Measurement and Analysis of
Runtime Profiling Data for Java Programs

Jane Horgan
School of Computer Applications, Dublin City University, Dublin 9, Ireland.

James Power
Department of Computer Science, National University of Ireland, Maynooth, Ireland.

John Waldron
Department of Computer Science, Trinity College, Dublin 2, Ireland.

Abstract 1.1. Analysing Java Programs

The process for generating an executable file from Java
source code takes place in two stages. First, at compile-
time, the source is converted into a platform independent
intermediate representation [10], consisting of bytecode and
other information stored in class files. Second, at run-time,
hardware-specific conversions are performed, followed by
the execution of the code on the Java Virtual Machine
(JVM).

This process provides at least four levels at which Java
programs may be analysed:

In this paper we examine a procedure for the analysis of
data produced by the dynamic profiling of Java programs.
In particular, we describe the issues involved in dynamic
analysis, propose a metric for discrimination between the
resulting data sets, and examine its application over differ-
ent test suites and compilers.

Keywords Java Virtual Machine, Bytecode Analysis,
Contingency Measure

1. Statically, at the source code level; studies at this level
are similar to those of programs written in other lan-
guages, where standard software metrics [6] can be ap-
plied.

1. Introduction

2. Statically, at the bytecode level, where the usage of

The Java programming language [7] has gained bytecode instructions can be analysed for the purposes

widespread popularity as a general-purpose programming
language and, as such, is increasingly the focus of studies
in source code analysis and manipulation. In this paper we
describe a technique for the analysis of data gained from the
dynamic profiling of Java programs, and we present a con-
tingency measure that has proved extremely useful in this
analysis. We describe a case study showing this technique
in practice, as applied to programs from the Java Grande
Benchmark Suite.

The remainder of this section describes our reasons for
studying dynamic profiling data of Java programs, moti-
vates the method used, and defines the contingency mea-
sure. Sections 2 and 3 demonstrate the use of the method,
first to measure the difference between programs in a test
suite, and second to measure the impact of the choice of
compiler on the results. Section 4 concludes the paper.

such as optimisation [13] or compression [1], or even
as a source of software metrics [4].

. Dynamically, at the bytecode level in a platform-

independent manner; this information can be used to
determine potential for optimisation [11], or to esti-
mate the coverage and effectiveness of programs com-
monly used in benchmarking [14].

. Dynamically on a specific JVM and architecture; this

is the basis for studies of performance optimisations
such as Just-In-Time (JIT) [8] and hotspot-based [2]
compilation, as well as comparative JVM performance
[3].

The remainder of this paper focuses on the third of these
levels.

1.2. Platform Independent Dynamic Analysis can then form then x 2 matrix (n; n;) = (ny¢) whose
columns are given by; andn;. For bytecode instructions,

Dynamic analysis can provide information on the char- m is always less than or equal to 202, the number of usable

acteristics of programs at the bytecode level, such as in-bytecode instructions.

struction usage frequencies, stack frame usage, method in- As a measure of the similarity of the two applications we

vocation and object creation. Given the increasing variety could write

and sophistication of JVM implementations (see [9] for a 2 5

survey) it is clearly useful to distinguish those features of a (3) — e(ng ng)|* = (nwe = e(ni ng)re)?, (1)

given Java program or suite of programs that are indepen- ke

dent of the JVM implementation, and thus will be common where

across all platforms. e(nin;) = (NkeNei NkeTaj) @
Our goal in performing such platform-independent dy- B Nee ’
namic analysis was twofold: them x 2 matrix whose columns are multiples of the sum

. - : of the two columns ofn; n;) = (ng) by the sum of the
¢ To develop a technique for profiling benchmark SUites, . 1imn elements. We can think ofn; ;) as the expected

