
Measurement and Analysis of
Runtime Profiling Data for Java Programs

Jane Horgan
School of Computer Applications, Dublin City University, Dublin 9, Ireland.

James Power
Department of Computer Science, National University of Ireland, Maynooth, Ireland.

John Waldron
Department of Computer Science, Trinity College, Dublin 2, Ireland.

Abstract

In this paper we examine a procedure for the analysis of
data produced by the dynamic profiling of Java programs.
In particular, we describe the issues involved in dynamic
analysis, propose a metric for discrimination between the
resulting data sets, and examine its application over differ-
ent test suites and compilers.

Keywords Java Virtual Machine, Bytecode Analysis,
Contingency Measure

1. Introduction

The Java programming language [7] has gained
widespread popularity as a general-purpose programming
language and, as such, is increasingly the focus of studies
in source code analysis and manipulation. In this paper we
describe a technique for the analysis of data gained from the
dynamic profiling of Java programs, and we present a con-
tingency measure that has proved extremely useful in this
analysis. We describe a case study showing this technique
in practice, as applied to programs from the Java Grande
Benchmark Suite.

The remainder of this section describes our reasons for
studying dynamic profiling data of Java programs, moti-
vates the method used, and defines the contingency mea-
sure. Sections 2 and 3 demonstrate the use of the method,
first to measure the difference between programs in a test
suite, and second to measure the impact of the choice of
compiler on the results. Section 4 concludes the paper.

1.1. Analysing Java Programs

The process for generating an executable file from Java
source code takes place in two stages. First, at compile-
time, the source is converted into a platform independent
intermediate representation [10], consisting of bytecode and
other information stored in class files. Second, at run-time,
hardware-specific conversions are performed, followed by
the execution of the code on the Java Virtual Machine
(JVM).

This process provides at least four levels at which Java
programs may be analysed:

1. Statically, at the source code level; studies at this level
are similar to those of programs written in other lan-
guages, where standard software metrics [6] can be ap-
plied.

2. Statically, at the bytecode level, where the usage of
bytecode instructions can be analysed for the purposes
such as optimisation [13] or compression [1], or even
as a source of software metrics [4].

3. Dynamically, at the bytecode level in a platform-
independent manner; this information can be used to
determine potential for optimisation [11], or to esti-
mate the coverage and effectiveness of programs com-
monly used in benchmarking [14].

4. Dynamically on a specific JVM and architecture; this
is the basis for studies of performance optimisations
such as Just-In-Time (JIT) [8] and hotspot-based [2]
compilation, as well as comparative JVM performance
[3].

The remainder of this paper focuses on the third of these
levels.



1.2. Platform Independent Dynamic Analysis

Dynamic analysis can provide information on the char-
acteristics of programs at the bytecode level, such as in-
struction usage frequencies, stack frame usage, method in-
vocation and object creation. Given the increasing variety
and sophistication of JVM implementations (see [9] for a
survey) it is clearly useful to distinguish those features of a
given Java program or suite of programs that are indepen-
dent of the JVM implementation, and thus will be common
across all platforms.

Our goal in performing such platform-independent dy-
namic analysis was twofold:

• To develop a technique for profiling benchmark suites,
so that different suites may be combined, and omis-
sions in existing suites may be addressed

• To examine the effect of compiler choice on such pro-
files, since this should be known when gathering re-
sults for a given JVM

In performing this analysis it was necessary to process
dynamic profiling data from a number of different applica-
tions from the test suite, over a number of different com-
pilers. For example, one study [5] examines the differences
between seven different compilers over a test suite involving
five applications. Each one of these 35 choices (of compiler
and application) involved the execution of roughly1010 in-
structions, presenting a formidable volume of data requiring
analysis.

The overall contribution of this paper is to outline our
method for analysing such large volumes of data, and, in
particular, to define a difference measure that can be used
to guide this analysis.

1.3. Normalised Mean Square Contingency Mea-
sure

The data most commonly collected as a result of dy-
namic profiling consists of counts of execution frequencies
for particular operations, such as stack loads and stores,
method invocation etc. When dealing with a number of
different programs, compilers or environments, blunt mea-
sures such as totals and averages often do not capture sub-
tle differences between test data, possibly varying on indi-
vidual instruction counts. To this end we describe a con-
tingency measure which, while providing a single overall
figure for a given comparison, will also take into account
differences in individual frequencies.

