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Abstract There are many datastore systems to
choose from that differ in many ways including
public versus private cloud support, data man-
agement interfaces, programming languages, sup-
ported feature sets, fault tolerance, consistency
guarantees, configuration, and their deployment
processes. In this paper, we focus on technolo-
gies for structured data access (database/datastore
systems) in cloud systems. Our goal is to simplify
the use of datastore systems through automation
and to facilitate their empirical evaluation us-
ing real world applications. To enable this, we
provide a cloud platform abstraction layer that
decouples a data access API from its implemen-
tation. Applications that use this API can use any
datastore that “plugs into” our abstraction layer,

This paper is a combined and extended version of
papers [5] and [12].

N. Chohan · C. Bunch · C. Krintz (B) · N. Canumalla
Computer Science Department, University of
California, Santa Barbara, Santa Barbara, CA, USA
e-mail: ckrintz@cs.ucsb.edu

N. Chohan
e-mail: nchohan@cs.ucsb.edu

C. Bunch
e-mail: cgb@cs.ucsb.edu

N. Canumalla
e-mail: navyasri@cs.ucsb.edu

thus enabling application portability. We use this
layer to extend the functionality of multiple data-
stores without modifying the datastores directly.
Specifically, we provide support for ACID trans-
action semantics for popular key-value stores
(none of which provide this feature). We integrate
this layer into the AppScale cloud platform—an
open-source cloud platform that executes cloud
applications written in Python, Java, and Go, over
virtualized cluster resources and infrastructures-
as-a-service (Eucalyptus, OpenStack, and Ama-
zon EC2). We use this system to investigate
the impact of extending disparate datastores via
the application portability layer with distributed
transaction support.

Keywords Cloud computing · Cloud platform ·
Datastore · Key-value structured storage ·
Online transaction processing

1 Introduction

Recent advances in hardware and software have
culminated in the emergence of cloud computing—
a service-oriented computing model that sim-
plifies the use of large-scale distributed systems
through transparent and adaptive resource man-
agement, automating configuration, deployment,
and customization for entire systems and appli-
cations. Using this model, many high-technology
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companies have been able to make their propri-
etary computing and storage infrastructure avail-
able to the public (or internally via private clouds)
at extreme scales.

Given the availability of vast compute and
storage resources available on-demand, along
with virtually infinite amounts of information
(financial, scientific, social) via the Internet, ap-
plications have become increasingly data-centric
and our data resources and products have grown
explosively in both number and size. One promi-
nent way in which a wide range of applications
access such data is via well-defined structures
that facilitate data processing, manipulation, and
communication. Structured data access (via data-
base/datastore systems) is a mature technology
in wide-spread use that provides programmatic
and web-based access to vast amounts of data
efficiently.

Public and private cloud providers increasingly
employ specialized databases, called key-value
stores (or datastores) [8, 10, 11, 13, 14, 20, 21, 28,
36, 38]. These systems support data access over
warehouse-scale resource pools, by large numbers
of concurrent users and applications, and with
elasticity (dynamic growing and shrinking of re-
source and table use). Examples of public cloud
datastores include Google’s BigTable, Amazon
Web Services (AWS) SimpleDB, and Microsoft’s
Azure Table Storage. Examples of private or in-
ternal cloud use of datastores include Amazon’s
Dynamo [14], and customized versions of open
source systems (e.g. HBase [20], Hypertable [21],
Cassandra [8], etc.) is in use by Facebook, Baidu,
SourceForge, LinkedIn, Twitter, Reddit, and others.

To enable high scalability and dynamism,
key-value stores differ significantly from more
traditional database technologies (e.g. relational
systems) in that they are much simpler (en-
tities are accessed via a single key) and ex-
clude support for multi-table queries (e.g. joins,
unions, differencing, merges, etc.) and other fea-
tures such as multi-row (multi-key) atomic trans-
action support. Extant datastore offerings differ
in query language, topology (master/slave vs
peer-to-peer), data consistency policy, replication
policy, programming interfaces, and implementa-
tions in different programming languages. More-
over, each system has a unique methodology for

configuring and deploying the system in a distrib-
uted environment.

In this paper, we address two growing chal-
lenges with the use of cloud-base datastore tech-
nologies. The first is the vast diversity of offerings:
applications written to use one datastore must be
modified and ported to use another. Moreover, it
is difficult to “test drive” public offerings exten-
sively without paying for such use, and challenging
to configure and deploy distributed open source
technologies in a private setting. The second chal-
lenge is the lack of support for atomic transactions
across multiple keys in a table. Most datastores
offer atomic updates at the row (key) level only.
The lack of all-or-nothing updates to multiple
data entities concurrently precludes many busi-
ness, financial, and data-analytic applications and
significantly limits datastore utility for all but very
simple applications.

To address these issues, we present the de-
sign and implementation of a database-agnostic,
portability layer for cloud platforms. This layer
consists of a well-defined API for key-value-based
structured storage, a plug-in model for integrating
different database/datastore technologies into the
platform, and a set of components that automat-
ically configures and deploys any datastore that
is plugged into the layer. This layer decouples
the API that applications use to access a datas-
tore from its implementation (to enable program
portability across datastore systems) and auto-
mates distributed deployment of these systems (to
make it easy to configure and deploy the systems).
Developers write their application to use our data-
store API and their applications execute using any
datastore that plugs into the platform, without
modification. This support enables us to compare
and contrast the different systems for different
applications and usage models and enables users
to select across different datastore technologies
with less effort and learning curve.

To address the second challenge, we extend
this layer to provide distributed transactional se-
mantics for the datastore plug-ins. Such semantics
increase the range of applications that can make
use of cloud systems. Our approach emulates and
extends the limited transaction semantics of the
Google App Engine cloud platform to provide
atomic, consistent, isolated, and durable (ACID)
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updates to multiple rows at a time for any datas-
tore that provides row-level atomicity. To enable
this, we rely on ZooKeeper [42], an open-source
distributed directory service that maintains consis-
tent and highly available access to metadata using
a variant of the Paxos algorithm [9, 26].