2%:126}:] ilfiz:ﬁ]m ;;Lf:r?aaybzeagggzggg and omis- valuesn;, under the assumption of statistical independence
g y betweem; andn ;. As a measure of the association between
e To examine the effect of compiler choice on such pro- the instruction count of the two applications we consider the
files, since this should be known when gathering re- chi-square coefficient
sults for a given JVM

m 2
Nge — €(N M) ke
e this analysis G-y y st g
In performing this analysis it was necessary to process Pt e(n; nj)ke
dynamic profiling data from a number of different applica- ’
tions from the test suite, over a number of different com- If this is small, then the count distributions of the two

pilers. For example, one study [5] examines the differencesapplications are similar, and if it is large, the distributions

between seven different compilers over a test suite involving differ. We observe that, after division of the expression (3)
five applications. Each one of these 35 choices (of compilerby n.., the result lies between 0 and 1. Thus we define a
and application) involved the execution of roughiy*® in- normalised mean-square contingency measure

structions, presenting a formidable volume of data requiring

analysis. o X3
The overall contribution of this paper is to outline our TN N + ey

method for analysing such large volumes of data, and, in

particular, to define a difference measure that can be used Wheren.; is the total number of bytecodes executed for
to guide this analysis. program; andn,; is the total number of bytecodes executed

for programy, as a measure of the relationship between in-
struction usage of applicationgnd;.

Clearly this measure provides summary information, and
is not a substitute for a closer examination of the underlying
data. In the next two sections we show how it can be used to

The datg most cpmmonly collected as a result of ‘?'V' guide the analysis of data collected from dynamic profiling
namic profiling consists of counts of execution frequencies ¢ ;.. o programs

for particular operations, such as stack loads and stores,
method invocation etc. When dealing with a number of .
different programs, compilers or environments, blunt mea- 2- Case Study I: Variances between programs
sures such as totals and averages often do not capture sub- iN @ benchmark suite

tle differences between test data, possibly varying on indi-

vidual instruction counts. To this end we describe a con- In order to demonstrate the use of our approach to the
tingency measure which, while providing a single overall analysis of dynamic bytecode data, we will outline the re-
figure for a given comparison, will also take into account sults of a case study using the Java Grande Forum Bench-

1.3. Normalised Mean Square Contingency Mea-
sure

differences in individual frequencies. mark Suite [3]. This suite is intended to be representative
Supposen; = (ng;) andn; = (ng;) are variables of applications that use large amounts of processing, 1/O,

(k = 1,2,...,m) describing the instruction count for two network bandwidth or memory.

applicationsi and j (or for one application under differ- Five applications from the Java Grande Suite (Version

ent circumstances, e.g. under a change of compiler). We2.0, size A) were used in our study:

Table 1. Summary of the Dynamic DataThis table gives some overall figures for the dynamic profile of the Java Grande
Benchmark Suite, including the total count of bytecode instructions executed, the number of different instructions used, along
with the average and standard deviation, calculated over the 202 usable bytecodes.

| euler | moldyn | montecarlo | raytracer | search
Total bytecode count | 14,514,096,409 7,599,820,106 1,632,874,942 11,792,255,694 7,103,726,47
No. of bytecodes use 107 105 111 112 114
Average count 71,851,962 37,622,872 8,083,539 58,377,503 35,166,963
Std. Deviation 341,107,381 | 199,113,676 | 33,832,479 282,282,446 | 106,439,932

e eul an array-based maths-intensive program
Table 2. Dynamic Dissimilarity between Grande Applica-
tions. This table shows the values &, giving the differ-
e mol a translation of a Fortran program designed to ences between dynamic instruction usage in the five Grande
model molecular particles applications.

eul mol mon ray sea
eul 0.000 0.741 0.487 0.607 0.731
mol | 0.741 0.000 0.776 0.783 0.896
mon | 0.487 0.776 0.000 0.561 0.653
ray | 0.607 0.783 0.561 0.000 0.821
sea | 0.731 0.896 0.653 0.8210.000

e mon a financial simulation using Monte Carlo tech-
nigues

e ray which measures the performance of a 3D ray tracer

e seawhich implements a search algorithm for a game | order to further examine the usage distribution over
of connect-4 bytecodes, Figure 1 plots the number of times each instruc-
tion was used against its rank (ranging from 1, the most fre-

)) . quently used, down towards 100, the least frequently used),
All of these programs were compiled using SuRSac o 3 |og-log scale. As can be seen from this graph, there

compiler, from version 1.3 of the JDK. The Kaffe JVM[16] s 4 high concentration of usage in a few instructions, with

(version 1.0.5) was instrumented to count each bytecode ex sharp tailing off of use among the remaining instructions.

ecuted, and the standard test suites were run for each apg,ch 5 distribution is familiar from case studies involving
plication. In order to ensure platform independence for the jiheor programming languages [53.2.5].

bytecode counts, all optimisations (such as JIT compilation)
were disabled. Also, all bytecode information relating to the

Kaffe class library has been excluded from the figures, since
this ensures independence from the Kaffe implementation
and was essential to highlight compiler differences in our
second case study.