Supposeni = (nki) and nj = (nkj) are variables
(k = 1, 2, . . . ,m) describing the instruction count for two
applicationsi and j (or for one application under differ-
ent circumstances, e.g. under a change of compiler). We

can then form them × 2 matrix (ni nj) = (nk`) whose
columns are given byni andnj . For bytecode instructions,
m is always less than or equal to 202, the number of usable
bytecode instructions.

As a measure of the similarity of the two applications we
could write

‖(ni nj)− e(ni nj)‖2 =
∑
k`

(nk` − e(ni nj)k`)2, (1)

where

e(ni nj) =
(nk•n•i nk•n•j )

n••
, (2)

them × 2 matrix whose columns are multiples of the sum
of the two columns of(ni nj) = (nk`) by the sum of the
column elements. We can think ofe(ni nj) as the expected
valuesnk` under the assumption of statistical independence
betweenni andnj . As a measure of the association between
the instruction count of the two applications we consider the
chi-square coefficient

χ2
ij =

∑
`=i,j

m∑
k=1

(nk` − e(ni nj)k`)2

e(ni nj)k`
. (3)

If this is small, then the count distributions of the two
applications are similar, and if it is large, the distributions
differ. We observe that, after division of the expression (3)
by n••, the result lies between 0 and 1. Thus we define a
normalised mean-square contingency measure

Φij =

√
χ2
ij

n•i + n•j
,

wheren•i is the total number of bytecodes executed for
programi andn•j is the total number of bytecodes executed
for programj, as a measure of the relationship between in-
struction usage of applicationsi andj.

Clearly this measure provides summary information, and
is not a substitute for a closer examination of the underlying
data. In the next two sections we show how it can be used to
guide the analysis of data collected from dynamic profiling
of Java programs.

2. Case Study I: Variances between programs
in a benchmark suite

In order to demonstrate the use of our approach to the
analysis of dynamic bytecode data, we will outline the re-
sults of a case study using the Java Grande Forum Bench-
mark Suite [3]. This suite is intended to be representative
of applications that use large amounts of processing, I/O,
network bandwidth or memory.

Five applications from the Java Grande Suite (Version
2.0, size A) were used in our study:



Table 1. Summary of the Dynamic Data. This table gives some overall figures for the dynamic profile of the Java Grande
Benchmark Suite, including the total count of bytecode instructions executed, the number of different instructions used, along
with the average and standard deviation, calculated over the 202 usable bytecodes.

euler moldyn montecarlo raytracer search
Total bytecode count 14,514,096,409 7,599,820,106 1,632,874,942 11,792,255,694 7,103,726,472
No. of bytecodes used 107 105 111 112 114
Average count 71,851,962 37,622,872 8,083,539 58,377,503 35,166,963
Std. Deviation 341,107,381 199,113,676 33,832,479 282,282,446 106,439,932

• eul an array-based maths-intensive program

• mol a translation of a Fortran program designed to
model molecular particles

• mon a financial simulation using Monte Carlo tech-
niques

• ray which measures the performance of a 3D ray tracer

• seawhich implements a search algorithm for a game
of connect-4

All of these programs were compiled using Sun’sjavac
compiler, from version 1.3 of the JDK. The Kaffe JVM [16]
(version 1.0.5) was instrumented to count each bytecode ex-
ecuted, and the standard test suites were run for each ap-
plication. In order to ensure platform independence for the
bytecode counts, all optimisations (such as JIT compilation)
were disabled. Also, all bytecode information relating to the
Kaffe class library has been excluded from the figures, since
this ensures independence from the Kaffe implementation,
and was essential to highlight compiler differences in our
second case study.

2.1. Dynamic Bytecode Execution Frequencies

In order to gain a rough idea of the nature of the data, Ta-
ble 1 presents some outline figures that summarise the data
collected. As can be seen, all data sets are of the order of
1010 instructions executed, spread over roughly 100 differ-
ent bytecodes in each case. The range is roughly a factor of
10, between the smallest applicationmoland the largesteul.
The relatively high standard deviation in each case, how-
ever, indicates that the instruction usage is unevenly spread
throughout the different bytecodes.