Transaction are crucial for correctness of many
applications. An example of a procedure which
requires a transaction is the updating of a counter
where a value is first read and then incremented
or decremented. If multiple updates occur to the
counter it is plausible that an update maybe lost
or the update is not seen in the case of eventual
consistency. The case for atomic and transactional
updates becomes more apparent when the coun-
ters are critical entities which represent monetary
values. In business critical procedures the over-
head of ACID transactions are small compared to
how important of a feature it is.

We implement this database-agnostic software
layer within the open source AppScale cloud plat-
form and integrate a number of different pop-
ular open source and proprietary database and
datastore systems. These plug-ins include Cassan-
dra, HBase, Hypertable, and MySQL cluster [30]
(which we employ as a key-value store), among
others. Moreover, since AppScale executes over
different infrastructure-as-a-service (IaaS) cloud
systems (Amazon EC2 [1] and Eucalyptus [16,
32]) and emulates Google App Engine function-
ality, developers are given the freedom to choose
the infrastructure on which their application runs
on, providing far reaching application portability.

In the sections that follow, we first present
related work in Section 2, and then describe the
design and implementation of AppScale and its
abstract database layer that decouples the App-
Scale datastore API from the plug-ins (implemen-
tations of the API). We describe how we extend
this layer with ACID transaction semantics in a
database-agnostic fashion in Section 4. We then
present an evaluation of the system using different
datastores in Section 7, and conclude in Section 8.

2 Related Work

Distributed transactions, two-phase locking, and
multi-version concurrency control (MVCC) have

been employed in a multitude of distributed sys-
tems since the distributed transaction process was
defined in [3]. Our design is based on MVCC
and uses versioning of data entities. Google App
Engine’s implementation of transactions uses op-
timistic currency control [40], which was first pre-
sented by Kung et al. in 1981 [25].

There are two systems closely related to our
work that provide a software layer implement-
ing transactional semantics on top of distributed
datastore systems. They are Google’s Percolator
[34] and Megastore [2]. Percolator is a system,
proprietary to Google, that provides distributed
transaction support for the BigTable datastore.
The system is used by Google to enable incremen-
tal processing of web indexes. Megastore is the
most similar to our system as it is used directly by
Google App Engine for transactions and for sec-
ondary indexing. Our approach is database agnos-
tic and not tied to any particular datastore. Prior
approaches tightly couple transaction support to
the database. Our datastore-agnostic transactions
(DAT) system can be used for any key/value store
and, with AppScale, provide scale, fault toler-
ance, and reliability with an open source solution.
Moreover, our system is platform agnostic as well
(running in/on Eucalyptus, OpenStack [33], EC2,
VMWare, Xen [41], and KVM [22]) while au-
tomatically installing and configuring a datastore
and the DAT layer for any given number of nodes.

Cloud TPS [39] provides transactional seman-
tics over key spaces in datastores such as HBase.
Cloud TPS achieves high throughput because its
design is based heavily on in-memory storage.
Replication is done across nodes in memory, and
the system will periodically flush the data to a per-
sistence layer such as S3 or another cloud storage.
DAT differs from Cloud TPS providing higher
durability because DAT requires each write to be
written to disk. In the case of system wide outages,
it is possible to lose all transactions which have not
been persisted with Cloud TPS, while in DAT all
writes are written to a journal which is replicated
on disk at multiple nodes.

In [24] Kossman et al. compared different
clouds and datastores, one of which is GAE. GAE
has improved over time so the results, while valid
at that point in time, are no longer valid. The
same can be said for the other clouds which were
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66 N. Chohan et al.

benchmarked, as each system has evolved over
time. Likewise, any results given in this paper is
also a snapshot in time for any given technology.

3 The AppScale Database Support
and Portability Layer

In this work, we provide a database-agnostic soft-
ware layer for cloud platforms that decouples
the datastore interface from its implementation(s)
and automates distributed deployment of datas-
tore systems. We design and implement this layer
as part of the AppScale cloud platform and then
extend it to support database-agnostic distributed
transaction support.

AppScale is an open source cloud runtime sys-
tem that enables applications written in high level
languages (Python, Java, and Go) to execute over
virtualized clusters and cloud infrastructures. To
enable this, AppScale implements a set of APIs
for a multitude of cloud services using existing
open source technologies (see Table 1). To make
AppScale attractive to application and service
developers, the AppScale APIs include all those
made available by Google App Engine (GAE).
By doing so, any application that executes over
GAE can execute in a private cluster setting over
AppScale and vice versa.

GAE is a public cloud platform to which users
upload their applications for execution on Google’s
resources. Applications invoke API functions for
different services. AppScale emulates this cloud
platform functionality using private/local virtu-
alized clusters and/or infrastructure-as-a-service (IaaS)
systems such as Amazon EC2 and Eucalyptus.

Table 1 Google App Engine APIs

Name Description

Datastore Schemaless object storage
Memcache Distributed caching service
Blobstore Storage of large files
Channel Long lived JavaScript connections
Images Simple image manipulation
Mail Receiving and sending email
Users Login services with Google accounts
Task Queues Background tasks
URL Fetch Resource fetching with HTTP request
XMPP XMPP-compatible messaging service

AppScale can execute GAE applications with-
out white-list library restrictions at the cost of
reverse GAE compatibility, if doing so is desirable
by the cloud administrator. AppScale also imple-
ments a wide range of other APIs, not available
in GAE, in support of more computationally and
data intensive tasks. These APIs include those for
MapReduce, MPI, and UPC programming, and
StochKit for scientific simulations [6].

Figure 1 shows the AppScale software stack. At
the top of the stack are the application servers
that serve Python, Java, and Go applications.
The AppScale APIs that the applications em-
ploy leverage existing open source software such
as eJabberD [15] and memcacheD [27], or cus-
tom services (e.g. blobstore) that we provide, for
their implementations. AppScale uses Nginx [31]
and HAProxy [19] to route and load balance re-
quests to the application servers. Nginx provides
SSL connections, and HAProxy performs health
checks on servers, routing only to responsive ap-
plication servers. A background service on each
node in AppScale restarts any service that stops
functioning correctly. An AppScale cloud consists
of a set of virtual machine instances (nodes) work-
ing together in a distributed system, each of which
implement this software stack.