This distribution is important in the context of analysing
a benchmark suite. Frequently, studies are interested in spe-
cific types of instructions representing important operations
'(e.g. representing object creation, virtual method calls, ex-
ception handling). However a benchmark suite with such
a concentration of usage among relatively few instructions
risks representing certain possibly significant instructions
2.1. Dynamic Bytecode Execution Frequencies hardly at all.

There is a slight variance between applications here, with

In order to gain a rough idea of the nature of the data, Ta- Mol showing the greatest concentration of usage in high-
ble 1 presents some outline figures that summarise the dat&anKing bytecodes, anseashowing a slightly less uneven
collected. As can be seen, all data sets are of the order oflistribution. However, more information is clearly required
100 instructions executed, spread over roughly 100 differ- in order to distinguish between the applications.
ent bytecodes in each case. The range is roughly a factor of
10, between the smallest applicatimol and the largestul. 2.2. Applying the Contingency Measure
The relatively high standard deviation in each case, how-
ever, indicates that the instruction usage is unevenly spread The differences between applications are further demon-
throughout the different bytecodes. strated by Table 2, which shows the results of applying the

1609 {= v EENS

108 - R S sea

1e07 |- _

1e06 [~ s S

No. of bytecodes

1e05—

1le04 |-

! ! ! T I ! ! ! !
100l 10 100

Rank

Figure 1. Distribution of the Dynamic Data This graph shows the bytecode count (i.e. number of types the instruction was
executed) for each instruction plotted against its corresponding rank (where 1 is the most frequently executed) on a log-log scale.

applications being present inside frequently executed loops,
and indicates the importance of dynamic execution frequen-
cies.

A consideration of the instruction usage, ranked by fre-

Table 3. Static Dissimilarity between Grande Applica-
tions This table shows the values &, giving the differ-
ences betweestatic instruction usage in the five Grande

applications. quencies give a more detailed view of the nature of the op-
| eul mol mon ray sea grations bging tested by each application, and is preseqted
sul 10000 0355 0627 0427 0.666 in Appendix B. As has begn noted. for other programs in
mol | 0355 0000 0523 0397 0.701 [15], load and store instructions, Whlch move data between
mon | 0627 0523 0000 0420 0.663 tr_le (_)perand stack_and the chal van_able array, account for a
ray 0:427 0:397 6'420 O:OOO 02627 S|gn|f|(_:ant proportion of the mstructlons_used in aII_ cases.
sea | 0666 0701 0.663 0.6270 000 While data such as that presented in Appendix B pro-

vides the ultimate detail in realtion to instruction usage,
the summary data collected using the contingency measure
presents a useful overall picture of the differences.
mean square contingency measure to the bytecode instruc-
tion usage frequer_wies. In all cases the d@ssimila_rity _is high,3. case Study II: Variances across different
presumably a desirable feature of test suite applications de- compilers
signed to exercise different aspects of the JVM. This table
can be used as a basis for the extension of the benchmark) .) o
suite: desirable additions are (at least) those applications N this section we examine another application of the
exhibiting a significant difference to any of the existing ap- contingency measure - to determine the impact of the choice
plications in the suite. of Java compiler on the dynamic bytecode frequency data.
An interesting side-issue here relates to the difference ~ FOr the purposes of this study we used five different Java
between instruction usage measured statically and dynamcompilers:
ically. Table 3 presents the contingency measure for the
applications where the static frequency of bytecodes is used
(i.e. the number of times they appear in the bytecode files).
Comparing Table 2 with Table 3, we note that applications
appearing similar based on a static analysis (engl, ray
andeul) appear quite different when dynamically analysed.
Presumably this reflects the “characteristic” aspects of the

e borland, the Borland compiler for Java, version
1.2.006

e gcj, the GNU Compiler for Java, version 2.95.2

e jdk13, SUN's javac compiler from JDK build 1.3.0-C

Table 4. Dynamic bytecode usage count differences for Table 5. Comparing compilers against jdk1J his table

