
J Grid Computing
DOI 10.1007/s10723-012-9213-8

Language and Runtime Support for Automatic
Configuration and Deployment of Scientific
Computing Software over Cloud Fabrics

Chris Bunch · Brian Drawert · Navraj Chohan ·
Chandra Krintz · Linda Petzold · Khawaja Shams

Received: 16 August 2011 / Accepted: 8 March 2012
© Springer Science+Business Media B.V. 2012

Abstract In this paper, we present the design and
implementation of Neptune, a simple, domain-
specific language based on the Ruby programming
language. Neptune automates the configuration
and deployment of scientific software frameworks
over disparate cloud computing systems. Neptune
integrates support for MPI, MapReduce, UPC,
X10, StochKit, and others. We implement Nep-
tune as a software overlay for the AppScale cloud
platform and extend AppScale with support for
elasticity and hybrid execution for scientific com-
puting applications. Neptune imposes no over-
head on application execution, yet significantly
simplifies the application deployment process, en-
ables portability across cloud systems, and pro-
motes lock-in avoidance by specific cloud vendors.

Keywords Cloud platform · Service placement ·
Domain specific language

C. Bunch (B) · B. Drawert · N. Chohan · C. Krintz ·
L. Petzold
Computer Science Department,
University of California,
Santa Barbara, CA, USA
e-mail: cgb@cs.ucsb.edu

K. Shams
Jet Propulsion Laboratory,
California Institute of Technology,
Pasadena, CA, USA

Mathematics Subject Classifications (2010)
D.3.2 · C.2.4

1 Introduction

Cloud computing is a service-oriented methodol-
ogy that simplifies distributed computing through
dynamic resource (compute, storage, database,
software) acquisition and management. Cloud
computing differs from Grid computing in that re-
sources are both shared and opaque. Specifically,
users do not know about or control the ge-
ographic location, low-level organization, capa-
bility, sharing, or configuration of the physical
resources they use. Moreover, these resources can
grow and shrink dynamically according to service-
level agreements, application behavior, and re-
source availability. Despite making vast resources
procurable at very low cost and providing a scal-
able, effective execution model for a wide range of
application domains, cloud computing has yet to
achieve widespread use for scientific computing.

Beyond the differences between clouds and
Grids, there are three barriers to the adoption of
cloud computing for the execution of distributed,
cluster-based, scientific applications. First, cloud
systems currently in use have been designed for
the execution of applications from the web ser-
vices domain. As a result, developers must im-
plement additional services and frameworks to

C. Bunch et al.

support applications from other domains. Such
infrastructure (tools, services, packages, libraries)
presents challenges to efficient reuse, and requires
non-trivial installation, configuration, and deploy-
ment efforts to be repeatable. Second, cloud
systems today are vastly diverse between one an-
other, and code written for one system is not
easily portable to other cloud systems, despite
using common services and APIs provided by
the cloud system. Differing interfaces can impose
large learning curves and lead to lock-in – the
inability to easily move from one cloud system
to another. Third, the self-service nature of cloud
infrastructures require significant user expertise
to manipulate, control, and customize virtual ma-
chines (the execution unit of cloud infrastruc-
tures), making them inaccessible to all but expert
users [15].

The goal of our work is to reduce the real-
world impact of these barriers-to-entry and to
facilitate greater use of cloud fabrics by the sci-
entific computing community. This is also part of
an effort to enable a cost-effective computation
alternative to that of the cluster that is still viable
for large scale scientific problems. Toward this
end, we present and evaluate Neptune, a domain-
specific language for automatically configuring
and deploying disparate cloud-based services and
applications. Neptune is a high-level language that
is a superset of Ruby [31], a dynamic, open source
programming language that is easy to learn and fa-
cilitates programmer productivity. Neptune adds
to Ruby a series of keywords and constructs that
developers use to describe a computational job
at a very high level. Neptune executes any Ruby
code using the Ruby interpreter and uses this
job description along with a set of API calls to
build, configure, and deploy the services, libraries,
and virtual machines necessary for the distributed
execution of complex scientific applications and
systems over cloud platforms. Neptune abstracts
away all of the low level details of the under-
lying cloud platforms (and by extension, cloud
infrastructures) and provides a single, simple in-
terface with which developers can deploy their
applications. Neptune thus enables application
portability across clouds and precludes lock-in
to any single cloud vendor. Moreover, develop-
ers can use Neptune to employ multiple clouds

concurrently (hybrid cloud computing), without
application modification.

To enable this, Neptune interfaces to the App-
Scale [8, 9, 24] cloud platform. AppScale is a
distributed, scalable software system that exposes
a set of popular cloud service APIs (based on
those of Google App Engine), and executes over
the Amazon Web Services and Eucalyptus [27]
clouds.

In this paper we present the design and imple-
mentation of Neptune, as well as a set of AppScale
extensions that enable automatic configuration
and deployment of scientific applications. These
extensions include dynamic instantiation of vir-
tual machines, placement of application and cloud
service components within virtual machines for
elasticity, and hybrid cloud computing. We ex-
tend AppScale with a set of popular software
systems that are employed by a wide range of
scientific application domains, such as MPI, UPC,
and MapReduce for general-purpose HPC, as
well as more science-specific toolkits such as
StochKit [33] for stochastic biochemical simula-
tion, DFSP [12] for spatial stochastic biochemical
simulation, and dwSSA [10] for the estimation
of rare event probabilities. Moreover, Neptune’s
design makes it straightforward for users to add
additional frameworks, libraries, and toolkits.

In the sections that follow, we describe the
design and implementation of Neptune, and our
extensions to the AppScale cloud platform. We
then empirically evaluate Neptune using distrib-
uted HPC frameworks, stochastic simulation ap-
plications, and different placement strategies. We
then present related work and conclude.

2 Neptune

Neptune is a domain-specific language that gives
cloud application developers the ability to eas-
ily configure and deploy computational science
software over cloud systems. Configuration refers
to writing the configuration files that HPC soft-
ware requires to execute in a distributed fashion,
while deployment refers to starting HPC services
in the correct order, to enable user code to be
executed. Neptune operates at the cloud plat-
form layer (runtime system level) so that it can

Language/Runtime Support for Cloud Platforms

control infrastructure-level entities (virtual ma-
chines) as well as application components and
cloud services.

2.1 Syntax and Semantics

The Neptune language is a metaprogramming ex-
tension of the Ruby programming language. As
such, it is high-level and familiar, and can leverage
a large set of Ruby libraries to interact with cloud
infrastructures and platforms. Moreover, any legal
Ruby code is also legal within Neptune programs,
enabling users to use Ruby’s scripting capabilities
to quickly construct functioning programs. The
reverse is also true: Neptune can be used within
Ruby programs, to which it appears to users as a
library that can be utilized in the same fashion as
other Ruby libraries.

Neptune uses a reserved keyword (denoted
throughout this work via the neptune keyword)
to identify services within a cloud platform. Legal
Neptune code follows the syntax:

neptune : type => : service_name ,
: opt ion1 => ‘ s e t t i n g 1 ’ ,
: opt ion2 => ‘ s e t t i n g 2 ’

The semantics of the Neptune language are
as follows: each valid Neptune program consists
of one or more neptune invocations, each of
which indicate a job to run in a cloud. The
service-namemarker indicates the name of the
job (e.g., MPI, X10), and is associated with a set
of parameters that are necessary for the given
invocation. This design choice is intentional: not
all jobs are created equal, and while some jobs re-
quire little information be passed, other job types
can benefit greatly from increased information.
As a further step, we leverage Ruby’s dynamic
typing to enable the types of parameters to be
constrained by the developer. If the user specifies
a Neptune job but fails to provide the necessary
parameters, Neptune informs them which para-
meters are required and aborts execution.

The value that the invocation returns is also
extensible, but by default, a Ruby hash is re-
turned, whose items are job specific. In most cases,
this hash contains a key named :success whose
Boolean value corresponds to whether or not
the request succeeded. Other scenarios allow for

additional parameters to be included. For exam-
ple, in the scenario where the invocation asks for
the access policy for a particular piece of data
stored in the underlying cloud platform, there is
an additional key named :acl whose value is the
current data access policy.

Finally, when the user wishes to retrieve data
via a Neptune job, the invocation returns the lo-
cation on the user’s filesystem where the output
can be found. Work is in progress to expand the
number of failure messages to give users more in-
formation about why particular operations failed
(e.g., if the data storage mechanism was unavail-
able or had failed, or if the cloud platform itself
was unreachable in a reasonable amount of time),
to enable Neptune programs written by users to
become robust, and to adequately deal with fail-
ures at the cloud level. The typical format of a
user’s Neptune code is thus of the following form:

r e s u l t = neptune : type => : mpi ,
: code => ‘ / code / powermethod ’ ,
: nodes_to_use => 4

i f r e s u l t [: s u c c e s s]
puts ‘ Your MPI job i s now in

p r o g r e s s . ’
e l s e

puts ‘ Your MPI job f a i l e d to
s t a r t . ’

end

2.2 Design Choices

It is important to contrast the decision to de-
sign Neptune as a domain specific language with
other configuration options that use XML or
other markup languages [23]. These languages
work well for configuration but, since they are not
Turing-complete programming languages, they
are bound to their particular execution model. In
contrast, Neptune’s strong binding to the Ruby
programming language enables users to leverage
Neptune and its HPC capabilities to easily in-
corporate it into their own codes. For example,
Ruby is well known for its Rails web programming
framework [32], and Neptune’s interoperability
enables Rails users to easily spawn instances of
scientific software without explicit knowledge of

C. Bunch et al.

how Neptune or the scientific computing software
operates.