Table 2. Dynamic Dissimilarity between Grande Applica-
tions. This table shows the values ofΦ, giving the differ-
ences between dynamic instruction usage in the five Grande
applications.

eul mol mon ray sea
eul 0.000 0.741 0.487 0.607 0.731
mol 0.741 0.000 0.776 0.783 0.896
mon 0.487 0.776 0.000 0.561 0.653
ray 0.607 0.783 0.561 0.000 0.821
sea 0.731 0.896 0.653 0.821 0.000

In order to further examine the usage distribution over
bytecodes, Figure 1 plots the number of times each instruc-
tion was used against its rank (ranging from 1, the most fre-
quently used, down towards 100, the least frequently used),
on a log-log scale. As can be seen from this graph, there
is a high concentration of usage in a few instructions, with
a sharp tailing off of use among the remaining instructions.
Such a distribution is familiar from case studies involving
other programming languages [12,§3.2.5].

This distribution is important in the context of analysing
a benchmark suite. Frequently, studies are interested in spe-
cific types of instructions representing important operations
(e.g. representing object creation, virtual method calls, ex-
ception handling). However a benchmark suite with such
a concentration of usage among relatively few instructions
risks representing certain possibly significant instructions
hardly at all.

There is a slight variance between applications here, with
mol showing the greatest concentration of usage in high-
ranking bytecodes, andseashowing a slightly less uneven
distribution. However, more information is clearly required
in order to distinguish between the applications.

2.2. Applying the Contingency Measure

The differences between applications are further demon-
strated by Table 2, which shows the results of applying the



1 10 100

Rank

100

1e04

1e05

1e06

1e07

1e08

1e09

N
o.

 o
f 

by
te

co
de

s

eul
mol
ray
sea

Figure 1. Distribution of the Dynamic Data. This graph shows the bytecode count (i.e. number of types the instruction was
executed) for each instruction plotted against its corresponding rank (where 1 is the most frequently executed) on a log-log scale.

Table 3. Static Dissimilarity between Grande Applica-
tions. This table shows the values ofΦ, giving the differ-
ences betweenstatic instruction usage in the five Grande
applications.

eul mol mon ray sea
eul 0.000 0.355 0.627 0.427 0.666
mol 0.355 0.000 0.523 0.397 0.701
mon 0.627 0.523 0.000 0.420 0.663
ray 0.427 0.397 0.420 0.000 0.627
sea 0.666 0.701 0.663 0.627 0.000

mean square contingency measure to the bytecode instruc-
tion usage frequencies. In all cases the dissimilarity is high,
presumably a desirable feature of test suite applications de-
signed to exercise different aspects of the JVM. This table
can be used as a basis for the extension of the benchmark
suite: desirable additions are (at least) those applications
exhibiting a significant difference to any of the existing ap-
plications in the suite.

An interesting side-issue here relates to the difference
between instruction usage measured statically and dynam-
ically. Table 3 presents the contingency measure for the
applications where the static frequency of bytecodes is used
(i.e. the number of times they appear in the bytecode files).
Comparing Table 2 with Table 3, we note that applications
appearing similar based on a static analysis (e.g.mol, ray
andeul) appear quite different when dynamically analysed.
Presumably this reflects the “characteristic” aspects of the

applications being present inside frequently executed loops,
and indicates the importance of dynamic execution frequen-
cies.

A consideration of the instruction usage, ranked by fre-
quencies give a more detailed view of the nature of the op-
erations being tested by each application, and is presented
in Appendix B. As has been noted for other programs in
[15], load and store instructions, which move data between
the operand stack and the local variable array, account for a
significant proportion of the instructions used in all cases.

While data such as that presented in Appendix B pro-
vides the ultimate detail in realtion to instruction usage,
the summary data collected using the contingency measure
presents a useful overall picture of the differences.

3. Case Study II: Variances across different
compilers

In this section we examine another application of the
contingency measure - to determine the impact of the choice
of Java compiler on the dynamic bytecode frequency data.

For the purposes of this study we used five different Java
compilers:

• borland, the Borland compiler for Java, version
1.2.006

• gcj, the GNU Compiler for Java, version 2.95.2

• jdk13, SUN’s javac compiler from JDK build 1.3.0-C



Table 4. Dynamic bytecode usage count differences for
Grande Applications using different compilers.The fig-
ures show the difference in bytecode counts between each
of the four compilers andjdk13, expressed as a percentage
increase over thejdk13figures.

borland gcj kopi pizza
% % % %

euler 0.3 8.7 8.1 0.3
moldyn 1.4 1.4 0.0 1.4
montecarlo 4.9 6.1 1.2 4.9
raytracer 1.8 0.9 0.0 1.8
search 3.1 6.0 3.6 2.9
average 1.6 4.7 3.4 1.5

• kopi, KOPI Java Compiler Version 1.3C

• pizza, Pizza version 0.39g, 15-August-98

The five Grande applications were compiled using each
of the five compilers, and, as in the previous section, data
was collected for the dynamic behaviour of each.