Grande Applications using different compilerShe fig- summarises the compiler differences, by showing the value
ures show the difference in bytecode counts between each of ® for each when compared against the jdk 1.3
of the four compilers an@tlk13 expressed as a percentage
increase over thiglk13figures. borland gcj kopi pizza
euler 0.063 0.308 0.098 0.063
borland gcj kopi pizza moldyn 0.147 0.147 0.202 0.147
% % %N % montecarlo| 0.267 0.294 0.129 0.267
euler 0.3 87 81 03 raytracer 0.159 0.187 0.101 0.159
moldyn 14 14 00 14 search 0.179 0.166 0.084 0.174
montecarlo| 4.9 61 12 49 average 0.163 0.220 0.123 0.162
raytracer 1.8 09 0.0 1.8
search 3.1 6.0 3.6 2.9
average 1.6 47 3.4 15

Second, the compilers are not completely independent
- indeed, there appears to be a strong similarity to the ap-
proach taken by thpizzaandborland compilers. On the

e kopi, KOPI Java Compiler Version 1.3C other hand, there is a strong difference betweegtheom-
. . . piler and all the others, perhaps reflecting a deliberate de-
e pizza, Pizza version 0.39g, 15-August-98 sign choice on the part of the GNU project.

] o)] Third, we can see that not all applications are affected
The five Grande applications were compiled using each equally by varying the compiler. In particularonconsis-

of the five compilers, and, as in the previous section, datayeny exhibits one of the higest variances, and this gives

was collected for the dynamic behaviour of each. some indication of which parts of the benchmark suite
should be examined in order to formulate an explanation.
3.1. Overall Differences Even though Java compilers are at a relatively early stage

of development, it is reasonable to assume that the differ-
The first indications of differences can be gleaned from €nces between them will increase, rather than decrease over

Table 4, which shows the difference between the total dy- time. Data along the lines of that presented in Table 5 pro-
namic bytecode count for each compiler, compared with Vides a useful starting point for measuring the impact of
that for thejdk13 These figures show the percentage in- compiler evolution on the type of code produced.

crease in the number of bytecodes executed for each com-

piler against thgdk13figures previously presented in Table 3.2. Detailed Compiler Differences

1.

The average figures in Table 1 suggest tigtandkopi Since our intention here is to describe the method of our
show the greatest increase, although this is not consistentnvestigation we will not consider the various explanations
across all the applications. These figures do however givefor each of the compiler differences in detail. However, it
some insight as to where the main discrepancies may beds possible to make one more use of the mean square con-
found: ineul for gcj andkopi, and inmonfor borlandand tingency measure in order to bring these differences into
pizza It also suggest thdtorland andpizzaexhibit similar focus.
divergences from thglk13 whereas the increases fmon As an example, Appendix D shows the differences
show thaigcj andkopido not always differ in the same way. in bytecode usage between tlyej compiler andjdk13

To gain a greater insight into the nature of the compiler itemised by bytecode instruction. To aid analysis the ta-
differences, the mean square contingency measure betweeble is sorted in decreasing order of dissimilarity, calculated
the compilers was calculated for each application, and theon a per-instruction basis. This ranking is useful here since
results are summarised in Table 5; full details are shown init allows us to distinguish between dissimilarities based on
Appendix C. their significance in terms of the overall program.

Table 5 demonstrates a number of aspects relating to the Below we summarise the main differences exhibited in
compiler differences. First, the variation is small compared these tables.
to that between the applications (as shown previously in ta-
ble Table 2). Clearly, at the present stage of development of
Java compilers, a change in the application being studied is For each usage of th& _cmplt instruction by
more significant than a change in the compiler being used. jdk13 there is a corresponding usage gfto and

e Loop Structure

if _cmpge by gcj. This can be explained by a more

efficient implementation of loop structures, ensuring
that each iteration involves just a single test. A sim-
ple static analysis would regard these as similar imple-

e As a method for determining the coverage and mutual

independence of test suite applications. The difference
measures presented in Table 2 above can be used to
evaluate the suitability of some other application for

inclusion in a benchmark suite - a minimum require-
ment should be a high dissimilarity to those applica-
tions already in the suite.

mentations, but the dynamic analysis clearly shows the
savings resulting from thiglk13approach.

e Specialisedoad Instructions

e As a method for determining and tracking the effect of
compiler transformations on generated bytecode. Java
compilers are still in an early stage of development,
but are likely to grow increasingly diverse. The pro-
cess presented here will help to measure the impact
of the compiler on the generated bytecode, and thus on
any data collected using bytecode generated by a given
compiler.

gcj gives a significantly lower usage of the generic
iload instruction relative to all other compilers, and a
corresponding increase in the more spedifiad _2
andiload _3 instructions showing that this compiler
is attempting to optimise the programs to make use of
lower-numbered local variable array slots.