The AppController is a software layer in
the stack that is in charge of service initiation,
configuration, and heart beat monitoring, cloud-
wide. Below the AppController is the database-
agnostic software layer (to which we refer to as
the datastore support layer in the figure).

The datastore support layer decouples appli-
cation access to structured data from its imple-
mentation. It is this layer we extend with ACID
transaction semantics in the next section. This
layer exports a simple yet universal key-value
programming interface that we implement using
a wide range of available datastore technologies.
This layer provides portability for applications
across datastores, i.e. applications written to ac-
cess this datastore interface will work with any
datastore that implements this interface, without
modification. The interface provides full GAE
functionality and consists of:

– Put(table, key, value)
– Get(table, key)
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Fig. 1 The AppScale
Software Stack. Herein,
we present the design and
implementation of the
database software layer
and its extensions in
support of distributed,
database-agnostic,
multi-key transactional
semantics

– Delete(table, key)
– Query(table, q)

Put stores the value given the key and creates
a table if one does not already exist. If a Get or
Query is performed on a table which does not
exist, nothing is returned. A Delete on a key
which does exist results in an exception. Query
uses the Google Query Language (a subset of
SQL) syntax and semantics.

The data values that AppScale stores in the
datastore are called entities (data objects) and
are similar to those defined by GAE [40]. Each
entity has a key object; AppScale stores each
entity according to its key as a serialized protocol
buffer [35].

GAE implements this API using proprietary
key-value systems called Megastore [2] and
BigTable [11] and charges for access to these
systems both in terms of the amount of storage
and number of API calls. AppScale implements
its datastore API using popular open source, dis-
tributed datastore systems including HBase [20],
Hypertable [21], Cassandra [8], Redis [36], Volde-

mort [38], MongoDB [29], SimpleDB [37], and
MySQL Cluster [30]. HBase and Hypertable both
rely on HDFS [17] for their distributed file sys-
tem implementations, as does the Map-Reduce
API which integrates Hadoop MapReduce [18]
support.

To automate configuration and deployment of
distributed datastores for users in a private set-
ting, we release the AppScale system as a single
virtual machine image. This image consists of the
operating system kernel, Linux distribution, and
the software required for each of the AppScale
components services (the software in the stack
displayed in Fig. 1). When an AppScale cloud
is deployed, a cloud administrator employs a set
of AppScale tools to instantiate the image (over
Xen, KVM, or an IaaS system). This instance
becomes the head node which starts all of its own
services and then does so for all other nodes (in-
stantiated images) in the system. Each AppScale
cloud deployment implements a single datastore
(cloud-wide).

The AppController in the system interacts with
a template to configure and deploy each datastore
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dynamically upon cloud instantiation. The set of
scripts configure, start, stop, and test an instanti-
ated datastore using the following API:

– start_db_master()
– start_db_slave()
– setup_db_config_files(master_ip, slave_ips,

creds)
– stop_db_master()
– stop_db_slave()

Each datastore must implement these calls. To
set up the configuration files, the AppController
provides template files and inserts node names as
appropriate. The “creds” argument is a dictionary
in which additional, potentially datastore-specific,
arguments are passed, e.g. the number of replicas
to use for fault tolerance.

4 Database-Agnostic Distributed Transaction
Support

We next extend the datastore support layer in the
cloud platform with ACID transaction semantics.
We refer to this extension as database-agnostic
transactions (DAT). Such support is key for a
wide range of applications that require atomic up-
dates to multiple keys at a time. Thus, we provide
it in a database-agnostic fashion that is indepen-
dent of any datastore but that can be used by
all datastores that plug into the database support
layer.

4.1 DAT Design

To enable DAT, we extend the AppScale datas-
tore API with support for specifying the bound-
aries of a transaction programmatically. To ensure
GAE compatibility, we use the GAE syntax for
this API:

run_in_transaction

which defines the transaction block.
We make three key assumptions in the design

of DAT. First, we assume that each of the
underlying datastores provide strong consistency.
Most extant datastores provide strong consistency
either by default (e.g. HBase, Hypertable,
MySQL-cluster) or as a command-line option

(e.g. Cassandra). Second, we assume that any
datastore that plugs into the DAT layer provides
row-level atomicity. All the datastores we have
evaluated provide row-level atomicity, where any
row update provides all-or-nothing semantics
across the row’s columns. Third, we assume that
there are no global or table-level transactions;
instead, transactions can be performed across a
set of related entities. We impose this restriction
for scalability purposes, specifically to avoid slow,
coarse-grain locking across large sections or tables
of the datastore.

To enable multi-entity transactional semantics,
we employ the notion of entity groups as imple-
mented in GAE [40]. Entity groups consist of
one or more entities, all of whom share the same
ancestor. This relationship is specified program-
matically. For example, the Python code for an
application that specifies such a relationship looks
as follows:

class Parent(db.Model):
balance = db.IntegerProperty()

class Child(db.Model):
balance = db.IntegerProperty()

p = Parent(key_name="Alice")
c = Child(parent=p, key_name="Bob")

A class is a model that defines a kind, an instance
of a kind is an entity, and an entity group con-
sists of a set of entities that share the same root
entity (an entity without a parent) or ancestor.
In addition, entity groups can consist of multiple
kinds. An entity group defines the transactional
boundary between entities.

The keys for each of these entities are app_id\
Parent:Alice, and app_id\Parent:Alice\
Child: Bob for p (Alice) and c (Bob), respec-
tively. Alice is a root entity with attributes type
(kind), key_name (a reserved attribute), and bal-
ance. The key of a non-root entity, such as Bob,
contains the name of the application and the en-
tire path of its ancestors, which for this example,
consists of only Alice. It is possible to have a
deeper hierarchy of entities as well. AppScale
prepends the application ID to each key to enable
multitenancy for datastores which do not support
dynamic table creation and thus share one key
space.
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A transactional work-flow in which a program
transfers some monetary amount from the parent
entity to the child entity is specified programmati-
cally as:

def give_allowance(src, dest, amount):
def tx()

p = Parent.get_by_key_name(src)
c = Child.get_by_key_name(dest)
p.balance = p.account - amount
p.put()
c.balance = c.balance + amount
c.put()

db.run_in_transaction(tx)

A transaction may compose gets, puts, deletes
and queries within a single entity group. Any en-
tity without a parent entity is a root entity; a root
entity without child entities is alone in an entity
group. Once entity relationships are specified they
cannot be changed.