3.1. Overall Differences

The first indications of differences can be gleaned from
Table 4, which shows the difference between the total dy-
namic bytecode count for each compiler, compared with
that for thejdk13. These figures show the percentage in-
crease in the number of bytecodes executed for each com-
piler against thejdk13figures previously presented in Table
1.

The average figures in Table 1 suggest thatgcj andkopi
show the greatest increase, although this is not consistent
across all the applications. These figures do however give
some insight as to where the main discrepancies may be
found: ineul for gcj andkopi, and inmonfor borlandand
pizza. It also suggest thatborlandandpizzaexhibit similar
divergences from thejdk13, whereas the increases formon
show thatgcj andkopido not always differ in the same way.

To gain a greater insight into the nature of the compiler
differences, the mean square contingency measure between
the compilers was calculated for each application, and the
results are summarised in Table 5; full details are shown in
Appendix C.

Table 5 demonstrates a number of aspects relating to the
compiler differences. First, the variation is small compared
to that between the applications (as shown previously in ta-
ble Table 2). Clearly, at the present stage of development of
Java compilers, a change in the application being studied is
more significant than a change in the compiler being used.

Table 5. Comparing compilers against jdk13. This table
summarises the compiler differences, by showing the value
of Φ for each when compared against the jdk 1.3

borland gcj kopi pizza
euler 0.063 0.308 0.098 0.063
moldyn 0.147 0.147 0.202 0.147
montecarlo 0.267 0.294 0.129 0.267
raytracer 0.159 0.187 0.101 0.159
search 0.179 0.166 0.084 0.174
average 0.163 0.220 0.123 0.162

Second, the compilers are not completely independent
- indeed, there appears to be a strong similarity to the ap-
proach taken by thepizzaandborland compilers. On the
other hand, there is a strong difference between thegcj com-
piler and all the others, perhaps reflecting a deliberate de-
sign choice on the part of the GNU project.

Third, we can see that not all applications are affected
equally by varying the compiler. In particularmonconsis-
tently exhibits one of the higest variances, and this gives
some indication of which parts of the benchmark suite
should be examined in order to formulate an explanation.

Even though Java compilers are at a relatively early stage
of development, it is reasonable to assume that the differ-
ences between them will increase, rather than decrease over
time. Data along the lines of that presented in Table 5 pro-
vides a useful starting point for measuring the impact of
compiler evolution on the type of code produced.

3.2. Detailed Compiler Differences

Since our intention here is to describe the method of our
investigation we will not consider the various explanations
for each of the compiler differences in detail. However, it
is possible to make one more use of the mean square con-
tingency measure in order to bring these differences into
focus.

As an example, Appendix D shows the differences
in bytecode usage between thegcj compiler andjdk13,
itemised by bytecode instruction. To aid analysis the ta-
ble is sorted in decreasing order of dissimilarity, calculated
on a per-instruction basis. This ranking is useful here since
it allows us to distinguish between dissimilarities based on
their significance in terms of the overall program.

Below we summarise the main differences exhibited in
these tables.

• Loop Structure

For each usage of theif cmplt instruction by
jdk13 there is a corresponding usage ofgoto and



if cmpge by gcj. This can be explained by a more
efficient implementation of loop structures, ensuring
that each iteration involves just a single test. A sim-
ple static analysis would regard these as similar imple-
mentations, but the dynamic analysis clearly shows the
savings resulting from thejdk13approach.

• Specialisedload Instructions

gcj gives a significantly lower usage of the generic
iload instruction relative to all other compilers, and a
corresponding increase in the more specificiload 2
and iload 3 instructions showing that this compiler
is attempting to optimise the programs to make use of
lower-numbered local variable array slots.

• Common subexpression elimination

There is a dramatic difference in the use ofdup in-
structions. Thejdk13 exploits the usage of operators
such as+= by duplicating the operands on the stack;
gcj does not, and shows a corresponding increase in
the usages ofaload , aaload and getfield in-
structions as the expression is re-evaluated.