e Common subexpression elimination

There is a dramatic difference in the usedofp in- This type of analysis, of course, does not look in any way
structions. Thgdk13 exploits the usage of operators at hardware specific issues, such as JIT compilers, inter-
such ast= by duplicating the operands on the stack; preter design, memory effects or garbage collection which
gcj does not, and shows a corresponding increase inmay all have significant impacts on the eventual running
the usages oéload , aaload andgetfield in- time of a Java program. We believe however that it is useful
structions as the expression is re-evaluated. as an auxiliary to such information, and that useful informa-
tion about Java programs, test suites and Java compilers can

Our purpose in reviewing these compiler differences pe collected by following the strategy outlined in this paper.
here is to demonstrate the use of the contingency measure

in collecting the data and guiding the search for differences.
A fuller account of the details of these and other compiler
differences can be found in [5].

References

[1] D. Antonioli and M. Pilz. Analysis of the Java class file
format. Technical Report 98.4, Dept. of Computer Science,
University of Zurich, April 1988.

[2] E. Armstrong. Hotspot: A new breed of virtual machine.
Java World March 1998.

[3] M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey.

Benchmarking Java Grande applications. Skecond Inter-

national Conference and Exhibition on the Practical Appli-

cation of JavaManchester, UK, April 2000.

T. Cohen and J. Gil. Self-calibration of metrics of Java meth-

ods. InTechnology of Object-Oriented Languages and Sys-

tems pages 94-106, Sydney, Australia, November 2000.

C. Daly, J. Horgan, J. Power, and J. Waldron. Platform in-

dependent dynamic Java virtual machine analysis: the Java

Grande Forum Benchmark Suite.Joint ACM Java Grande

- ISCOPE 2001 Conferencpages 106-115, Stanford, CA,

USA, June 2001.

[6] N. E. Fenton and S. L. PfleegeBoftware Metrics: A Rig-

orous and Practical ApproachThomson Computer Press,

first edition, 1996.

J. Gosling, B. Joy, and G. Steel€he Java Language Spec-

ification. Addison Wesley, 1996.

K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Oga-

sawara, T. Suganuma, T. Onodera, H. Komatsu, and

T. Nakatani. Design, implementation and evaluation of op-

timisations in a just-in-time compiler. IACM 1999 Java

Grande Conferengepages 119-128, San Francisco, CA,

USA, June 1999.

4. Conclusion

This paper defines and demonstrates a process, and as-
sociated metric, for the investigation of data collected from
the dynamic analysis of Java bytecode. It has been shown
above that useful information about a Java programs can
be extracted at the intermediate representation level, which ,
can then be used to understand their ultimate behaviour on
a specific hardware platform.

One of the problems with this approach is the large quan- [5]
tity of data collected, and a major goal of this paper is to
provide a procedure for dealing with this data. Two case
studies have been presented as examples of this approach
- a comparison of programs in a benchmark suite, and a
comparison of the effects of various Java compilers on the
generated bytecode.

We see this work as being useful in three main areas: [7]

e As a foundation for the study of the performance of 8]
Java programs on a given JVM. The procedure for data
collection outlined above establishes the nature and
composition of the platform-independent aspects of a
test suite, and this can then be used to set the parame-
ters for performance measurement on a given JVM.

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

. Kazi, H. Chan, B. Stanley, and D. Liljia. Techniques for A Proof that the Mean Square Contingency

obtaining high perfromance in Java programdsCM Com- Measure is Normalised

puting Surveys32(3):213-240, September 2000.

T. Lindholm and F. Yellin.The Java Virtual Machine Speci-

fication Addison Wesley, 1996. Theorem Ifn; = (TL]“) and n; = (nkj) EII‘GZm-tUPIGS of

R. Radhakrishnan, N. Vijaykrishnan, L. John, A. Sivasubra- positive numbers and n = (n; n;) € R™** then

maniam, J. Rubio, and J. Sabarinathan. Java runtime sys-)

tems: Characterization and architectural implicatideEE Z (i nj) ke — e(ni ny)re)

Transactions on Computers0(2):131-146, February 2001. e(n; nj)ke

M. Shooman.Software Engineering: design, reliability and

managementMcGraw-Hill, 1983.