4.2 DAT Semantics

DAT enforces ACID (atomicity, consistency, iso-
lation, and durability) semantics for each trans-
action. To enable this, we use multi-version
concurrent control (MVCC) [3]. When a transac-
tion completes successfully, the system attempts
to commit any changes that the transaction proce-
dure made and updates the valid version number
(the last committed value) of the entity in the
system. The operations put or delete outside of
a programmatic transaction are transparently im-
plemented as transactions. If a transaction cannot
complete due to either a program error or lock
timeout, the system rolls back any modifications
that have been made, i.e., DAT restores the last
valid version of the entity.

A read (get) outside of a programmatic trans-
action accesses the valid version of the entity, i.e.,
reads have “read committed” isolation. Within
a transaction, all operations have serialized iso-
lation semantics, i.e., they see the effects of all
prior operations. Operations outside of transac-
tions and other transactions see only the latest
valid version of the entity.

The implementation of transaction semantics
GAE and AppScale differ, each having their own
set of trade-offs. GAE implements transactions
using optimistic concurrency control [4]. If a trans-

action is running, and another one begins on the
same entity group, the prior transaction will dis-
cover its changes have been disrupted, forcing a
retry. An entity group will experience a drop in
throughput as contention on a group grows. The
rate of serial updates on a single root entity, or an
entity group depends on the update latency and
contention, and ranges from 1 to 20 updates per
second [2].

We instead associate each entity group with a
lock. DAT attempts to acquire the lock for each
transaction on the group. DAT will retry three
times (a default, configurable setting) and then
throw an exception if unsuccessful. In contrast to
GAE, we provide a fixed amount of throughput
regardless of contention depending on the length
of time the lock is held before being released.
A rollback for an active transaction for an entity
group does not get triggered when a new trans-
action attempts to commence for that same entity
group as it does for GAE, but a transaction must
acquire the lock in DAT before moving forward,
a restriction GAE does not have. In practice, our
locking mechanism is simple, works well, and pro-
vides sufficient throughput in private cloud set-
tings which always consist of orders of magnitude
fewer machines than Google’s public cloud.

We also have designed DAT to handle faults
at multiple levels, although we do not handle
Byzantine faults. Failure at the application level
is detected by a timeout mechanism. We reset
this timeout each time the application attempts
to modify the datastore state to avoid prolonged
stalls. We also prevent silent updates and failures
at the database support layer and describe this
further in the next section.

5 DAT Implementation

To implement DAT within AppScale, we pro-
vide support for entities, an implementation of
the programmatic datastore interface for trans-
actions (run_in_transaction), and multi-version
consistency control and distributed transaction co-
ordination (global state maintenance and locking
service). To support entities, we extend the App-
Scale key-assignment mechanism with hierarchi-
cal entity naming and implement entity groups.
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Each application that runs in AppScale owns mul-
tiple entity tables, one for each entity kind it im-
plements. We create each entity table dynamically
when a put is first invoked for a new entity type.
In contrast, GAE designates a table for all entity
types, across all applications. We chose to create
tables for each entity kind to provide additional
isolation between applications.

We implement an adaptation of multi-version
consistency control to manage concurrent trans-
actions. Typically timestamps on updates are used
to distinguish versions [3]. However, not all datas-
tores implement timestamp functionality. We thus
employ a different, database agnostic, approach to
maintaining version consistency. First, with each
entity, we assign and record a version number.
This version number is updated each time the
entity is updated. We refer to this version number
as the transaction ID since an update is associated
with a transaction. We maintain transaction IDs
using a counter per application. Each entry in an
entity table contains a serialized protocol buffer
and transaction ID.

To enable multiple concurrent versions of an
entity, we use a single table, which we call the
journal, to store previous versions of an entity.
AppScale applications do not have direct access to
this table. We append the transaction ID (version
number) to the entity row key (in AppScale it is
the application ID and the entity row key) which
we use to index the journal.

5.1 Distributed Transaction Coordinator (DTC)

To enable distributed, concurrent, and fault toler-
ant transactions, DAT implements a Distributed
Transaction Coordinator (DTC). The DTC pro-
vides global and atomic counters, locking across
entity groups, transaction blacklisting support,
and a verification service to guarantee that ac-
cesses to entities are made on the correct versions.

The DTC enables this through the use of
ZooKeeper [42], an open source, distributed lock-
ing service that maintains consistent copies of data
in a distributed setting via the Paxos algorithm
[9, 26]. ZooKeeper is the open source equivalent
to Google’s Chubby locking service [7] which is
fault tolerant and provides strong consistency for
the data it stores. The directory service allows for

the DTC to create arbitrary paths, on which both
leaves and branches can hold values.

The API for the DTC is

– txn_id getTransactionID(app_id)
– bool acquireLock(app_id, txn_id,

root_key)
– void notifyFailedTransaction(app_id,

txn_id)
– txn_id getValidTransactionID(app_id,

previous_txn_id, row_key)
– bool registerUpdateKey(app_id,

current_txn_id, target_txn_id,
entity_key)

– bool releaseLock(app_id, txn_id)
– block_range generateIDBlock(app_id,

root_entity_key)

DAT intercepts and implements each trans-
action made by an application (put, delete, or
programmatic transaction) as a series of inter-
actions with the DTC via this API. A trans-
action is first assigned a transaction ID by the
DTC (getTransactionID) which returns an
ID with which all operations that make up the
transaction are performed. Second, DAT obtains
a lock from the DTC (acquireLock) for the
entity group over which the operation is being
performed. For each operation, DAT verifies that
all entities accessed have valid versions (getVal-
idTransactionID). For each put or delete oper-
ation, DAT registers the operation with the DTC.
This allows the DTC to track of which entities
within the group are being modified, and, in the
case where the application forces a rollback (ap-
plications can throw a rollback exception within
the transaction function) or any type of failure,
the DTC can successfully know what the current
correct versions of an entity are. The API call
of registerUpdateKey is how previously valid
states are registered. This call takes as arguments
the current valid transaction number, the transac-
tion number which is attempting to apply changes,
and the root entity key to specify the entity group.

