocol for obtaining a thick lock is more expen-
sive than that for obtaining a thin one. Jalapefio’s locking
mechanism differs from previous bimodal locking work in
that thick locks are ordinary Java objects that can be ob-
tained without assistance from the operating system. The
mechanism requires the use of special RS/6000 instructions
that ensure mutually exclusive operations. Jalapefio issues
these instructions by calling the designated MAGIC routines
and the compiler generates them in line.
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