R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,

E. Gagnon, and P. Co. Soot - a Java optimization frame- (
n..

S Z Nke = n.i‘f'n.j — Nee-
ke

Proof. We compute

NkeNei

Z (nk1 T T hes)2 —|—Z (nkj - W)2>
NkeMNei NkeMej

k Nee k Nee

work. In Proceedings of CASCON 199f8ages 125-135,

1999.

J. Waldron. Dynamic bytecode usage by object oriented Java))

programs. ITechnology of Object-Oriented Languagesand ~ _ Z (TeaTlki — NkeNles) + Z (MeaTtkj — Tikellej)
k

SystemsNancy, France, June 1999. NkeTlei
J. Waldron and O. Harrison. Analysis of virtual machine
stack frame usage by Java methodsTlird IASTED Con-
ference on Internet and Multimedia Systems and Applica-
tions, Nassau, Grand Bahamas, Oct 1999.

T. Wilkinson. KAFFE, A Virtual Machine to run Java Code <

NkeTlej
L kellej

Z (nojnki - nkjnoi)2 + Z (n-inkj - nkm.j)Q
k k

Nkellei Nkellej

<www.kaffe.org>, 2000. =

1 T 1) Z (n.jnki — nkjn.q;)2

Nej Tej & Nke
s M)2
o Nee (n0]nkz — Mgy noz)
-)
Neillej L Nke

We claim this is< n2, as we have

2 2 2 2
E (nojnki + noinkj) H Nire < NeillejMes ano .

k k' #k k

Indeed we countn - 2m? - 2™~ 1 = m32™ terms on the left
andm -m - 2m - 2™ = m32™*1 terms on the right, and can
pick off a match on the right for each term on the left.

[]

B Dynamic Bytecode Instruction Frequen- C Mean Square Contingency Measure for
cies Each Compiler

These tables show the top 20 most frequently executed Here the value o is shown for each pair of compilers,
bytecode instructions for each application. For each for each of the five applications. By the definition of the
instruction, the percentage figure represents the percentagdifference measure, a low value indicates similar dynamic
of the total bytecodes executed when this program was runprofiles, while a high value indicates dissimilar profiles.
that were of this type.

Since the relation is symmetric, the upper-right corner

euler % moldyn % montecarlo % of each table has been included for reference purposes only.
iload 19.8 || dload 33.3 || aloadO 17.9
aaload | 18.3 || iload 7.0 || getfield 17.8
getfield | 16.2 || dstore 6.8 || daload 7.3 euler
3I0aTiO 8.3 gcmbpg 5.5 Iclio?j((jj_l 6.1 borland acj jdk13 kopi pizza
mu 4.1 dsut 41| da 4.9 borland | 0.000 0.302 0.063 0.116 0.000
dadd 4.0 | getfield | 4.3 dload 4.9 gci 0302 0000 0308 0.293 0.302
putfield 3.3 || getstatic | 4.3 || if_-icmplt 49 jdk13 0.063 0.308 0.000 0.098 0063
'(;O”Ztl gé dmlu' d 3'2 e 3'2 kopi 0116 0293 0.098 0.000 0.116
oa -© || aaloa < | roa : pizza | 0.000 0302 0.063 0.116 0.000
daload 2.0 || ifle 4.1 || dmul 3.1
isub 2.0 || ifge 4.1 || dup 25 moldyn
gllf)r;ds 1;_/) gﬁrgpl ji ﬁgj}f&e 22 borland gcj jdk13 kopi pizza
' 9 ' , : borland| 0.000 0.007 0.147 0.249 0.007
dsub 1.5 || dadd 3.4 || putfield 25 - 0007 0000 0147 0249 0001
aload 1.4 || ifiicmplt | 1.4 || dsub 25 9¢) ' X ' ’ '
aload? 13 if_t 1.4 || dstore 18 jdk13 0.147 0.147 0.000 0.202 0.147
oo | 19 iigc 12 | iconstt o kopi 0249 0249 0.202 0.000 0.249
iadd 11 || dioad1 10 || aload1 12 pizza 0.007 0.001 0.147 0.249 0.000
iload 3 1.1 || aload0 0.1 || iload 1.2 N |
dstore 1.0 || putfield 0.1 || invokestatic| 1.2 montecarlo