When a transaction completes successfully or a
rollback occurs (due to an error during a trans-
action, application exception, or lock timeout),
DAT notifies the DTC which releases the lock
on that entity group, and the layer notifies the
application appropriately. We set the default lock
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timeout to be 30 s (it is configurable). DAT no-
tifies the application via an exception.

Transactions that start, modify an entity in the
entity table, and then fail to commit or rollback
due to either a failure, thrown exception, or a
timeout, are blacklisted by the system. If an ap-
plication attempts to perform an operation that
is part of a blacklisted transaction, the operation
fails and DAT returns an exception to the applica-
tion. Application servers that issue operations for
a blacklisted transaction must retry their transac-
tion under a new transaction ID. Any operations
which were executed under a failed transaction
are rolled back to the previous valid state.

Every operation employs the DTC for version
verification. A get operation will fetch from an
entity table which returns the entity and a trans-
action ID number. DAT checks with the DTC
whether the version is valid (i.e., is not on the
blacklist and is not part of an uncommitted, on-
going transaction). If the version is not valid, the
DTC returns the valid transaction ID for the en-
tity and DAT uses this ID with the original key to
read the entity from the journal. Get operations
outside of a transaction are read-committed as
a result of this verification (we do not allow for

dirty reads). The result of a query must follow
this step for each returned entity. Both GAE
and AppScale recommend that applications keep
entity groups small as possible to enable scaling
(parallelizing access across entity groups) and to
reduce bottlenecks.

Lone puts and deletes are handled as if they
were individually wrapped programmatic transac-
tions. For a put or delete the previous version must
be retrieved from the entity table. The version
returned could potentially not exist because the
entry was previously never written to and thus we
assign it zero. The version number is checked to
see if it is valid, if it is not, the DTC returns the
current valid number. The valid version number is
used for registration to enable rollbacks if needed.

Either using the original version (transaction
ID) or the transaction ID returned from the DTC
due to invalidation, DAT creates a new journal
key and journal entry (journal keys are guaran-
teed to be unique), registers the journal key with
the DTC, and in parallel performs an update on
the entity table. We overview these steps with an
example in Fig. 2 and show the DTC API being
used during the lifetime of a transaction where
two put operations take place. It illustrates the

Fig. 2 Transaction
sequence example for two
puts
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transaction starting where a transaction ID is at-
tained; a put request then triggers the acquisition
of a lock, version validation, key registration for
rollback, and entity updates. The second put re-
peats the same steps sans lock acquisition. Lastly,
the transaction is committed.

DAT does not perform explicit deletes. Instead,
we convert all deletes into puts and use a tomb-
stone value to signify that the entry has been
deleted. We place the tombstone in the journal
as well to maintain a record of the current valid
version. Any entries with tombstones which are no
longer live are garbage collected periodically.

5.2 ZooKeeper Configuration of the DTC

We present the DTC implementation using the
ZooKeeper node structure prefix tree (trie) in
Fig. 3. We store either a key name as a string (for
locks and the blacklist) or use the node directly
as an atomically updated counter (e.g., for trans-
action IDs). State of ZooKeeper is shared among
clients, showing a strongly consistent view. The
tree structure is as follows:

– /appscale/apps/app_id/ids: counter for next
available transaction IDs for root or child
entities.

– /appscale/apps/app_id/txids: current live trans-
actions.

– /appscale/apps/app_id/txids/blacklist: invalid
transaction ID list.

– /appscale/apps/app_id/validlist: valid transac-
tion ID list.

– /appscale/apps/app_id/locks: transaction en-
tity groups.

The blacklist contains the transaction IDs that
have failed due to a timeout, an application error,
an exception, or an explicit rollback. The valid
list contains the valid transaction IDs for black-
listed entities (so that we can find/retrieve valid
entities).

Transactions implemented by DAT provide
transactional semantics at the entity group level.
We implement a lock subtree that is responsible
for mapping a transaction ID to the entity group
it is operating on. The name of the lock is the
root entity key and it stores the transaction ID.
We store the locking node path in a child node
of the transaction named “lockpath”. Any new
transaction that attempts to acquire a lock on
the same entity group will see that this file exists
which will cause the acquisition to fail. This lock
node is removed when a transaction completes
(via successful commit or rollback).

Fig. 3 Structure of transaction metadata in ZooKeeper nodes
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5.3 Scalable Entity Keys

We employ ZooKeeper sequential nodes to im-
plement entity counters (these should not be con-
fused with transaction IDs). When entities are
created without specifying a key name, IDs are
assigned in an incremental fashion. We ensure
low overhead on key assignment by allocating
blocks of 1,000 entity IDs at a time to reduce the
overhead of counter access. The block of IDs is
cached by the instance of the call handler in the
database support layer. Keys are provisioned on
a first-come-first-serve basis to new entities which
do not have a key name. There is no guarantee
that entity IDs are ordered.

Entity IDs use two types of counters for con-
current access. One counter is for root keys of
a specific entity type, while another counter is
created for each child of a root key. Entity IDs
are stored under the inner node upon creation
and are removed once committed. The node struc-
ture (Fig. 3) holds values for each entity group
as seen in the /appscale/apps/app1/ids path. The
“ids” node contains the next batch value for all
root keys, while key03 and key04 nodes hold val-
ues for the next batch of child keys.

5.4 Garbage Collection

In some cases (application error, response time
degradation, service failure, network partition,
etc.), a transaction may be held for a long period
of time or indefinitely. We place a maximum of
30 s on each lock lease acquired by applications.
Furthermore, for performance reasons we use
ZooKeeper’s asynchronous calls where it does not
break ACID semantics (i.e., removing nodes after
completion of a transaction).

In the background, DAT implements a garbage
collection (GC) service. The service scans the
transaction list to identify expired transaction
locks (we record the time when the lock is ac-
quired). The service adds any expired transaction
to the blacklist and releases the lock. For correct
operation with timeouts, the system is coordinated
using NTP. Nodes which were not successfully
removed by an asynchronous call to ZooKeeper
are garbage collected during the next iteration of
the GC.