Our purpose in reviewing these compiler differences
here is to demonstrate the use of the contingency measure
in collecting the data and guiding the search for differences.
A fuller account of the details of these and other compiler
differences can be found in [5].

4. Conclusion

This paper defines and demonstrates a process, and as-
sociated metric, for the investigation of data collected from
the dynamic analysis of Java bytecode. It has been shown
above that useful information about a Java programs can
be extracted at the intermediate representation level, which
can then be used to understand their ultimate behaviour on
a specific hardware platform.

One of the problems with this approach is the large quan-
tity of data collected, and a major goal of this paper is to
provide a procedure for dealing with this data. Two case
studies have been presented as examples of this approach
- a comparison of programs in a benchmark suite, and a
comparison of the effects of various Java compilers on the
generated bytecode.

We see this work as being useful in three main areas:

• As a foundation for the study of the performance of
Java programs on a given JVM. The procedure for data
collection outlined above establishes the nature and
composition of the platform-independent aspects of a
test suite, and this can then be used to set the parame-
ters for performance measurement on a given JVM.

• As a method for determining the coverage and mutual
independence of test suite applications. The difference
measures presented in Table 2 above can be used to
evaluate the suitability of some other application for
inclusion in a benchmark suite - a minimum require-
ment should be a high dissimilarity to those applica-
tions already in the suite.

• As a method for determining and tracking the effect of
compiler transformations on generated bytecode. Java
compilers are still in an early stage of development,
but are likely to grow increasingly diverse. The pro-
cess presented here will help to measure the impact
of the compiler on the generated bytecode, and thus on
any data collected using bytecode generated by a given
compiler.

This type of analysis, of course, does not look in any way
at hardware specific issues, such as JIT compilers, inter-
preter design, memory effects or garbage collection which
may all have significant impacts on the eventual running
time of a Java program. We believe however that it is useful
as an auxiliary to such information, and that useful informa-
tion about Java programs, test suites and Java compilers can
be collected by following the strategy outlined in this paper.

References

[1] D. Antonioli and M. Pilz. Analysis of the Java class file
format. Technical Report 98.4, Dept. of Computer Science,
University of Zurich, April 1988.

[2] E. Armstrong. Hotspot: A new breed of virtual machine.
Java World, March 1998.

[3] M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey.
Benchmarking Java Grande applications. InSecond Inter-
national Conference and Exhibition on the Practical Appli-
cation of Java, Manchester, UK, April 2000.

[4] T. Cohen and J. Gil. Self-calibration of metrics of Java meth-
ods. InTechnology of Object-Oriented Languages and Sys-
tems, pages 94–106, Sydney, Australia, November 2000.

[5] C. Daly, J. Horgan, J. Power, and J. Waldron. Platform in-
dependent dynamic Java virtual machine analysis: the Java
Grande Forum Benchmark Suite. InJoint ACM Java Grande
- ISCOPE 2001 Conference, pages 106–115, Stanford, CA,
USA, June 2001.

[6] N. E. Fenton and S. L. Pfleeger.Software Metrics: A Rig-
orous and Practical Approach. Thomson Computer Press,
first edition, 1996.

[7] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison Wesley, 1996.

[8] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Oga-
sawara, T. Suganuma, T. Onodera, H. Komatsu, and
T. Nakatani. Design, implementation and evaluation of op-
timisations in a just-in-time compiler. InACM 1999 Java
Grande Conference, pages 119–128, San Francisco, CA,
USA, June 1999.



[9] I. Kazi, H. Chan, B. Stanley, and D. Lilja. Techniques for
obtaining high perfromance in Java programs.ACM Com-
puting Surveys, 32(3):213–240, September 2000.

[10] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. Addison Wesley, 1996.

[11] R. Radhakrishnan, N. Vijaykrishnan, L. John, A. Sivasubra-
maniam, J. Rubio, and J. Sabarinathan. Java runtime sys-
tems: Characterization and architectural implications.IEEE
Transactions on Computers, 50(2):131–146, February 2001.

[12] M. Shooman.Software Engineering: design, reliability and
management. McGraw-Hill, 1983.

[13] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization frame-
work. In Proceedings of CASCON 1999, pages 125–135,
1999.

[14] J. Waldron. Dynamic bytecode usage by object oriented Java
programs. InTechnology of Object-Oriented Languages and
Systems, Nancy, France, June 1999.