borland gcj jdk13 kopi pizza
borland | 0.000 0.126 0.267 0.296 0.003

raytracer % search % gcj 0.126 0.000 0.294 0.265 0.126
getfield 26.1 || iload 13.2 jdk13 0.267 0.294 0.000 0.129 0.267
aload0 16.1 || aload0 | 8.6 kopi 0296 0.265 0.129 0.000 0.296
aload1l 10.9 || getfield | 7.3 pizza 0.003 0.126 0.267 0.296 0.000
dmul 6.6 || istore 5.4
dadd 4.7 || iaload 5.4 raytracer
dsub 3.7 || ishl 4.3 borland gcj jdk13 kopi pizza
putfield 3.1 bipush | 3.8 borland| 0.000 0.178 0.159 0.188 0.000
aload2 28 || iload1 | 3.6 gcj 0178 0000 0187 0211 0.178
dload2 | 1.9 | iadd 3.5 jdk13 | 0159 0.187 0.000 0.101 0.159
invokestatic | 1.9 || iand 3.5 kopi 0188 0211 0.101 0.000 0.188
invokevirtual | 1.9 | fload2 | 2.6 pizza | 0.000 0.178 0.159 0.188 0.000
iload 1.8 || iload3 2.5
dreturn 1.8 || iconstl 2.3 search
aload 13 lor 2.3 borland gcj jdk13 kopi pizza
dload 1111 iconst2) 2.1 borland| 0.000 0.198 0.179 0.103 0.035
dstore 1.0 || dup 2.0 qcj 0.198 0.000 0.166 0.167 0.194
return 1.0} iinc L7 jdk13 | 0179 0.166 0000 0084 0.174
ifge 1.0 | ifeq 1.6 kopi 0.193 0.167 0.084 0.000 0.189
dempg 1.0} lastore | 1.5 pizza 0.035 0.194 0.174 0.189 0.000
dconst0 1.0 || iconst5 1.4

D Detailed Compiler Differences:

jdk13

gcj vs.

This table shows the difference in dynamic bytecode
usage between Grande programs compiled with the Java
compiler from the JDK 1.3 and the GNU compiler for

Java.

For each of the five applications the difference

between GNU and the JDK is given in numbers of bytecode
instructions, where a positive figure means an increase
going from the JDK to GCJ. The final column gives the
value fory,an estimate of the significance of this difference
over the five applications, and this is used to rank the table.

Bytecode eul mol mon ray sea X
ificmpge | 46426954 | 105340746 | 80063949 | 108412746| 64225554 | 15006823
aload3 33894400 0 -20776 0 42830635 | 6608910
astore3 6425701 1 -2596 1 7321073 | 3812935
iload 2 1139474718 0 10000000 0 61682701 | 1082343
goto 45029048 | 105135741 | 79945133 | 104302306 | 82484994 | 386845
iload-1 172866677 0 0 0 -41211794| 176642
iload_-3 812089979 0 21756 0 66241339 | 64805
istore 1 153590 0 0 0 -32299878| 44589
iload -1652572189 0 -20856 0 -7077327 30815
if icmplt -46426960 | -105340746| -80063989| -108412746| -64225554| 19543
dload 75171580 6945 0 210036772 0 18677
dup -237567985 -3060 -39970396| -11647704 | -5759840 16702
dload 2 0 0 0 -216715004 0 14611
dstore 60587290 3873 0 100042754 0 10525
dstore2 0 0 0 -104200128 0 10207
aaload 471859200 0 0 0 51031 9167
aload0 268428007 3079 50091302 | 11480687 | 57109443 8582
aload -33894400 0 20776 -12437181 | -42728605 7041
dup2 0 0 -10001000 0 -51298562 6772
dload 3 -40798590 0 0 6678232 0 6613
istore 2 100653 0 0 0 27382781 6609
getfield 266789597 0 10000900 0 51349593 5967
dload 1 -34372990 -6945 0 0 0 5689
dstorel -29474395 -3873 0 0 0 5385
dstore3 -31112895 0 0 4157374 0 5304
iconstml1 0 0 20000 0 14705197 5122

if icmpgt 0 6 -33761 0 37677442 4618
ifne 0 0 17404 0 -26621698 3890

if icmple 0 -6 33761 0 -37677442 3877
iand 0 0 0 0 60586387 3859
astore2 -1 -1 -1 2520857 -1 3858
astore -6425700 0 2597 -2520858 | -7321073 3715
iadd 0 0 0 0 58631656 3695
bipush 0 0 10000 0 56127294 3685
lload_-3 0 0 0 0 -13288174| 3645