Markup and workflow languages are powerful
in the types of computation that they enable.
Similarly, Neptune allows arbitrary computation
to be connected and chained to one another. The
following example shows how the output of a
MapReduce job can be used as the input to a X10
job. Here, the MapReduce job produces a graph
representing links between web pages, while the
X10 code takes this graph and performs a shortest-
path algorithm from all nodes to one another. As
Neptune does not automatically resolve data de-
pendencies between jobs, we manually delay the
execution of the X10 job until after the MapRe-
duce job has completed and generated its output.

neptune : type => : mapreduce ,
: input => ‘ / rawdata / webdata ’ ,
: output => ‘ / output / mrgraph ’ ,

: mapreducejar => ‘ / code / graph . j a r ’ ,
: main => ‘ main ’ ,

: nodes_to_use => 64

wai t f o r the mapreduce job to
f i n i s h loop {

r e s u l t = neptune
: type => : get−output ,
: output => ‘ / output / mrgraph ’

i f r e s u l t [: s u c c e s s]
break

end
s l e e p (60)

}

neptune : type => : mpi ,
: input => ‘ / output / mrgraph ’ ,
: output => ‘ / output / s h o r t e s t p a t h ’ ,

: code => ‘ / code / Shortes tPath ’ ,
: nodes_to_use => 64

To enable code reuse, we allow operations to
be reused across multiple Neptune job types. For
example, retrieving data and setting ACLs on data
are two operations that occur throughout all the
job types that Neptune supports. Thus, the Nep-
tune runtime enables these operations to share a

single code base for the implementation of these
functions. This feature is optional: not all software
packages may support ACLs and a unified model
for data output, so Neptune gives developers the
option to implement support for only the features
they require, and the ability to leverage existing
support as needed.

3 Implementation

To enable the deployment of Neptune jobs, the
cloud platform must support a number of prim-
itive operations. These operations are similar to
those found in computational Grid and cluster
utilities, such as the Portable Batch System [28].
The cloud platform must be able to receive Nep-
tune jobs, acquire computational resources to ex-
ecute jobs on, run these jobs asynchronously, and
place the output of these jobs in a way that enables
users to retrieve them later or share them with
other users. For this work, we employ the App-
Scale cloud platform to add these capabilities.

AppScale is an open-source cloud platform that
implements the Google App Engine APIs. Users
deploy applications using AppScale via either a
set of command-line tools or a web interface.
An AppScale cloud consists of one or more dis-
tributed database components, web servers, and
a monitoring daemon (the AppController) that
coordinates services across nodes in the AppScale
cloud. AppScale implements a wide range of data-
stores for its database interface via popular open
source technologies. As of its most recent release
(AppScale 1.5), it includes support for HBase, Hy-
pertable, MySQL Cluster, Cassandra, Voldemort,
MongoDB, MemcacheDB, Scalaris, and Amazon
SimpleDB. AppScale runs over virtualized and
un-virtualized cluster resources as well as over
the Amazon EC2 and Eucalyptus cloud infrastruc-
tures. The full details of AppScale are described
in [4, 9].

The execution of a Neptune job follows the
pattern shown in Fig. 1. The user invokes the
neptune executable on a Neptune script they
have written, which results in a SOAP message
being sent to the Neptune runtime (a separate
thread in AppScale’s AppController service). In
the case of a compute job, the Neptune runtime

Language/Runtime Support for Cloud Platforms

Fig. 1 AppScale cloud
platform with Neptune
configuration and
deployment support

acquires nodes to run the code over, configures
them for use, and executes the code, storing the
output for later retrieval. In the case of a data
input or output job, the Neptune runtime stores
or retrieves the data via the datastore.

In this section, we overview the AppScale com-
ponents that are impacted by our extensions en-
abling customized placement, automatic scaling,
and Neptune support, the AppScale command-
line tools and the AppController

3.1 Cloud Support

Our extensions to AppScale facilitate interopera-
tion with Neptune. In particular, we modify App-
Scale to acquire and release machines used for
computation, and to enable static and dynamic
service placement. To do so, we modify two com-
ponents within AppScale: the AppScale Tools and
the AppController.

3.1.1 AppScale Tools

The AppScale Tools are a set of command-line
tools that developers and administrators can use
to manage AppScale deployments and applica-
tions. In a typical deployment, the user writes a
configuration file specifying which node in the
system is the “master” node and which nodes are
the “slave” nodes. Prior to this work, this meant
that the master node always deployed a Database
Master (or Database Peer for peer-to-peer data-
bases) and AppLoadBalancer to handle and route
incoming user requests, while slave nodes always
deployed a Database Slave (or Database Peer)
and AppServers hosting the user’s application.

We extend this configuration model to enable
users to provide a configuration file that identifies
which nodes in the system should run each ser-
vice (e.g., Database Master, Database Slave, Ap-
pLoadBalancer, AppServer). For example, users
can specify that they want to run each service
on a dedicated machine by itself. Alternatively,
users could specify that they want their database
nodes running on the same machines as their
AppServers, and have all other components run-
ning on another machine. We also allow users to
designate certain nodes in the system as “open”,
which tells the AppController that this node is
free to use for Neptune jobs (a hot spare).

We extend this support to enable hybrid cloud
deployment of AppScale, in which nodes are not
limited to a single cloud infrastructure. Here,
users specify which nodes belong to each cloud
infrastructure, and then export environment vari-
ables that correspond to the credentials needed
for each cloud. This is done to mirror the styles
used by Amazon EC2 and Eucalyptus. One po-
tential use case of this hybrid cloud support is for
users who have a small, dedicated Eucalyptus de-
ployment and access to Amazon EC2: these users
could use their Eucalyptus deployment to test and
optimize their code, and deploy to Amazon EC2
when more nodes are needed. Similarly, Neptune
users can use hybrid cloud support to run jobs in
multiple availability zones simultaneously, provid-
ing them with the ability to run computation as
close as possible to their data. For scenarios where
the application to be deployed is not a compute-
intensive application (e.g., web applications), it
may be beneficial to ensure that instances of
the application are served in as many availability

C. Bunch et al.

zones as possible, to ensure that users always have
access to a nearby instance. This deployment strat-
egy gives users some degree of fault-tolerance, in
the rare cases when an entire availability zone is
down or temporarily inaccessible [18].

3.1.2 AppController

The AppController is a monitoring service that
runs on every node in an AppScale deployment. It
configures and instantiates all necessary services,
which typically involves starting databases and
running Google App Engine applications. App-
Controllers also monitor the status of each service
it runs, and periodically send heartbeat messages
to other AppControllers to aggregate this infor-
mation. It currently queries each node to learn its
CPU, memory, and hard drive usage, although it
is extensible to collecting other metrics.

Our extensions enable the AppController to
receive and understand RPC (via SOAP) mes-
sages from Neptune and to coordinate Neptune
activities across other nodes in an AppScale de-
ployment. Computational jobs and requests for
output data run asynchronously within AppScale,
and do not block the user’s Neptune code. All
Neptune requests are authenticated with a secret
established when starting AppScale, and are per-
formed over SSL to prevent request sniffing.

If running in hybrid cloud deployments, App-
Scale spawns machines for each cloud in which
the user has requested machines, with the creden-
tials that the user has provided. Any hot spares
(machines indicated as “open”) are acquired be-
fore new nodes are spawned. The AppController
records which cloud each machine runs in, so that
Neptune jobs can ask for nodes within specific
cloud or more than one cloud. Additionally, as
cloud infrastructures currently meter on a per-
hour basis, we have modified the AppController
to be cognizant of this and reuse virtual machines
between Neptune jobs. Within AppScale, any vir-
tual machine that is not running a Neptune job at
the 55 min mark is terminated; all other machines
are renewed for another hour.

Administrators query AppScale via either the
AppScale Tools or the web interface provided by
the AppLoadBalancer. These interfaces inform
administrators about the jobs in progress and, in

hybrid cloud deployments, which clouds are run-
ning which jobs. These interfaces do not actually
run Neptune jobs or interact with them, but simply
describe their status as reported to them by the
AppController.

A perk of offering this service at the cloud
platform layer is that the platform can profile
the usage patterns of the underlying system and
act accordingly (since a well-specified set of APIs
are offered to users). We provide customizable
scheduling mechanisms for scenarios when the
user is unsure how many nodes are required to
achieve optimal performance. This use case is
unlikely to occur for highly tuned codes, but more
likely to occur within HTC and MTC applica-
tions, where the code may not be as well tuned
for high performance. Users only need specify
how many nodes the application can run over,
a required parameter because Neptune does not
perform static analysis of the user’s code, and
oftentimes specific numbers of nodes are required
(e.g., powers of two). Neptune then employs a hill-
climbing algorithm to determine how many ma-
chines to acquire: given an initial guess, Neptune
acquires that many machines and runs the user’s
job, recording the total execution time for later
use. On subsequent job requests, Neptune tries
the next highest number of nodes, and follows this
strategy until the execution time fails to improve.
Our initial release of Neptune provides scheduling
based on total execution time, total cost incurred
(e.g., acquire more nodes only if it costs less to
do so), or a weighted average of the two. This
behavior is customizable, and is open to experi-
mentation via alternative schedulers.

More appropriate to scientists using cloud tech-
nologies is the ability to automatically choose the
type of instance acquired for computation. Cloud
infrastructure providers offer a wide variety of
machines, referred to as “instance types”, that
differ in terms of cost and performance. Inex-
pensive instance types offer less compute power
and memory, while more expensive instance types
offer more compute power and memory. If the
user does not specify an instance type to use,
Neptune will automatically acquire a compute-
intensive instance. A benefit of this strategy is
that since these machines are among the more
expensive machines available, the virtual machine

Language/Runtime Support for Cloud Platforms

reuse techniques we employ amortize their cost
between multiple users for jobs that do not run
in 60 min increments (the billing quantum used in
Amazon EC2).

3.1.3 AppServer

The AppServer is a modified version of the
Google App Engine SDK that runs a user’s App
Engine application. Applications can be written
in Python, Java, or Go, and can utilize APIs that
provide a variety of features, including storage
capabilities (via the Datastore and Blobstore) and
communication capabilities (via Mail and XMPP).

For this work, we modify the AppServer to add
an additional API: the Neptune API. This API
allows users to initiate Neptune jobs from within
App Engine applications hosted on AppScale, and
thus provides a mechanism by which web applica-
tions can execute high performance computation.
This also opens up HPC to greater audiences of
users, including those who want to run their codes
from different types of platforms (e.g., via their
smartphone or tablet computer).