[15] J. Waldron and O. Harrison. Analysis of virtual machine
stack frame usage by Java methods. InThird IASTED Con-
ference on Internet and Multimedia Systems and Applica-
tions, Nassau, Grand Bahamas, Oct 1999.

[16] T. Wilkinson. KAFFE, A Virtual Machine to run Java Code.
<www.kaffe.org>, 2000.

A Proof that the Mean Square Contingency
Measure is Normalised

Theorem If ni = (nki) and nj = (nkj) are m-tuples of
positive numbers and n = (ni nj )) ∈ Rm×2 then

∑
k`

((ni nj)k` − e(ni nj)k`)2

e(ni nj)k`
≤
∑
k`

nk` = n•i+n•j = n••.

Proof. We compute

n••

(∑
k

(nki − nk•n•i
n••

)2

nk•n•i
n••

+
∑
k

(nkj − nk•n•j
n••

)2

nk•n•j
n••

)

=
∑
k

(n••nki − nk•n•i)2

nk•n•i
+
∑
k

(n••nkj − nk•n•j)2

nk•n•j

=
∑
k

(n•jnki − nkjn•i)2

nk•n•i
+
∑
k

(n•inkj − nkin•j)2

nk•n•j

=
(

1
n•i

+
1
n•j

)∑
k

(n•jnki − nkjn•i)2

nk•

=
n••

n•in•j

∑
k

(n•jnki − nkjn•i)2

nk•
,

We claim this is≤ n2
•• as we have∑

k

(
n2
•jn

2
ki + n2

•in
2
kj

) ∏
k′ 6=k

nk′• ≤ n•in•jn••
∏
k

nk• .

Indeed we countm · 2m2 · 2m−1 = m32m terms on the left
andm ·m · 2m · 2m = m32m+1 terms on the right, and can
pick off a match on the right for each term on the left.

•



B Dynamic Bytecode Instruction Frequen-
cies

These tables show the top 20 most frequently executed
bytecode instructions for each application. For each
instruction, the percentage figure represents the percentage
of the total bytecodes executed when this program was run
that were of this type.

euler % moldyn % montecarlo %
iload 19.8 dload 33.3 aload0 17.9
aaload 18.3 iload 7.0 getfield 17.8
getfield 16.2 dstore 6.8 daload 7.3
aload0 8.3 dcmpg 5.5 iload 1 6.1
dmul 4.1 dsub 4.7 dadd 4.9
dadd 4.0 getfield 4.3 dload 4.9
putfield 3.3 getstatic 4.3 if icmplt 4.9
iconst1 3.2 dmul 4.3 iinc 4.9
dload 2.8 aaload 4.2 iload 2 4.3
daload 2.0 ifle 4.1 dmul 3.1
isub 2.0 ifge 4.1 dup 2.5
dup 1.7 dcmpl 4.1 dastore 2.5
aload3 1.5 dneg 4.1 iload 3 2.5
dsub 1.5 dadd 3.4 putfield 2.5
aload 1.4 if icmplt 1.4 dsub 2.5
aload2 1.3 ifgt 1.4 dstore 1.8
ldc2w 1.2 iinc 1.4 iconst1 1.2
iadd 1.1 dload1 1.0 aload1 1.2
iload 3 1.1 aload0 0.1 iload 1.2
dstore 1.0 putfield 0.1 invokestatic 1.2

raytracer % search %
getfield 26.1 iload 13.2
aload0 16.1 aload0 8.6
aload1 10.9 getfield 7.3
dmul 6.6 istore 5.4
dadd 4.7 iaload 5.4
dsub 3.7 ishl 4.3
putfield 3.1 bipush 3.8
aload2 2.8 iload 1 3.6
dload2 1.9 iadd 3.5
invokestatic 1.9 iand 3.5
invokevirtual 1.9 iload 2 2.6
iload 1.8 iload 3 2.5
dreturn 1.8 iconst1 2.3
aload 1.3 ior 2.3
dload 1.1 iconst2 2.1
dstore 1.0 dup 2.0
return 1.0 iinc 1.7
ifge 1.0 ifeq 1.6
dcmpg 1.0 iastore 1.5
dconst0 1.0 iconst5 1.4

C Mean Square Contingency Measure for
Each Compiler

Here the value ofΦ is shown for each pair of compilers,
for each of the five applications. By the definition of the
difference measure, a low value indicates similar dynamic
profiles, while a high value indicates dissimilar profiles.