The GC service also cleans up entities and all
related metadata that have been deleted (tomb-
stoned) within a committed transaction. In ad-
dition, journal entries that contain entities older
than the current valid version of an entity are also
collected. We do not remove nodes in the valid
version list at this time.

We perform garbage collection every 30 s.
There is one master garbage collector and mul-
tiple slaves checking to make sure the global
“gclock” has not expired. If the lock has expired
(it has been over 60 s since last being updated),
a slave will take over as the master, and will now
be in charge of periodically updating the “gclock”.
When a lock has expired, the master will receive
a call back from ZooKeeper. At this point the
master can try to refresh the lock, or if the lock
has been taken, step down to a slave role.

5.5 Fault Tolerance

DAT handles certain kinds of failures, excluding
byzantine faults. Our implementation of the DTC
ensures that the worst case timing scenario does
not leave the datastore in an inconsistent state
(“Heisenbugs”) [23].

A race condition can occur due to the distrib-
uted and shared nature of the access to the datas-
tore. Take for example the following scenario:

– The DTC acquires a lock on an entity group
– It becomes slow or unresponsive
– The lock expires
– It perform an update to the entity table
– The DTC node silently dies

In this case, we must ensure that the entity is not
updated (overwritten with an invalid version).
We detect and prevent such silent faults using
the transaction blacklist and valid versions are
retrieved from the journal.

We address other types of failures using the
lock leases. Locks which are held by a faulty ser-
vice in the cloud will be released by the GC.
We have considered employing an adaptive time-
out on an application or service basis for applications/
services that repeatedly timeout. That is, reduce
the timeout value for the application/service—
or for individual entity groups—in such cases to
reduce the potential of delayed update access.
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Additional state would be required that would
add overhead to lookup each timeout value per
entity group or application. Currently, the timeout
is configurable upon cloud deployment.

Our system is designed to handle complete
system failures (power outages) in addition to
single/multi node failures. All writes and deletes
are issued to the datastore, each write persists
on disk before acknowledgment. No transaction
which has been committed is lost attaining full
durability (granted at least one replica survived).
Meta state is also replicated in ZooKeeper for
full recovery as well as the transaction journal.
Replication factor is also configurable upon cloud
deployment.

6 Methodology

In this section, we overview our benchmarks and
experimental methodology. For our experiments,
AppScale employs Hadoop 0.20.2-cdh3u3, HBase
0.90.4-cdh3u3, Hypertable 0.9.5.5, MySQL ndb-
7.0.9, Redis 2.2.11, and Cassandra 1.0.7. We ex-
ecute AppScale using a private cluster via the
Eucalyptus cloud infrastructure. Our Eucalyptus
private cloud consists of 12 virtual machines with
4 cores, and 7.5 GB of RAM. We also employ
our benchmark on Google App Engine, where the
infrastructure is abstracted away. We synchronize
the clocks using the Linux tool ntpdate for our
Eucalyptus cluster.

6.1 Benchmarking Application

Our benchmark measures reads and writes of each
datastore where transactions are enabled as well
as disabled, the difference of which gives us the
overhead imposed by the DAT layer. AppScale
is configured to have the head node act as a
full proxy, randomly distributing request across
application servers. The benchmark is run for a
single node deployment (it acts as both a load
balancer and runs application servers), the default
four node deployment, and a 12 node deployment.

We use the Apache Benchmark tool as our load
generator, which targets a URL at the head node.
The datastore is first primed with 1000 entries, for
which random reads are done on. The writes use

random keys, but each key always starts with the
application name for isolation and lexicographical
entity placement.

The Apache Benchmark tool is used with three
different load levels: 10, 100, and 1000 concurrent
requests. The tool measures latency and through-
put for these different loads. Reported numbers
are averages of 10 trials.

Each server runs ten process instances of the
benchmark application. We set the replication
factor to one for these experiments for all data-
stores, which was the common factor given our
one node deployment. For GAE, Google uses its
own scheduling and replication policy to enable
the scaling of applications, and it is unknown how
many physical servers are being employed.

7 Results

Figure 4 shows measurements for the Cassandra
datastore with a varying number of machines, for
writes and reads of a concurrency level of 10, 100,
and 1000, with and without transaction support.
Figure 4a and b chart latency of requests with and
without transactions enabled. For all sizes of clus-
ters we see additional latency for writes, regard-
less of the concurrency level when transactions
are enabled. However, reads see no statistically
significant overhead when enabled. Latency for
reads and writes are in close range to each other
when transactions are disabled, but the overhead
of transactions for writes causes asymmetrical la-
tency. Moreover, latency drops as more nodes are
added to the cluster with and without transactions.

Figure 4c has throughput of requests, while
Fig. 4d has the same but with transactions dis-
abled. Writes have less throughput when transac-
tions are enabled, while read throughput is un-
changed. With the lower latency of additional
nodes the throughput rises.

HBase latency is shown in Fig. 5a and b, for
transactions enabled and disabled, respectively.
Compared to Cassandra, HBase performs simi-
larly for latency, yet for the 12 node case, Cassan-
dra is able to get higher throughput for reads and
writes as seen in Fig. 5c and d. Both datastores
see similar drop offs in throughput due to the
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Fig. 4 Cassandra results as the number of machines increases

overhead of transaction support, yet Cassandra
sees more than 100 more request per second in
throughput compared to HBase when transac-
tions are disabled.

Hypertable has slightly more latency for the
single node case for both reads and writes as pre-
sented in Fig. 6a and b, yet for higher node counts
it is comparable to HBase. Hypertable achieves
high throughput for reads with over 1000 requests
per second as seen in Fig. 6c and d. Hypertable,
compared to HBase, gets more read and write
throughput, where for high load it is over 1000
requests per second.

Redis performance numbers are presented in
Fig. 7, where we see some deviation from the
previously presented datastores. Redis stores data
in memory (asynchronously writing to disk which
loosens our consistency guarantees for ACID se-

mantics) and does so in the master node which
handles all requests. Slaves store copies of the
master, yet in these experiments we set replication
to one. Where the previous datastores are able
to have clients and scale with larger deployments,
Redis does not benefit because all request go
to a single node causing saturation of the node
more quickly, and hence the lower performance
in throughput.