3.2 Job Data

Clouds that run Neptune jobs must allow for data
stored remotely to be imported and used as job
inputs. Jobs can consume zero or more files as
inputs, but always produce exactly one piece of
output, a string containing the standard out gen-
erated by the executed code. Neptune refers to
data as three-tuple: a string containing the job’s
identification number, a string containing the out-
put of the job, and a composite type indicating
its access policy. The access policy used within
Neptune is similar to that of the access policy used
by Amazon’s Simple Storage Service [1]: a partic-
ular piece of data can be tagged as either private
(only visible to the user that uploaded it) or public
(visible to anyone). Data is by default private but
can be changed by the user, via a Neptune job.
Similarly, data is referenced as though it were on a
file-system: paths must begin with a forward-slash
(‘/’) and can be compartmentalized into folders in
the familiar manner. The data itself is accessed
via a Google App Engine application that is au-
tomatically started when AppScale starts, and can

be stored internally via AppScale or externally
via Amazon S3. This allows jobs to automatically
save their outputs in any datastore that AppScale
supports, or any service that is API-compatible
with Amazon S3 (e.g., Google Storage, Eucalyp-
tus Walrus). The Neptune program to set the ACL
of a particular piece of data to be public is:

neptune : type => ‘ set−ac l ’ ,
: output = > ‘/ mydata / nqueens−output ’ ,
: a c l => ‘ publ ic ’

Just as a Neptune job can be used to set the
ACL for a piece of data, a Neptune job can also
be used to get the ACL for a piece of data:

a c l _ d a t a = neptune
: type => ‘ get−ac l ’ ,
: output => ‘ / mydata / nqueens−output ’

puts ‘ The c u r r e n t ACL i s : ’
+ a c l _ d a t a [: a c l]

Retrieving the output of a given job is also done
via a Neptune job. By default, it returns a string
containing the results of the job. As many jobs
return data that is far too large to efficiently be
used in this manner, a special parameter can be
used to instead indicate that it should be copied
to the local machine. The following Neptune code
illustrates both use cases (note that the # character
is Ruby’s comment character):

f o r a job with smal l output
r e s u l t = neptune

: type => ‘ get−output ’ ,
: output => ‘ / mydata / boo ’

puts ‘ Output i s : ’ + r e s u l t [: output]
f o r a job with much l a r g e r output
r e s u l t = neptune

: type => ‘ get−output ’ ,
: output => ‘ / mydata / boo−l a rge ’ ,
: s a v e _ t o _ l o c a l =>

‘ / shared / boo−l a r g e . t x t ’
i f r e s u l t [: s u c c e s s]

puts ‘ Output copied s u c c e s s f u l l y . ’
end

3.3 Employing Neptune for HPC Frameworks

To support HPC applications within cloud plat-
forms, we service-ize them for use via Neptune.

C. Bunch et al.

Specifically, Neptune provides support for MPI,
X10, MapReduce, UPC, and Erlang, to enable
users to run arbitrary codes for different com-
putational models. While these general purpose
languages and frameworks are useful for the sci-
entific community as a whole, Neptune also seeks
to engender support from the biochemical simu-
lation community. These groups of HPC perform
simulations via kinetic Monte Carlo methods
(specifically, the Stochastic Simulation Algo-
rithm), and often need to run a large number of
these simulations (on a minimum order of 105) to
gain statistical accuracy. Neptune supports use of
StochKit, a general purpose SSA implementation,
as well as DFSP and dwSSA, two specialized SSA
implementations.

As users may not have these libraries and run-
times installed locally, Neptune also provides the
ability to remotely compile their code (required
for the non-SSA computational models), and is
extensible to support non-compute intensive ap-
plication domains, such as web services.

3.3.1 MPI

The Message Passing Interface (MPI) [16] is a
popular, general purpose computational frame-
work for distributed scientific computing. The most
popular implementation is written in a combina-
tion of C, C++, and assembly. Implementations
exist for many other programming languages,
such as Fortran, Java, and Python. AppScale em-
ploys the C/C++ version, enabling developers
to write code in either of these languages to
access MPI bindings within AppScale. The de-
veloper uses Neptune to specify the location of
the compiled application binary and output data,
and this information is sent from Neptune to the
AppController.

Following the MPI execution model, one com-
pute node is designated as a master node, and
all other nodes are referred to as slave nodes.
The master node starts up NFS on all nodes,
mounts a shared filesystem on all slave nodes,
runs mpdboot on its own node, and executes the
user’s code on its node via mpiexec, piping the
output of the job to a file on its local filesystem.
Once it has completed, the master node runs
mpdallexit and stores the standard output and

standard error of the job (the results) in the
database that the user has requested, for later
retrieval. An example of how a user would run an
MPI job is as follows:

neptune : type => : mpi ,
: code => ‘ / code / powermethod ’ ,
: nodes_to_use => 4 ,
: output => ‘ / output / powermethod . t x t ’

In this example, we specify the location where
the compiled code to execute is located (stored via
a previous Neptune job). The user also indicates
how many machines are required to run their MPI
code and where the output of the job should be
placed. Note that this program does not use any
inputs, nor need to write to any files on disk as part
of its output. Neptune can be extended to do so,
if necessary. We also can designate which shared
file system to use when running MPI. Currently,
we support NFS and are working on support for
the Lustre Distributed File System [25].

We also note that many HPC applications re-
quire a high performance, low latency intercon-
nect. If running over Amazon EC2, users can
acquire this via the Cluster Compute Instances
they provided, and in Eucalyptus, a cloud can be
physically constructed with the required network
hardware. If the user does not have access to this
type of hardware, and their program requires it,
their program may suffer from degraded perfor-
mance, or may not run at all.

3.3.2 X10

While MPI is suitable for many types of appli-
cation domains, one demand in computing has
been to enable programmers to write fast, scalable
code using a high-level programming language.
In addition, as many years of research have gone
into optimizing virtual machine technologies, it is
also desirable for a new technology to be able to
leverage this work. In this spirit, IBM introduced
the X10 programming language [7], which uses
a Java-like syntax, and can execute transparently
over either a non-distributed Java backend or a
distributed MPI backend. The Java backend en-
ables developers to develop and test their code
quickly, and utilize Java libraries, while the MPI

Language/Runtime Support for Cloud Platforms

backend allows the code to be run over as many
machines as the user can acquire.

As X10 code can compile to executables for
use by MPI, X10 jobs are reducible to MPI jobs.
Thus the following Neptune code deploys an X10
executable that has been compiled for use with
MPI:

neptune : type => : mpi ,
: code => ‘ / code / NQueensDist ’ ,
: nodes_to_use => 2 ,
: output => ‘ / output / nqueensx10 . t x t ’

With the combination of MPI and X10 within
Neptune, users can trivially write algorithms in
both frameworks and (provided a common output
format exists) compare the results of a particular
algorithm to ensure correctness across implemen-
tations. One example used in this paper is the n −
queens algorithm [30], an algorithm that, given an
chess board of size n × n, determines how many
ways n queens can be placed on the board without
threatening one another. The following Neptune
code illustrates how to verify the results produced
by an MPI implementation against that of an X10
implementation (assuming both codes are already
stored remotely):

run mpi v e r s i o n
neptune : type => : mpi ,

: code => ‘ / code / MpiNQueens ’ ,
: nodes_to_use => 4 ,
: output => ‘ / mpi / nqueens ’

run x10 v e r s i o n
neptune : type => : mpi ,

: code => ‘ / code / X10NQueens ’ ,
: nodes_to_use => 4 ,
: output => ‘ / x10 / nqueens ’

wai t f o r mpi v e r s i o n to f i n i s h
loop {

mpi_data = neptune
: type => ‘ output ’ ,

: output => ‘ / mpi / nqueens ’
i f mpi_data [: s u c c e s s]
break

end
s l e e p (60)

}

wai t f o r x10 v e r s i o n to f i n i s h
loop {

x10_data = neptune
: type => ‘ output ’ ,

: output => ‘ / x10 / nqueens ’
i f x10_data [: s u c c e s s]
break

end
s l e e p (60)

}

i f mpi_data [: output]
== x10_data [: output]

puts ‘ Output matched ! ’
e l s e

puts ‘ Output did not match . ’
end

Output jobs return a hash containing a
:success parameter, indicating whether or not
the output exists. We leverage this to determine
when the compute job that generates this out-
put has finished. The :output parameter in an
output job contains a string corresponding to the
standard out of the job itself, and we use Ruby’s
string comparison operator (==) to compare the
outputs for equality.

3.3.3 MapReduce

Popularized by Google in 2004 for its internal
data processing [11], the map-reduce program-
ming paradigm (MapReduce) has experienced a
resurgence and renewed interest. In contrast to
the general-purpose message passing paradigm
embodied in MPI, MapReduce targets embar-
rassingly parallel problems. Users provide input,
which is split across multiple instances of a user-
defined Map function. The output of this function
is then sorted based on a key provided by the Map
function, and all outputs with the same key are
given to a user-defined Reduce function, which
typically aggregates the data. As no communica-
tion can be done by the user in the Map and Re-
duce phases, these programs are highly amenable
to parallelization.

Hadoop provides an open-source implemen-
tation of MapReduce that runs over the Hadoop
Distributed File System (HDFS) [17]. The

C. Bunch et al.

standard implementation requires users to write
their code in the Java programming language,
while the Hadoop Streaming implementation
faciliates writing code in any programming
language. Neptune has support for both
implementations. Users provide a Java archive
file (JAR) for the standard implementation, or
Map and Reduce applications for the Streaming
implementation.