Since the relation is symmetric, the upper-right corner
of each table has been included for reference purposes only.

euler
borland gcj jdk13 kopi pizza

borland 0.000 0.302 0.063 0.116 0.000
gcj 0.302 0.000 0.308 0.293 0.302
jdk13 0.063 0.308 0.000 0.098 0.063
kopi 0.116 0.293 0.098 0.000 0.116
pizza 0.000 0.302 0.063 0.116 0.000

moldyn
borland gcj jdk13 kopi pizza

borland 0.000 0.007 0.147 0.249 0.007
gcj 0.007 0.000 0.147 0.249 0.001
jdk13 0.147 0.147 0.000 0.202 0.147
kopi 0.249 0.249 0.202 0.000 0.249
pizza 0.007 0.001 0.147 0.249 0.000

montecarlo
borland gcj jdk13 kopi pizza

borland 0.000 0.126 0.267 0.296 0.003
gcj 0.126 0.000 0.294 0.265 0.126
jdk13 0.267 0.294 0.000 0.129 0.267
kopi 0.296 0.265 0.129 0.000 0.296
pizza 0.003 0.126 0.267 0.296 0.000

raytracer
borland gcj jdk13 kopi pizza

borland 0.000 0.178 0.159 0.188 0.000
gcj 0.178 0.000 0.187 0.211 0.178
jdk13 0.159 0.187 0.000 0.101 0.159
kopi 0.188 0.211 0.101 0.000 0.188
pizza 0.000 0.178 0.159 0.188 0.000

search
borland gcj jdk13 kopi pizza

borland 0.000 0.198 0.179 0.193 0.035
gcj 0.198 0.000 0.166 0.167 0.194
jdk13 0.179 0.166 0.000 0.084 0.174
kopi 0.193 0.167 0.084 0.000 0.189
pizza 0.035 0.194 0.174 0.189 0.000



D Detailed Compiler Differences: gcj vs.
jdk13

This table shows the difference in dynamic bytecode
usage between Grande programs compiled with the Java
compiler from the JDK 1.3 and the GNU compiler for
Java. For each of the five applications the difference
between GNU and the JDK is given in numbers of bytecode
instructions, where a positive figure means an increase
going from the JDK to GCJ. The final column gives the
value forχ,an estimate of the significance of this difference
over the five applications, and this is used to rank the table.

Bytecode eul mol mon ray sea χ

if icmpge 46426954 105340746 80063949 108412746 64225554 15006823
aload3 33894400 0 -20776 0 42830635 6608910
astore3 6425701 1 -2596 1 7321073 3812935
iload 2 1139474718 0 10000000 0 61682701 1082343
goto 45029048 105135741 79945133 104302306 82484994 386845
iload 1 172866677 0 0 0 -41211794 176642
iload 3 812089979 0 21756 0 66241339 64805
istore1 153590 0 0 0 -32299878 44589
iload -1652572189 0 -20856 0 -7077327 30815
if icmplt -46426960 -105340746 -80063989 -108412746 -64225554 19543
dload 75171580 6945 0 210036772 0 18677
dup -237567985 -3060 -39970396 -11647704 -5759840 16702
dload2 0 0 0 -216715004 0 14611
dstore 60587290 3873 0 100042754 0 10525
dstore2 0 0 0 -104200128 0 10207
aaload 471859200 0 0 0 51031 9167
aload0 268428007 3079 50091302 11480687 57109443 8582
aload -33894400 0 20776 -12437181 -42728605 7041
dup2 0 0 -10001000 0 -51298562 6772
dload3 -40798590 0 0 6678232 0 6613
istore2 100653 0 0 0 27382781 6609
getfield 266789597 0 10000900 0 51349593 5967
dload1 -34372990 -6945 0 0 0 5689
dstore1 -29474395 -3873 0 0 0 5385
dstore3 -31112895 0 0 4157374 0 5304
iconstm1 0 0 20000 0 14705197 5122
if icmpgt 0 6 -33761 0 37677442 4618
ifne 0 0 17404 0 -26621698 3890
if icmple 0 -6 33761 0 -37677442 3877
iand 0 0 0 0 60586387 3859
astore2 -1 -1 -1 2520857 -1 3858
astore -6425700 0 2597 -2520858 -7321073 3715
iadd 0 0 0 0 58631656 3695
bipush 0 0 10000 0 56127294 3685
lload 3 0 0 0 0 -13288174 3645