The MySQL Cluster deployment does not use
the DAT layer for transaction support, but rather
its own native implementation. Figure 8a shows
latency numbers for reads and writes. The latency
is much higher than previous datastores, along
with higher variance. As more nodes are added,
the latency does drop, but even at 12 nodes it is
over 10 s for writes. Reads scale much better for
12 nodes, but with high variance.
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Fig. 5 HBase results as the number of machines increases

Figure 9b shows a CDF of latency of writes and
reads for transactions disabled for Cassandra on
a 12 node deployment, while Fig. 9a shows the
same with transactions enabled. The overhead can
be seen with 1000 writes, where latency is much
higher. Reads do no see the same overhead, where
the latency stays the same. When transactions are
disabled, writes are faster than reads until the
90th percentile, where writes have a longer tail for
latency.

The breakdown of an entity put for Cassandra
is presented in Fig. 10. Each operation which is
a part of the transaction adds some amount of
overhead, where the “Puts” are parallel writes to
the entity table and journal table. The majority
of overhead comes from checking to see if the
current key exists and, if it does, to register that
transaction value for any required rollback. This

figure measures it for the case where the key did
not exist before, which for Cassandra is a higher
latency operation than looking for a key which
does exist. It should be noted that this is the
highest amount of relative overhead because this
looks at only a single put. If the transaction had
multiple reads and writes, then much of the over-
head associated with starting a transaction, getting
a lock, releasing it, and committing is amortized.

For comparison purposes we also ran the
benchmark on GAE. Figure 11a has the latency
of gets and writes for different concurrency levels.
Figure 11b has throughput for the same exper-
iment, showing much less throughput than our
scalable datastores, yet in these cases the round
trip time is much higher (a ping averaged 27ms
to our application hosted by Google) as our load
generator is local to our private cluster. Round
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Fig. 6 Hypertable results as the number of machines increases

trip time for our local tests, by comparison, where
sub 1ms.

7.1 Discussion

We find that Cassandra, HBase, and Hypertable
were the most scalable, all being BigTable clones.
Cassandra performed best in our study, followed
by Hypertable, and then HBase. Although Cas-
sandra is able to do placement using random par-
titioning for range query support it requires lex-
icographical partitioning. Because data is placed
based on key names, we see that data is stored on a
single node until a tablet server is split and stored
on another node. If the data set is based out of one
tablet we see certain nodes can become hotspots
causing slowdown if the number of clients be-

comes very large. Larger scale deployments were
attempted, but due to the aforementioned place-
ment of data, we found additional nodes saw no
improvement in terms of throughput.

MySQL Cluster had much higher latency and
lower throughput than the NoSQL stores. MySQL
is at a disadvantage as it is not aware of the en-
tity group abstraction. Hence, it uses course grain
locks which limit the throughput of updates.

Throughput of transactions for puts does drop
by as much as 50 % compared to transactions
being disabled. AppScale allows developers who
do not require transaction semantics, and hence
the required overhead, to disable them by the use
of namespaces. Any namespace which preprends
notrans will give direct access to the datas-
tore, where access to DAT is circumvented. Any
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application which uses transaction semantics will
still work although no ACID correctness guaran-
tees are given.

Read throughput remains unchanged when
transactions are enabled, as the only overhead
associated with the read is to check to make sure
the version of the entity is not from an on going
transaction, or a black listed transaction. Many
systems and workloads are read heavy, one ex-
ample of which comes from the Megastore paper
[2] which used 20:1 read to write ratios for their
evaluations similar to what they see internally at
Google.

8 Conclusions

With this work, we investigate the trade offs of
providing cloud platform support for multiple dis-
tributed datastores automatically and portably. To
enable this we design and implement a database
support layer, i.e. a cloud datastore portability
layer, that decouples the datastore interface from
its implementation(s), load-balances across data-
store entry points in the system, and automates
distributed deployment of popular datastore sys-
tems. Developers write their application to use
our datastore API and their applications execute
using any datastore that plugs into the platform,
without modification, precluding lock-in to any
one public cloud vendor. This support enables
us to compare and contrast the different systems
for different applications and usage models and
enables users to select across different datastore
technologies with less effort and learning curve.

We extend this layer to provide distributed
ACID transaction semantics to applications, in-
dependent and agnostic of any particular data-
store system and that does not require any
modifications to the datastore systems that plug
into our cloud portability layer. These semantics
allow applications to update atomically multiple
key-value pairs programmatically. We refer to this
extension as DAT for database-agnostic trans-
actions. Since no open source datastore today
provide such semantics, this layer facilitates their
use by new applications and application domains
including those from the business, financial, and
data analytic communities, that depend upon such

semantics. We implement this layer within the
open source AppScale cloud platform. Our sys-
tem (including all databases) is available from:
http://appscale.cs.ucsb.edu.

Acknowledgements This work was funded in part by
Google, IBM, and the National Science Foundation (CNS/
CAREER-0546737, CNS-0905273, and CNS-0627183).

References

1. Amazon Web Services home page: http://aws.amazon.
com/. Accessed 1 Aug 2011

2. Baker, J., Bond, C., Corbett, J., Furman, J., Larson,
A.K.J., Leon, J., Li, Y., Lloyd, A., Yushprakh, V.:
Megastore: providing scalable, highly available storage
for interactive services. In: Conference on Innovative
Data Systems Research (CIDR), pp. 223–234 (2011)

3. Bernstein, P.A., Goodman, N.: Concurrency control
in distributed database systems. ACM Comput. Surv.
13(2), 185–221 (1981)

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Con-
currency Control and Recovery in Database Systems.
Addison-Wesley Longman, Boston (1987)

5. Bunch, C., Chohan, N., Krintz, C., Chohan, J.,
Kupferman, J., Lakhina, P., Li, Y., Nomura, Y.: An
evaluation of distributed datastores using the AppScale
cloud platform. In: IEEE International Conference on
Cloud Computing (2010)

6. Bunch, C., Chohan, N., Krintz, C., Shams, K.: Neptune:
a domain specific language for deploying hpc software
on cloud platforms. In: International Workshop on Sci-
entific Cloud Computing, pp. 59–68 (2011)