AppScale retrieves the user’s files from the
desired data storage location, and runs the job on
the Neptune-specified nodes in the system. In par-
ticular, the AppController contacts the Hadoop
JobTracker node with this information, and polls
Hadoop until the job completes (indicated by the
output location having data written to it). When
this occurs, Neptune copies the data back to a
user-specified location. From the user’s perspec-
tive, the necessary Neptune code to run code
written with the standard MapReduce implemen-
tation is:

neptune : type => : mapreduce ,
: input => ‘ / input / input−t e x t . t x t ’ ,
: output => ‘ / output / mr−output . t x t ’ ,

: mapreducejar =>
‘ / code / example . j a r ’ ,

: main => ‘ wordcount ’ ,

: nodes_to_use => 4

As was the case with MPI jobs, the user
specifies where the input to the MapReduce job
is located, where to write the output to, and where
the code to execute is located. Users also specify
how many nodes they want to run their code over.
AppScale normally stores inputs and outputs in
a datastore it supports or Amazon S3, but for
MapReduce jobs, it also supports the Hadoop
Distributed File System (HDFS). This can result
in Neptune copying data to HDFS from S3 (and
vice-versa), but an extra parameter can be used to
indicate that the input already exists in HDFS, to
skip this extra copy operation.

3.3.4 Unif ied Parallel C

Unified Parallel C [13] is a superset of the C
programming language that aims to simplify HPC

applications via the Partitioned Global Address
Space (PGAS) programming model. UPC allows
developers to write applications that use shared
memory in lieu of the message passing model that
other programming languages offer (e.g., MPI).
UPC also can be deployed over a number of
runtimes; some of these backends include special-
ized support for shared memory machines as well
as optimized performance when specialized net-
working equipment is available. UPC programs
deployed via Neptune can use any backend sup-
ported by the underlying cloud platform, and as
we use AppScale in this work, three backends
are available: the SMP backend, optimized for
single node deployments, the UDP backend, for
distributed deployments, and the MPI backend,
which leverages the mature MPI runtime.

UPC code can be deployed in Neptune in a
manner analogous to that of other programming
languages. If a UPC backend is not specified in a
Makefile with the user’s code, the MPI backend
is automatically selected. As we have compiled
our code with the MPI backend, the Neptune
code needed is identical to that used in MPI
deployments:

r e s u l t = neptune : type => : mpi ,
: code => ‘ ~ / r ing−compiled / Ring ’ ,
: nodes_to_use => 4 ,
: procs_to_use => 4 ,
: output => ‘ / upc / r ing−output ’

i n s p e c t i s Ruby ’ s method to p r i n t
a hash

puts r e s u l t . i n s p e c t

As shown here, users need only specify the
location of the executable, how many nodes to
use, and where the output should be placed. We
extend the MPI support that Neptune offers to en-
able users to specify how many processes should
be spawned. This allows for deployments where
the number of processes is greater than that of
the number of available nodes (and are thus over-
provisioned), and can take advantage of scenarios
where the instance types requested have more
than a single core present.

Language/Runtime Support for Cloud Platforms

3.3.5 Erlang

Erlang [2] is a concurrent programming language
developed by Ericsson that uses a message passing
interface similar to that of MPI. While other HPC
offerings try to engender a larger user community
by basing their language’s syntax, semantics, or
runtime on that of C or Java (e.g., MPI, UPC, and
X10), Erlang does not. The stated reason for this
is that Erlang seeks to optimize the user’s code
via the single assignment model, which enables a
higher degree of compile-time optimization than
the model used by C-style languages.

While Erlang’s concurrent programming con-
structs extend to distributed computing, Erlang
does not provide a parallel job launcher analogous
to those provided by MPI (via mpiexec), Hadoop
MapReduce, X10, and UPC. These job launchers
do not require the user to hardcode IP addresses
in their code, as is required by Erlang programs.

Due to this limitation, we support only the con-
current programming model that Erlang offers.
We are currently investigating ways to automate
the process for the distributed version. Users write
Erlang code with a main method, as is standard
Erlang programming practice, and this method is
then invoked by the AppScale cloud platform on
a machine allocated for use with Erlang.

The Neptune code needed to deploy a piece
of Erlang code is similar to that of the other
supported languages:

neptune : type => : er lang ,
: code => ‘ ~ / r ing−compiled /

r i n g . beam ’ ,
: output => ‘ / er lang−output . t x t ’ ,
: nodes_to_use => 1

In this example, we specify that we wish to use a
single node, the path on the local filesystem where
the compiled code can be found, and where the
output of the execution should be placed.

3.3.6 Compilation Support

Before MPI, X10, MapReduce, UPC, or Erlang
jobs can be run, they require the user’s code to be
compiled. Although the target architecture (the
machines that AppScale runs over) may be the

same as the architecture that the scientist has com-
piled their code on, it is not guaranteed to be so. It
is therefore necessary to offer remote compilation
support, so that no matter what platform the user
runs, whether it be a 32-bit laptop, a 64-bit server,
or even a tablet computer that has a text editor
and internet connection, code can be compiled
and run. The Neptune code required to compile
a given piece of source code is:

r e s u l t = neptune : type => : compile ,
: code => ‘ ~ / r ing ’ ,
: main => ‘ Ring . x10 ’ ,
: output => ‘ / output / r ing ’ ,
: copyto => ‘ ~ / r ing−compiled ’

puts r e s u l t . i n s p e c t

This Neptune code requires the user to indicate
only where their code is located and which code is
the main executable (as opposed to being a library
or other ancillary code). Scientists may provide
makefiles if they like. If they do not, Neptune
attempts to generate one for them based on the
file’s extension or its contents. Neptune cannot
generate makefiles for all scenarios, but can do
so for many scenarios where the user may not be
comfortable with writing a makefile.

3.3.7 StochKit

To enable general purpose SSA programming
support for scientists, Neptune provides support
for StochKit, an open source biochemical simula-
tion software package. StochKit provides stochas-
tic solvers for several variants of the Stochastic
Simulation Algorithm (SSA), and provides the
mechanisms for the stochastic simulation of arbi-
trary models. Scientists describe their models by
specifying them in the Systems Biology Markup
Language (SBML) [20]. In this work, we simu-
late a model included with StochKit, known as
heat-shock-10x. This model is a ten-fold ex-
pansion of the system that models the heat shock
response in Escherichia coli [14]. Figure 2 shows
results from a statistical analysis on an ensemble
of simulated trajectories from this model.

Typically scientists utilizing the SSA run a large
number of simulations to ensure enough statistical
accuracy in their results. As the number of simula-

C. Bunch et al.

−10 0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Bin Centers

B
in

 C
ou

nt
s

Euclidian d=0.038 Manhattan d=0.100

data set 1
data set 2

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

time

p
o

p
u

la
ti

o
n

Index 4
Index 9

Fig. 2 Plots showing statistical results from StochKit
stochastic simulations of the heat shock model. (Left)
Comparison of probability density histograms from two
independent ensembles of trajectories, as well as the
histogram distance between them. The histogram self-

distance, a measure of the difference between independent
ensembles from the same model, is used to determine
the confidence for a given ensemble size. (Right) Time-
series plots of the mean (solid lines) and standard-deviation
bounds (dashed lines) for two biochemical species

tions to run may not be known a priori, scientists
often have to run a number of simulations, see if
the requested confidence level has been achieved,
and if this has not occurred, the process repeats.
The Neptune code required to do this is trivial:

confidence_needed = 0 . 9 5
i = 0
loop {

neptune : type => : ssa ,
: nodes_to_use = 4 ,
: t a r => ‘ / code / s s a . t a r . gz ’
: s i m u l a t i o n s = 100 _000 ,
: output = ‘ / mydata / run −#{ i } ’

wai t f o r s s a job to f i n i s h
loop {

s s a _ d a t a = neptune
: type => ‘ get−output ’ ,

: output => ‘ / mydata / run −#{ i } ’
i f s s a _ d a t a [: s u c c e s s]
break

end
s l e e p (60)

}

conf idence_achieved
= s s a _ d a t a [: output]

i f conf idence_achieved
>confidence_needed

break
e l s e

puts ‘ S u f f i c i e n t conf idence not
reached . ’

end

i += 1
}

To enable StochKit support within Neptune, we
automatically install StochKit within newly cre-
ated AppScale images by fetching it from a local
repository. It is placed in a predetermined location
on the image and made available to user-specified
scripts via its standard executables. It is possible
to require users to run a Neptune :compile
job that would install StochKit in an on-demand
fashion, but we elect to preinstall it, to reduce the
number of steps required to run a StochKit job.
Additionally, while forcing a compilation step is
possible, the user’s StochKit code often consists
of biochemical models and a bash script, which
do not need to be compiled to execute and thus
do not fall under the domain of a :compile job.

As StochKit does not run in a distributed fash-
ion, the AppController coordinates the machines
that the user requests to run their SSA computa-

Language/Runtime Support for Cloud Platforms

tion. For the example above, in which four nodes
are to be used to run 100,000 simulations, Neptune
instructs each node to run 25,000 simulations.

3.3.8 DFSP

One specialized SSA implementation supported
by Neptune is the Diffusive Finite State Projec-
tion algorithm (DFSP) [12], a high-performance
method for simulating spatially inhomogenous
stochastic biochemical systems, such as those
found inside living cells. The example system that
we examine here is a biological model of yeast po-
larization, known as the G-protein cycle example,
shown in [12]. Yeast cells break their spatial sym-
metry and polarize in response to an extra-cellular
gradient of mating pheromones. The dynamics
of the system are modeled using the stochas-
tic reaction-diffusion master equation. Figure 3
shows visualizations from stochastic simulations
of this model.

The code for the DFSP implementation is a
tarball containing C language source and an ac-
companying makefile. The executable produces
a single trajectory for each instance that is run. As
this simulation is a stochastic system, an ensemble
of independent trajectories are required for sta-
tistical analysis; 10,000 trajectories are needed to

minimize error to acceptable levels. The Neptune
code needed to run this is:

s t a t u s = neptune : type => : ssa ,
: nodes_to_use => 64 ,

: t a r => ‘ / code / dfsp . t a r . gz ’ ,
: output => ‘ / outputs / ssa−output ’ ,

: s t o r a g e => ‘ s3 ’ ,
:EC2_ACCESS_KEY =>

ENV[‘S3_ACCESS_KEY’] ,
:EC2_SECRET_KEY =>

ENV[‘S3_SECRET_KEY’] ,
: S3_URL => ENV[‘S3_URL ’] ,

: t r a j e c t o r i e s => 10 _000 ,

puts s t a t u s . i n s p e c t

In this example, the scientist has indicated that
they wish to run their DFSP code, stored remotely
at /code/dfsp.tar.gz, over 64 machines. The
scientist here has also specified that their code
should be retrieved from Amazon S3 with the
provided credentials, and that the output should
be saved back to Amazon S3. Finally, the scientist
has indicated that 10,000 simulations should be
run. The storage-specific parameters used here

0
20

40
60

80
100

−10

−5

0

5

10
0

10

20

30

40

50

60

70

timespace

m
ol

ec
ul

es

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

space

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n

Ligand
Bound Receptor
Activated G−Protein

Fig. 3 Two plots of the DFSP example model of yeast
polarization. (Left) Temporal-Spatial profile of activated
G-protein. Stochastic simulation reproduces the noise in
the protein population that is inherent to this system.

(Right) Overlay of three biochemical species popula-
tions across the yeast cell membrane: the extra-cellular
pheromone ligand, the ligand bound with membrane re-
ceptor, and the G-protein activated by a bound receptor

C. Bunch et al.

are not specific to DFSP or SSA jobs, and can be
used with any type of computation.

To enable DFSP support within Neptune, we
automatically install support for the GNU Scien-
tific Library (GSL) when we generate a new App-
Scale image. The user’s DFSP code can then uti-
lize it within its computations in the same fashion
as if it were installed on their local computer. Nep-
tune does not currently provide a general model
for determining library dependencies, as version-
ing of libraries can make this problem difficult to
handle in an automated fashion. However, Nep-
tune does allow an expert user to manually install
the required libraries a single time and enable the
community at large to benefit.

3.3.9 dwSSA

Another specialized SSA implementation we sup-
port within Neptune is the dwSSA, the dou-
bly weighed SSA coupled with the cross-entropy
method. The dwSSA is a method for accurate
estimation of rare event probabilities in stochas-
tic biochemical systems. Rare events, events with
probabilities no larger than 10−9, often have
significant consequences to biological systems,
yet estimating them tends to be computationally
infeasible. The dwSSA accelerates the estima-
tion of these rare events by significantly reduc-
ing the number of trajectories required. This is
accomplished using importance sampling, which
effectively biases the system toward the desired
rare event, and reduces the number of trajectories
simulated by several orders of magnitude.

The system we examine in this work is the birth-
death process shown in [10]. The rare event that
this model attempts to determine is the probabil-
ity that the stochastic fluctuations of this system
will double the population of the chemical species.
The model requires the simulation of 1,000,000
trajectories to accurately characterize the rare
event probability. The code for this example is
a coupled set of source files written in R (for
model definition and rare event calculations) and
C (for efficient generation of stochastic trajecto-
ries). The Neptune code needed to run the dwSSA
implementation is identical to that of DFSP and
StochKit: users simply supply their own tarball
with the dwSSA code in place of a different SSA

implementation. As each dwSSA simulation takes
a trivial amount of time to run, we customize it
to take, as an input, the number of simulations
to run. This minimizes the amount of time wasted
setting up and tearing down the R environment.

To enable dwSSA support within Neptune, we
automatically install support for the R program-
ming language when we generate a new App-
Scale image. We also place the R executables in a
predetermined location for use by AppScale and
Neptune and use R’s batch facilities to instruct R
to never save the user’s workspace (environment)
between R executions, as is the default behavior.

3.4 Employing Neptune for Cloud Scaling
and Enabling Hybrid Clouds

Our goal with Neptune is to simplify configuration
and deployment of HPC applications. However,
Neptune is flexible enough to be used with other
application domains. Specifically, Neptune can be
used to control the scaling and placement of ser-
vices within the underlying cloud platform. Fur-
thermore, if the platform supports hybrid cloud
placement strategies, Neptune can control how
services are placed. This allows Neptune to be
used for both high throughput computing (HTC)
and many task computing (MTC). In the for-
mer case, resources can be claimed from multiple
cloud infrastructures to serve user jobs. In the
latter case, Neptune can be used to serve both
compute-intensive jobs as well as web service
programs.

To demonstrate this, we use Neptune to enable
users to manually scale up a running AppScale
deployment. Users need only specify which com-
ponent they wish to scale up (e.g., the load bal-
ancer, application server, or database server) and
how many of them they require. This reduces the
typically difficult problem of scaling up a cloud to
the following Neptune code:

neptune : type => : appscale ,
: nodes_to_use => { : cloud1 => 3 ,

: c loud2 => 6 } ,
: add_component => ‘ appengine ’ ,
: t ime_needed_for => 3600

In this example, the user has specified that
they wish to add nine application servers to their

Language/Runtime Support for Cloud Platforms

AppScale deployment, and that these machines
are needed for one hour. Furthermore, three of
the servers should be placed in the first cloud
that the platform is running over, while six servers
should be placed in the second cloud. Defining
which cloud is the “first cloud” and which cloud is
the “second cloud” is done by the cloud adminis-
trator, via the AppScale Tools (see Section 4.1.1).
This type of scaling is useful when the amount of
load in both clouds is known: here, this is useful if
both clouds are over-provisioned, but the second
is either expecting greater traffic in the near future
or is sustaining more load than the first cloud.

Scaling and automation are only amenable to
the same degree as the underlying services allow
for. For example, while the Cassandra database
allows nodes to be added to the system dynami-
cally, users cannot add more nodes to the system
than already exist (e.g., in a system with N nodes,
no more than N − 1 nodes can be added at a
time) [6]. Therefore, if more than the allowed
for number of nodes are needed, either multiple
Neptune jobs must be submitted or the cloud plat-
form must absorb this complexity into its scaling
mechanisms.

3.5 Limitations

Neptune enables automatic configuration and de-
ployment of software by a cloud platform to the
extent that the underlying software allows. It is
thus important to make explicit scenarios in which
Neptune encounters difficulties, as they are the
same scenarios in which the supported software
packages are not amenable to being placed in
a cloud platform. From the end-users we have
designed Neptune to aid, we have experienced
three common problems that are not specific to
Neptune or to distributed systems (e.g., clouds,
Grids) in general:

• Codes that require a unique identifier,
whether it be an IP address or process
name to be used to locate each machine in
the computation (e.g., multi-node Erlang
computations). This is distinct from the case
where the framework requires IP addresses
to be hardcoded, as these frameworks (like
MPI) do not require the end-user’s code to be

modified in any way or be aware of a node’s
IP address.

• Programs that have highly specialized libraries
for end-users but are not free / open-source,
and thus are currently difficult to dynamically
acquire and release licenses for.

• Algorithms that require a high-speed inter-
connect that run in a cloud infrastructure that
does not offer one. These algorithms may
suffer from degraded performance or may not
work correctly at all. The impact of this can
be mitigated by choosing a cloud infrastruc-
ture that does provide such an offering (e.g.,
Cluster Compute Instances for Amazon EC2,
or a Eucalyptus cloud with similar network
hardware).

We are investigating how to mitigate these lim-
itations as part of our future work. For unique
identifiers, it is possible to have Neptune take a
parameter containing a list of process identifiers
to use within computation. For licensing issues, we
can have the cloud fabric make licenses available
on a per-use basis. AppScale can then guide devel-
opers to clouds that have the appropriate licenses
for their application.

3.6 Extensibility

Neptune is designed to be extensible, both in
the types of job supported and the infrastruc-
tures that it can harness. Developers who wish
to add support for a given software framework
within Neptune need to modify the Neptune lan-
guage component as well as the Neptune runtime
within the cloud platform that receives Neptune
job requests. In the Neptune language component,
the developer needs to indicate which parameters
users need to specify in their Neptune code (e.g.,
how input and output should be handled), and if
any framework-specific parameters should be ex-
posed to the user. At the cloud platform layer, the
developer needs to add functionality that can un-
derstand the particulars of their Neptune job. This
often translates into performing special requests
based on the parameters present (or absent) in a
Neptune job request. For example, MapReduce
users can specify that the input be copied from
the local file system to the Hadoop Distributed

C. Bunch et al.

File System. Our implementation within App-
Scale skips this step if the user indicates that the
input is already present within HDFS. Once a
single, expert developer has added support for
a job type within Neptune and AppScale, it can
then be automatically configured and deployed by
the community at large, without requiring them to
become an expert user.

4 Evaluation

We next use Neptune to empirically evaluate how
effectively the supported services execute within
AppScale. We begin by presenting our experi-
mental methodology and then discuss our results.

4.1 Methodology

To evaluate the software packages supported by
Neptune, we use benchmarks and sample applica-
tions provided by each. We also measure the cost
of running Neptune jobs with and without VM
reuse.

To evaluate our support for MPI, we use a
Power Method implementation that, at its core,
multiplies a matrix by a vector (the standard
MatVec operation) to find the absolute value of
the largest eigenvalue of the matrix. We choose
this code over more standard codes such as the
Intel MPI Benchmarks because it tests a number
of the MPI primitives working in tandem, pro-
ducing a code that should scale with respect to
the number of nodes in the system. By contrast,
the Intel MPI Benchmarks largely measure inter-
process communication time or the time taken
for a single primitive operation, which is likely
to scale negatively as the number of nodes in-
crease (e.g., barrier operations are likely to take
longer when more nodes participate). We use a
6400x6400 matrix and 6400x1 vector to ensure that
the size of the matrices evenly divides the number
of nodes in the computation.

For X10, our evaluation uses an NQueens
implementation publicly available from the X10
team that is optimized for multiple machines. To
ensure a sufficient amount of computation is avail-
able, we set n = 16, thus creating a 16x16 chess-

board and placing 16 queens on the board. For
comparison purposes with MPI, we also include
an optimized MPI version publicly made available
be the authors of [30]. It is also set to use a 16x16
chessboard, using a single node to distribute work
across machines and the others to perform the
actual work involved.

To evaluate our support for MapReduce, we
use the publicly available Java WordCount bench-
mark, which takes an input data set and finds
the number of occurrences of each word in that
set. Each Map task is assigned a series of lines
from the input text, and for every word it finds, it
reports this with an associated count of one. Each
Reduce task then sums the counts for each word
and saves the result to the output file. Our input
file consists of the works of William Shakespeare
appended to itself 500 times, producing an input
file roughly 2.5GB in size.