7. Burrows, M.: The chubby lock service for loosely-
coupled distributed systems. In: OSDI’06: Seventh
Symposium on Operating System Design and Imple-
mentation (2006)

8. Cassandra: http://cassandra.apache.org/. Accessed 1
Aug 2011

9. Chandra, T., Griesemer, R., Redstone, J.: Paxos made
live—an engineering perspective. In: PODC ’07: 26th
ACM Symposium on Principles of Distributed Com-
puting (2007)

10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach,
D., Burrows, M., Chandra, T., Fikes, A., Gruber, R.:
Bigtable: a distributed storage system for structured
data. In: Symposium on Operating System Design and
Implementation (2006)

11. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach,
D., Burrows, M., Chandra, T., Fikes, A., Gruber, R.:
Bigtable: a distributed storage system for structured
data. In: Proceedings of 7th Symposium on Operating
System Design and Implementation (OSDI), pp. 205–
218 (2006)

12. Chohan, N., Bunch, C., Nomura, Y., Krintz, C.:
Database-agnostic transaction support for cloud in-

Author's personal copy

http://appscale.cs.ucsb.edu
http://aws.amazon.com/
http://aws.amazon.com/
http://cassandra.apache.org/


Cloud Platform Datastore Support 81

frastructures. In: IEEE International Conference on
Cloud Computing (2011)

13. Cooper, B.F., Ramakrishnan, R., Srivastava, U.,
Silberstein, A., Bohannon, P., Jacobsen, H.-A., Puz,
N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow. 1(2), 1277–
1288 (2008)

14. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly
available key-value store. In: Symposium on Operating
System Principles (2007)

15. ejabberd: http://ejabberd.im. Accessed 1 Aug 2011
16. Eucalyptus home page: http://eucalyptus.cs.ucsb.edu/.

Accessed 1 Aug 2011
17. Hadoop Distributed File System: http://hadoop.apache.

org. Accessed 1 Aug 2011
18. Hadoop MapReduce: http://hadoop.apache.org/.

Accessed 1 Aug 2011
19. HAProxy: http://haproxy.1wt.eu. Accessed 1 Aug 2011
20. HBase; http://hadoop.apache.org/hbase/. Accessed 1

Aug 2011
21. Hypertable: http://hypertable.org. Accessed 1 Aug

2011
22. Kernel based virtual machine: http://www.linux-kvm.

org/. Accessed 1 Aug 2011
23. Kola, G., Kosar, T., Livny, M.: Faults in large distrib-

uted systems and what we can do about them. Lect.
Notes Comput. Sci. 3648, 442–453 (2005)

24. Kossmann, D., Kraska, T., Loesing, S.: An evaluation
of alternative architectures for transaction processing
in the cloud. In: International Conference on Manage-
ment of Data, pp. 579–590 (2010)

25. Kung, H.T., Robinson, J.T.: On optimistic methods for
concurrency control. ACM Trans. Database Syst. 6(2),
213–226 (1981)

26. Lamport, L.: The part-time parliament. ACM Trans.
Comput. Syst. 16(2), 133–169 (1998)

27. memcached: http://memcached.org. Accessed 1 Aug
2011

28. MemcacheDB: http://memcachedb.org/. Accessed 1
Aug 2011

29. MongoDB: http://mongodb.org/. Accessed 1 Aug 2011
30. MySQL Cluster: http://www.mysql.com/cluster.

Accessed 1 Aug 2011
31. Nginx: http://www.nginx.net. Accessed 1 Aug 2011
32. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli,

G., Soman, S., Youseff, L., Zagorodnov, D.: The
eucalyptus open-source cloud-computing system. In:
9th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID) (2009)

33. OpenStack: http://openstack.org. Accessed 1 Aug 2011
34. Peng, D., Dabek, F.: Large-scale incremental process-

ing using distributed transactions and notifications.
In: Symposium on Operating System Design and Im-
plementation (2010)

35. Protocol Buffers. Google’s Data Interchange Format:
http://code.google.com/p/protobuf. Accessed 1 Aug
2011

36. Redis: http://redis.io. Accessed 1 Aug 2011
37. SimpleDB: http://aws.amazon.com/simpledb/.

Accessed 1 Aug 2011
38. Voldemort: http://project-voldemort.com/. Accessed 1

Aug 2011
39. Wei, Z., Pierre, G., Chi, C.-H.: Scalable transactions

for web applications in the cloud. In: Proceedings of the
Euro-Par Conference, Delft, The Netherlands (2009).
http://www.globule.org/publi/STWAC_europar2009.html.
Accessed 1 Aug 2011

40. What is Google App Engine? http://code.google.
com/appengine/docs/whatisgoogleappengine.html. Ac-
cessed 1 Aug 2011

41. XenSource: http://www.xensource.com/. Accessed 1
Aug 2011

42. ZooKeeper: http://hadoop.apache.org/zookeeper.
Accessed 1 Aug 2011

Author's personal copy

http://ejabberd.im
http://eucalyptus.cs.ucsb.edu/
http://hadoop.apache.org
http://hadoop.apache.org
http://hadoop.apache.org/
http://haproxy.1wt.eu
http://hadoop.apache.org/hbase/
http://hypertable.org
http://www.linux-kvm.org/
http://www.linux-kvm.org/
http://memcached.org
http://memcachedb.org/
http://mongodb.org/
http://www.mysql.com/cluster
http://www.nginx.net
http://openstack.org
http://code.google.com/p/protobuf
http://redis.io
http://aws.amazon.com/simpledb/
http://project-voldemort.com/
http://www.globule.org/publi/STWAC_europar2009.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.xensource.com/
http://hadoop.apache.org/zookeeper

	Cloud Platform Datastore Support
	Abstract
	Introduction
	Related Work
	The AppScale Database Support and Portability Layer
	Database-Agnostic Distributed Transaction Support
	DAT Design
	DAT Semantics

	DAT Implementation
	Distributed Transaction Coordinator (DTC)
	ZooKeeper Configuration of the DTC
	Scalable Entity Keys
	Garbage Collection
	Fault Tolerance

	Methodology
	Benchmarking Application

	Results
	Discussion

	Conclusions
	References