We evaluate UPC and Erlang by means of a
Thread Ring benchmark, and compare them to
reference implementations in MPI and X10. Each
code implements the same functionality: a fixed
number of processes are spawned over a given
number of nodes, and each thread is assigned a
unique identifier. The first thread passes a mes-
sage to the next thread, who then continues doing
so until the last thread receives the message. The
final thread sends the message to the first thread,
connecting the threads in a ring-like fashion. This
is repeated a given number of times to complete
the program’s execution.

In our first Thread Ring experiment, we fix the
number of messages to be sent to 100 and fix the
number of threads to spawn to 64. We vary the
number of nodes to use between 1, 2, 4, 8, 16,
32, and 64 nodes, to determine the performance
improvement that can be achieved by increasing
the amount of available computation power.

In our second Thread Ring experiment, we fix
the number of messages to be sent to 100, and fix
the number of nodes to use at 8 nodes. We then
vary the number of threads to spawn between 2, 4,
8, 16, 32, and 64 threads, to determine the impact
of increasing the number of threads that must be
scheduled on a fixed number of machines.

Our third Thread Ring experiment fixes the
number of nodes to use at 8 nodes, and fixes the

Language/Runtime Support for Cloud Platforms

number of threads to use at 64 threads. We then
vary the number of messages to send between 1,
10, 100, 1000, and 10000, to determine the perfor-
mance costs of increasing the number of messages
that must be sent around the distributed thread
ring in each implementation.

For our SSA codes, DFSP and dwSSA, we run
10,000 and 1,000,000 simulations, respectively, and
measure the total execution time. As mentioned
earlier, previous work in each of these papers
indicate that these numbers of simulations are
the minimum that scientists typically must run to
achieve a reasonable accuracy.

We execute the non-Thread Ring experiments
over different dynamic AppScale cloud deploy-
ments of 1, 4, 8, 16, 32, and 64 nodes. In all cases,
each node is a Xen guestVM that executes with 1
virtual processor, 10GB of disk (maximum), and
1GB of memory. The physical machines that we
deploy VMs to execute with 8 processors, 1TB of
disk, and 16GB of memory. We employ a place-
ment strategy provided by AppScale where one
node deploys an AppLoadBalancer (ALB) and
Database Peer (DBP), and the other nodes are
designated as “open” (that is, they can be claimed
for any role by the AppController as needed).
Since no Google App Engine applications are
deployed, no AppServers run in the system. All
values reported here represent the average of five
runs.

For these experiments, Neptune employs App-
Scale 1.5, MPICH2 1.2.1p1, X10 2.1.0, Hadoop
MapReduce 0.20.0, UPC 2.12.1, Erlang R13B01,
the DFSP implementation graciously made avail-
able by the authors of the DFSP paper [12], the
dwSSA implementation graciously made avail-
able by the authors of the dwSSA paper [10],
and the StochKit implementation publicly made
available on the project’s web site [35].

4.2 Experimental Results

We begin by discussing the performance of
the MPI and X10 Power Method codes within
Neptune. We time only the computation and any
necessary communication required for the com-
putation; thus, we exclude the time to start NFS,
to write MPI configuration files, and to start pre-

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Fig. 4 Average running time for the Power Method code
utilizing MPI over varying numbers of nodes. These tim-
ings include running time as reported by MPI_Wtime and
do not include NFS and MPI startup and shutdown times

requisite MPI services. Figure 4 presents these
results. Table 1 presents the parallel efficiency,
given by the standard formula:

E = T1

pTp
(1)

where E denotes the parallel efficiency, T1 de-
notes the running time of the algorithm running
on a single node, p denotes the number of proces-
sors used in the computation, and Tp denotes
the running time of the algorithm running on p
processors.

Both Fig. 4 and Table 1 show clear trends:
speedups are initially achieved as nodes are in-
creased to the system, but the decreasing paral-
lel efficiencies show that this scalability does not
extend up through 64 nodes. Furthermore, the
running time of the Power Method code increases
after using 16 nodes. Analysis using VAMPIR

Table 1 Parallel efficiency for the Power Method code
utilizing MPI over varying numbers of nodes

of nodes MPI parallel efficiency

4 0.9285
8 0.4776
16 0.3358
32 0.0488
64 0.0176

C. Bunch et al.

[26], a standard tool for MPI program visualiza-
tion, shows that the collective broadcast calls used
are the bottleneck, becoming increasingly so as
the number of nodes increase in the system. This
is an important point to reiterate: since Neptune
simply runs supported codes on varying numbers
of nodes, the original code’s bottlenecks remain
present and are not optimized away.

The MPI and X10 n-queens codes encounter a
different type of scaling compared to our Power
Method code. Figure 5 shows these trends: the
MPI code’s performance is optimal at 4 nodes,
while the X10’s code performance is optimal at
16 nodes. The X10 n-queens code suffers sub-
stantially at the lower numbers of nodes com-
pared to its MPI counterpart; this is likely due to
its relatively new work-stealing algorithm, and is
believed to be improved in subsequent versions
of X10. This is also the rationale for the larger
standard deviation encountered in the X10 test.
We omit parallel efficiencies for this code because
the MPI code dedicates the first node to coordi-
nate the computation, which precludes us from
computing the time needed to run this code on a
single node (a required value).

MapReduce WordCount experiences a supe-
rior scale-up compared to our MPI and X10 codes.
This is largely because this MapReduce code is

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
X10

Fig. 5 Average running time for the n-queens code utiliz-
ing MPI and X10 over varying numbers of nodes. These
timings include running time as reported by MPI_Wtime
and System.nanoTime, respectively. These times do not
include NFS and MPI startup and shutdown times

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Fig. 6 Average running time for WordCount utilizing
MapReduce over varying numbers of nodes. These timings
include Hadoop MapReduce run times and do not include
Hadoop startup or shutdown times

optimized by Hadoop and does not communicate
between nodes, except between the Map and Re-
duce phases. Figure 6 and Table 2 show the run-
ning times of WordCount via Neptune. As with
MPI, we measure computation time and not the
time incurred starting and stopping Hadoop.

Figure 6 and Table 2 show opposing trends
compared to the MPI results. With our MapRe-
duce code, we see consistent speedups as more
nodes are added to the system, although with a
diminishing impact as we add more nodes to the
system. This is clear from the decreasing parallel
efficiencies, and as stated before, these speedups
are not related to MapReduce or MPI specifically,
but are due to the programs evaluated here.
WordCount sees a superior speedup compared
to the Power Method code due to the reduced
amount of communication and larger amounts of
computation. We also see smaller standard devi-
ations when compared with the Power Method

Table 2 Parallel efficiency for WordCount using MapRe-
duce over varying numbers of nodes

of nodes Parallel efficiency

4 0.8455
8 0.5978
16 0.5313
32 0.3591
64 0.3000

Language/Runtime Support for Cloud Platforms

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
X10
UPC

Fig. 7 Average running time for the Thread Ring code
utilizing MPI, X10, and UPC over varying numbers of
nodes. These timings only include execution times reported
by each language’s timing constructs

MPI code, as the communication is strictly dic-
tated and optimized by the runtime itself.

In our first Thread Ring experiment, we mea-
sure time taken to send 100 messages through a
ring of 64 threads. We vary the number of nodes
used between 1, 2, 4, 8, 16, 32, and 64. Figure 7
shows the amount of time taken for implementa-
tions written in X10, MPI, and UPC, while Table 3
shows the parallel speedup achieved. Both the
MPI and X10 codes improve in execution time
as nodes are added. While the X10 code achieves
a better parallel efficiency than the MPI code, it
is on average one to three orders of magnitude
slower. The reason behind this has been explained
by the X10 team: the X10 runtime currently is
not optimized to handle scenarios where the sys-
tem is overprovisioned (e.g., when the number
of processes exceeds the number of nodes). This

Table 3 Parallel efficiency for the Thread Ring code uti-
lizing MPI, X10, and UPC over varying numbers of nodes

of nodes MPI X10 UPC

1 1.0000 1.0000 1.0000
2 0.5000 0.5000 0.5000
4 0.4518 1.1251 0.0014
8 0.3068 1.2663 5.6904e-04
16 0.1955 1.6518 2.0528e-04
32 0.1189 1.9190 7.0025e-05
64 0.0642 25.1618 9.8221e-06

is confirmed by the scenario in which 64 nodes
are used: here, the system is not overprovisioned
and runs in an equivalent amount of time as the
MPI code. The UPC code exhibits a very different
scaling pattern compared to the MPI and X10
codes: as it relies on synchronization via barrier
statements, it runs quickly when the number of
nodes is small, and becomes slower as the number
of nodes increases.

Our second Thread Ring experiment fixes the
number of nodes at the median value (8 nodes),
and measures the amount of time needed to send
100 messages through thread rings of varying
sizes. Here, we vary the sizes between 8, 16, 32, 64,
and 128 threads. The results of this experiment for
the X10, MPI, and UPC codes are shown in Fig. 8.
As expected, all codes become slower as the size
of the thread ring grows. The overall execution
time is fastest for the MPI code, followed by that
of the UPC and X10 codes. The reason for these
differences is identical to that given previously:
the UPC code relies on barriers. As the number
of threads increases, it becomes more expensive
to perform these barrier operations. The X10 code
is also overprovisioned in most cases, so it slows
down in these scenarios as well. In the scenario
when it is not overprovisioned (e.g., when there
are 8 threads and 8 nodes), the X10 code performs
on par with the MPI code.

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

Number of Threads

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
X10
UPC

Fig. 8 Average running time for the Thread Ring code
utilizing MPI, X10, and UPC over varying numbers of
threads. These timings only include execution times as
reported by each language’s timing constructs

C. Bunch et al.

Our third Thread Ring experiment fixes the
number of nodes at the median value (8 nodes)
once again and measures the amount of time
needed to send a varying number of messages
through the thread ring. Specifically, we vary the
number of messages to be sent between 1, 10,
100, 1000, and 10000 messages for the X10, MPI,
and UPC codes. Figure 9 shows the results of
this experiment: for all codes, excluding the single
message scenario, the time to send additional mes-
sages increases linearly. Unlike the other bench-
marks, the X10 and UPC codes perform within
an order of magnitude of the MPI code. For the
X10 code, this is because all machines are well-
provisioned (specifically because we run 8 threads
over 8 nodes), avoiding the performance degra-
dation that the other experiments revealed. The
UPC code also maintains relatively close perfor-
mance to the MPI and X10 codes due to the
low number of nodes: the barriers, which are the
bottleneck of the UPC code, are inexpensive when
a relatively small number of nodes are used.

To evaluate the performance of our Erlang
code, we compare our Erlang Thread Ring im-
plementation with that of our MPI code deployed
over a single node. We fix the number of mes-
sages to send at 1000 and vary the number of
threads that make up the ring between 4, 8, 16, 32,
and 64. The results of this experiment are shown

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

Number of Messages

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
X10
UPC

Fig. 9 Average running time for the Thread Ring code
utilizing MPI, X10, and UPC over varying numbers of
messages. These timings only include execution times as
reported by each language’s timing constructs

in Fig. 10. The Erlang code scales linearly, and
performs two to three orders of magnitude faster
than the MPI code for all numbers of threads
tested. This is likely due to Erlang’s long history
as a concurrent language and lightweight thread-
ing model, which makes it highly amenable to
this experiment. Similarly, MPI is designed to
be a distributed programming language, and as
we have seen in the other experiments, suffers
performance degradations when overprovisioned.
We are looking into support for Threaded MPI
(TMPI) [34], which provides optimizations for the
concurrent use case shown here.

We next analyze the performance of the spe-
cialized SSA packages supported by Neptune.
This includes the specialized implementations
present in DFSP and dwSSA, which here focus
on the yeast polarization and birth-death models
discussed previously.

Like the MapReduce code analyzed earlier,
DFSP also benefits from parallelization and sup-
port via Neptune. This is because the DFSP im-
plementation used has no internode communica-
tion during its computation, and is embarrassingly
parallel. In the DFSP code, once each node knows
how many simulations to run, they work with no
communication from other nodes. Figure 11 and
Table 4 show the running times for 10,000 simula-
tions via Neptune. Unlike MapReduce and MPI,

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Number of Threads

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
Erlang

Fig. 10 Average running time for the single node Thread
Ring code utilizing MPI and Erlang over varying numbers
of threads. These timings only include execution times as
reported by each language’s timing constructs

Language/Runtime Support for Cloud Platforms

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5
x 104

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Fig. 11 Average running time for the DFSP code over
varying numbers of nodes. As the code used here does not
have a distributed runtime, timings here include the time
that AppScale takes to distribute work to each node and
merge the individual results

which provide distributed runtimes, our DFSP
code does not, so we time all interactions once
AppScale receives the message to begin compu-
tation from Neptune until the results have been
merged on the master node.

Figure 11 and Table 4 show similar trends for
the DFSP code as seen in MapReduce Word-
Count. This code also sees a consistent reduction
in runtime as the number of nodes increase, but
retains a much higher parallel efficiency compared
to the MapReduce code. This is due to the lack of
communication within computation, as the frame-
work needs only to collect results once the com-
putation is complete, and does not need to sort
or shuffle data, as is needed in the MapReduce
framework. As less communication is used here
compared to WordCount and Power Method MPI
codes, the DFSP code exhibits a smaller standard

Table 4 Parallel efficiency for the DFSP code over varying
numbers of nodes

of nodes Parallel efficiency

4 0.9929
8 0.9834
16 0.9650
32 0.9216
64 0.8325

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Fig. 12 Average running time for the dwSSA code over
varying numbers of nodes. As the code used here does not
have a distributed runtime, timings here include the time
that AppScale takes to distribute work to each node and
merge the individual results

deviation, and a standard deviation that tends to
decrease with respect to the number of nodes in
the system.

Another example that follows similar trends to
the DFSP code is the other Stochastic State Algo-
rithm, dwSSA, shown in Fig. 12 and Table 5. This
code achieves a reduction in runtime with respect
to the number of nodes in the system, but does not
do so at the same rate as the DFSP code, as can be
seen through the lower parallel efficiencies. This
is because the execution time for a single dwSSA
trajectory is much smaller than a single DFSP
trajectory, which results in wasted time setting up
and tearing down the R environment.

4.3 VM Reuse Analysis

Next, we perform a brief examination of the costs
of the experiments in the previous section if run

Table 5 Parallel efficiency for the dwSSA code over vary-
ing numbers of nodes

of nodes Parallel efficiency

4 0.7906
8 0.4739
16 0.3946
32 0.2951
64 0.1468

C. Bunch et al.

over Amazon EC2, with and without the VM
reuse techniques described previously. The VMs
are configured with 1 virtual CPU, 1 GB of mem-
ory, and a 64-bit platform. This is similar to the
Amazon EC2 “Small” machine type (1 virtual
CPU, 1.7 GB of memory, and a 32-bit platform)
which costs $0.085 per hour.

Each PowerMethod, MapReduce, DFSP, and
dwSSA experiment is run five times at 1, 4, 8, 16,
32, and 64 nodes to produce the data shown ear-
lier, while each NQueens experiment is run five
times at 2, 4, 8, 16, 32, and 64 nodes. We compute
the cost of running these experiments without VM
reuse (that is, by acquiring the needed number
of machines, running the experiments, and then
powering them off) compared to the cost with VM
reuse (that is, by acquiring the needed number of
machines, performing the experiment for all num-
bers of nodes, and not powering them off until
all runs complete). Note that in the reuse case,
we do not perform reuse between experiments.
For example, the Neptune code used to run the
experiments for the X10 NQueens code is:

[2 , 4 , 8 , 1 6 , 3 2 , 6 4] . each { | i |
5 . t imes { | j |

neptune : type => : x10 ,
: code => ‘ / code / NQueensDist ’ ,
: nodes_to_use => i ,
: output = > ‘/ nqueensx10 / # { i } / # { j } ’

}
}

Table 6 shows the expected cost of running
these experiments with and without VM reuse.
In all experiments, employing VM reuse greatly
reduces the cost. This is largely due to inefficient

Table 6 Cost to run experiments for each type of Neptune
job, with and without reusing virtual machines

type of job Cost with Cost without
VM reuse VM reuse

PowerMethod $12.84 $64.18
NQueens(MPI) $12.92 $64.60
NQueens(X10) $13.01 $64.60
MapReduce $13.01 $64.18
DFSP $35.70 $78.63
dwSSA $12.84 $64.18

Total $100.32 $400.37

use of nodes without reuse, as many scenarios em-
ploy large numbers of nodes to run experiments
that only run for a fraction of an hour (VMs are
charged for by AWS by the hour). All of the ex-
periments except for DFSP also cost roughly the
same because they use similar numbers of CPU-
hours of computation within AWS and thus are
similarly priced. We see much greater variation
in time and cost on a per-minute or per-second
pricing model instead of a per-hour pricing model.

5 Related Work

An early version of this work was presented at the
Workshop on Scientific Cloud Computing (Sci-
enceCloud) and was entitled “Neptune: A Do-
main Specific Language for Deploying HPC Soft-
ware on Cloud Platforms” [5]. The work devel-
oped by others that is most similar to Neptune is
cloudinit.d from Nimbus [22]. cloudinit.d
provides an API that users employ to automat-
ically launch, configure, and deploy nodes in
a cloud infrastructure. In contrast to Neptune,
cloudinit.d’s programming model places the
onus of configuration and deployment on the user
who writes cloudinit.d scripts. Neptune takes
an alternate approach, hiding the complexity be-
hind correct configuration and deployment.

Other works exist that provide either language
support for cloud infrastructures or automated
configuration or deployment, but not both. In the
former category exist projects like SAGA [21],
the RightScale Gems [29] and boto [3]. SAGA
enables users to write programs in C++, Python,
or Java that interact with Grid resources, with the
recent addition of support for cloud infrastructure
interaction. A key difference between SAGA and
Neptune is that SAGA is conceptually designed
to work with Grid resources, and thus the locus of
control remains with the user. The programming
paradigm embodied here serves use cases that
favor a static number of nodes and an unchanging
environment. Conversely, Neptune is designed to
work over cloud resources, and can elastically add
or remove resources based on the environment.
The RightScale Gems and boto are similar to
SAGA but only provide interaction with cloud in-
frastructures (e.g., Amazon EC2 and Eucalyptus).

Language/Runtime Support for Cloud Platforms

In the latter category exist projects such as the
Nimbus Context Broker [22] and Mesos [19]. The
Nimbus Context Broker automates configuration
and deployment of otherwise complex software
packages in a matter similar to that of Neptune.
It acquires a set of virtual machines from a sup-
ported cloud infrastructure and runs a given series
of commands to unify them as the user’s software
requires. Conceptually, this is similar to what Nep-
tune offers. However, it does not offer a language
by which it can be operated, like Neptune and
SAGA. Furthermore, the Nimbus Cloud Broker,
like SAGA, does not make decisions dynamically
based on the underlying environment. A set of
machines could not be acquired, tested to ensure
a low latency exists, and released within a script
running on Nimbus Cloud Broker. Furthermore,
it does not employ virtual machine reuse tech-
niques such as those seen within Neptune. This
would require a closer coupling with supported
cloud infrastructures or the use of a middleware
layer to coordinate VM scheduling, which would
effectively present a cloud platform.

Like the Nimbus Context Broker, Mesos also
automates configuration and deployment of com-
plex software packages, but aims to do so for
only a very specific set of packages (MapReduce,
MPI, Torque, and Spark). It requires supported
packages to be modified, and once they are
“Mesos-aware”, they can be utilized towards goals
of better resource utilization for the cluster as a
whole and better performance for individual jobs.
Mesos also positions itself in the cluster comput-
ing space, in which jobs can dynamically scale up
and down in the number of nodes that they use,
but where the cluster as a whole must be statically
partitioned. Cluster administrators can manually
add or remove nodes, but the size of the cluster as
a whole tends to remain static. This is in contrast
to the cloud model employed by Neptune, where
the number of nodes is in flux and is controllable
by Neptune itself.

6 Conclusions

We contribute Neptune, a Domain Specific Lan-
guage (DSL) that abstracts away the complex-
ities of deploying and using high performance
computing services within cloud platforms. We

integrate support for Neptune into AppScale, an
open-source cloud platform and add cloud soft-
ware support for MPI, X10, MapReduce, UPC,
Erlang, and the SSA packages StochKit, DFSP
and dwSSA. Neptune allows users to deploy sup-
ported software packages over varying numbers of
nodes with minimal effort, simply, uniformly, and
scalably.

We also contribute techniques for placement
support of components within cloud platforms,
while ensuring that running cloud software does
not negatively impact other services. This entails
hybrid cloud placement techniques, facilitating
application deployment across cloud infrastruc-
tures without modification. We implement these
techniques within AppScale and provide sharing
support that allows users to share the results of
Neptune jobs, and to publish data to the scientific
community. The system is flexible enough to allow
users to reuse Neptune job outputs as inputs to
other Neptune jobs. Neptune is open-source and
can be downloaded from http://neptune-lang.org.
Users with Ruby installed can also install Neptune
directly via Ruby’s integrated software reposi-
tory by running gem install neptune. Our
modifications to AppScale have been committed
back to the AppScale project and can be found at
http://appscale.cs.ucsb.edu.

Acknowledgements We thank the anonymous reviewers
for their insightful comments. This work was funded in part
by Google, IBM, and NSF grants CNS-CAREER-0546737
and CNS-0905237.

References

1. Amazon Simple Storage Service (Amazon S3):
http://aws.amazon.com/s3/. Last accessed 31 December
2011

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.:
Concurrent Programming in ERLANG (1993)

3. Boto: http://code.google.com/p/boto/. Last accessed 31
December 2011

4. Bunch, C., Chohan, N., Krintz, C., Chohan, J.,
Kupferman, J., Lakhina, P., Li, Y., Nomura, Y.: An
evaluation of distributed datastores using the AppScale
Cloud Platform. In: IEEE International Conference on
Cloud Computing (2010)

5. Bunch, C., Chohan, N., Krintz, C., Shams, K.: Neptune:
a domain specific language for deploying HPC software

http://neptune-lang.org
http://appscale.cs.ucsb.edu
http://aws.amazon.com/s3/
http://code.google.com/p/boto/

C. Bunch et al.

on cloud platforms. In: ACM Workshop on Scientific
Cloud Computing (2011)

6. Cassandra Operations: http://wiki.apache.org/
cassandra/Operations

7. Charles, P., Grothoff, C., Saraswat, V., Donawa, C.,
Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar, V.:
X10: an object-oriented approach to non-uniform clus-
ter computing. SIGPLAN Not. 40, 519–538 (2005)

8. Chohan, N., Bunch, C., Krintz, C., Nomura, Y.:
Database-agnostic transaction support for cloud in-
frastructures. In: IEEE International Conference on
Cloud Computing (2011)

9. Chohan, N., Bunch, C., Pang, S., Krintz, C., Mostafa,
N., Soman, S., Wolski, R.: AppScale: scalable and open
AppEngine application development and deployment.
In: ICST International Conference on Cloud Comput-
ing (2009)

10. Daigle, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.:
Automated estimation of rare event probabilities in
biochemical systems. J. Phys. Chem. 134, 044110 (2011)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data
processing on large clusters. In: Proceedings of 6th
Symposium on Operating System Design and Imple-
mentation (OSDI), pp. 137–150 (2004)

12. Drawert, B., Lawson, M.J., Petzold, L., Khammash,
M.: The diffusive finite state projection algorithm for
effficient simulation of the stochastic reaction-diffusion
master equation. J. Phys. Chem. 132(7), 074101-1 (2010)

13. El-Ghazawi, T., Cantonnet, F.: UPC performance and
potential: a NPB experimental study. In: Proceedings
of the 2002 ACM/IEEE Conference on Supercomput-
ing. Supercomputing ’02, pp. 1–26. IEEE Computer
Society Press, Los Alamitos, CA, USA (2002)

14. El-Samad, H., Kurata, H., Doyle, J.C., Gross, C.A.,
Khammash, M.: Surviving heat shock: control strate-
gies for robustness and performance. Proc. Natl. Acad.
Sci. USA 102(8), 2736–2741 (2005)

15. Engaging the Missing Middle: http://www.
hpcinthecloud.com/features/Engaging-the-Missing-
Middle-in-HPC-95750644.html. Last accessed 31
December 2011

16. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Comput.
22(6), 789–828 (1996)

17. Hadoop Distributed File System: http://hadoop.
apache.org. Last accessed 31 December 2011

18. Heroku Learns from Amazon EC2 Outage: http://
searchcloudcomputing.techtarget.com/news/1378426/
Heroku-learns-from-Amazon-EC2-outage. Last
accessed 31 December 2011

19. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.,
Joseph, A., Katz, R., Shenker, S., Stoica, I.: Mesos: a
platform for fine-grained resource sharing in the data
center. In: Networked Systems Design and Implemen-
tation (2011)

20. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H.,
Doyle, J.C., Kitano, H., the rest of the SBML Fo-
rum, Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-
Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D.,
Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J.,

Hodgman, T.C., Hofmeyr, J.-H., Hunter, P.J., Juty,
N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le,
N., NovÃĺre, Loew, L.M., Lucio, D., Mendes, P.,
Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson,
M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C.,
Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J., Wang, J.: The
systems biology markup language (SBML): a medium
for representation and exchange of biochemical net-
work models. Bioinformatics 19(4), 524–531 (2003)

21. Kaiser, H., Merzky, A., Hirmer, S., Allen, G., Seidel,
E.: The SAGA C++ reference implementation: a mile-
stone toward new high-level Grid applications. In:
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, SC ’06. ACM, New York, NY, USA
(2006)

22. Keahey, K., Freeman, T.: Nimbus or an open source
cloud platform or the best open source EC2 no money
can buy. In: Supercomputing (2008)

23. Koslovski, G., Huu, T.T., Montagnat, J., Vicat-Blanc,
P.: Executing distributed applications on virtualized
infrastructures specified with the VXDL language
and managed by the HIPerNET framework. In:
ICST International Conference on Cloud Computing
(2009)

24. Krintz, C., Bunch, C., Chohan, N.: AppScale: Open-
Source Platform-A s-A-Service. Technical Report
2011-01, University of California, Santa Barbara (2011)

25. Lustre: http://www.lustre.org/. Last accessed 31 De-
cember 2011

26. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-
Ch., Solchenbach, K.: VAMPIR: visualization and
analysis of MPI resources. Supercomputer 12, 69–80
(1996)

27. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli,
G., Soman, S., Youseff, L., Zagorodnov, D.: The
eucalyptus open-source cloud-computing system. In:
IEEE International Symposium on Cluster Computing
and the Grid. http://open.eucalyptus.com/documents/
ccgrid2009.pdf (2009). Last accessed 31 December 2011

28. Pbspro home page: http://www.altair.com/software/
pbspro.htm. Last accessed 31 December 2011

29. RightScale: RightScale Gems http://rightaws.
rubyforge.org/. Last accessed 31 December 2011

30. Rolfe, T.J.: A specimen MPI application: N-Queens in
parallel. Inroads (bulletin of the ACM SIG on Com-
puter Science Education), vol. 40(4) (2008)

31. Ruby language: http://www.ruby-lang.org. Last ac-
cessed 31 December 2011

32. Ruby on Rails: http://www.rubyonrails.org. Last ac-
cessed 31 December 2011

33. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K.,
Petzold, L.R.: StochKit2: software for discrete sto-
chastic simulation of biochemical systems with events.
Bioinformatics (2011)

34. Shen, K., Tang, H., Yang, T.: Adaptive two-level thread
Management for fast MPI execution on shared memory
machines. In: Proceedings of ACM/IEEE SuperCom-
puting ’99 (1999)

35. StochKit: http://www.cs.ucsb.edu/cse/StochKit/. Last
accessed 31 December 2011

http://wiki.apache.org/cassandra/Operations
http://wiki.apache.org/cassandra/Operations
http://www.hpcinthecloud.com/features/Engaging-the-Missing-Middle-in-HPC-95750644.html
http://www.hpcinthecloud.com/features/Engaging-the-Missing-Middle-in-HPC-95750644.html
http://www.hpcinthecloud.com/features/Engaging-the-Missing-Middle-in-HPC-95750644.html
http://hadoop.apache.org
http://hadoop.apache.org
http://searchcloudcomputing.techtarget.com/news/1378426/Heroku-learns-from-Amazon-EC2-outage
http://searchcloudcomputing.techtarget.com/news/1378426/Heroku-learns-from-Amazon-EC2-outage
http://searchcloudcomputing.techtarget.com/news/1378426/Heroku-learns-from-Amazon-EC2-outage
http://www.lustre.org/
http://open.eucalyptus.com/documents/ccgrid2009.pdf
http://open.eucalyptus.com/documents/ccgrid2009.pdf
http://www.altair.com/software/pbspro.htm
http://www.altair.com/software/pbspro.htm
http://rightaws.rubyforge.org/
http://rightaws.rubyforge.org/
http://www.ruby-lang.org
http://www.rubyonrails.org
http://www.cs.ucsb.edu/cse/StochKit/

	Language and Runtime Support for Automatic Configuration and Deployment of Scientific Computing Software over Cloud Fabrics
	Abstract
	Introduction
	Neptune
	Syntax and Semantics
	Design Choices

	Implementation
	Cloud Support
	AppScale Tools
	AppController
	AppServer

	Job Data
	Employing Neptune for HPC Frameworks
	MPI
	X10
	MapReduce
	Unified Parallel C
	Erlang
	Compilation Support
	StochKit
	DFSP
	dwSSA

	Employing Neptune for Cloud Scaling and Enabling Hybrid Clouds
	Limitations
	Extensibility

	Evaluation
	Methodology
	Experimental Results
	VM Reuse Analysis

	Related Work
	Conclusions
	References

