
An Efficient Implementation of Java’s Remote Method Invocation

Jason Maassen Rob van Nieuwpoort Ronald Veldema
Henri E. Bal Aske Plaat

Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
jason@cs.vu.nl rob@cs.vu.nl rveldema@cs.vu.nl bal@cs.vu.nl aske@cs.vu.nl

http://uuu.cs.vu.nl/manta/

Abstract

Java offers interesting opportunities for parallel computing. In par-
ticular, Java Remote Method Invocation provides an unusually flex-
ible kind of Remote Pmcedtue Call. Unlike RPC, RMI supports
polymorphism, which mquires the system to be able to download
remote classes into a running application. Sun’s RMI implementa-
tion achieves this kind of flexibility by passing around object type
information and pmcessing it at run time, which causes a major run
time overhead. Using Sun’s JDK 1.1.4 on a Pentium Pro/Myri.uet
cluster, for example, the latency for a null RMI (without parameters
or a return value) is 1228 pet, which is about a factor of 40 higher
than that of a user-level RPC. In this paper, we study an altema-
tive approach for implementing RMI, based on native compilation.
This approach allows for better optimization, eliminates the need
for processing of type information at run time, and makes a light
weight communication protocol possible. We have built a Java sys-
tem based on a native compiler, which supports both compile time
and run time generation of marshallers. We find that almost all
of the run time overhead of RMI can be pushed to compile time.
With this approach, the latency of a null RMI is reduced to 34 pet,
while still supporting polymorphic RMIs (and allowing interoper-
ability with other JVMs).

1 introduction

There is a growing interest in using Java for high-performance par-
allel applications. Java’s clean and type-safe object-oriented pro-
gremming model and its support for concurrency make it an attrac-
tive environment for writing reliable, large-scale parallel programs.
For shared memory machines, Java offers a familiar multithmad-
ing paradigm. For distributed memory machines such as clusters of
workstations, Java provides Remote Method Invocation, which is
an object-oriented version of Remote Procedure Call (RPC). The
RMI model offers many advantages for parallel and distributed
programming, including a seamless integration with Java’s object
model, heterogeneity, and flexibility [30].

Unfortunately, many existing Java implementations have infe-
rior performance of both sequential code and communication prim-
itives, which is a serious disadvantage for high-performance com-
puting. Much effort is being invested in improving serial code per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies ara not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise. to republish, to post on sarvars or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP ‘99 5/99 Atlanta, GA, USA
Ca 1999 ACM 1.58113slOO-3/99/0004...$5.00

formance by replacing the original byte code interpretation scheme
with just-in-time compilers, native compilers, and specialized hard-
ware [17,22,25]. The communication overhead of Java RMI im-
plementations, however, mmains a major weakness. RMI is orig-
inally designed for client/server programming in distributed (web
based) systems, where latencies on the order of several millisec-
onds am typical. On more tightly coupled parallel machines, such
latencies are unacceptable. On our Pentium Pro/Myrinet cluster, for
example, Sun’s JDK 1.1.4 implementation of RMI obtains a two-
way null-latency (the latency of an RMI without parameters or a
return value) of 1228 microseconds, compared to 30 microseconds
for a user level Remote Procedure Call protocol in C. (A null-RMI
in Sun’s latest JDK version 1.2 beta, is even slower.)

Part of this large overhead is caused by inefficiencies in the
JDK. The JDK is built on a hierarchy of stream classes that copy
data and call virtual methods. Serialization of method arguments
is implemented by recursively inspecting object types until primi-
tive types axe reached, and then invoking the primitive serializes a
byte at a time. All of this is performed at run time, for each remote
invocation. In addition, RMI is implemented on top of IP sock-
ets, which adds kernel overhead (and four context switches on the
critical path).

Besides inefficiencies in the JDK, a second and more funda-
mental reason for the slowness of RMI is the difference between
the RPC and RMI models. Java’s RMI scheme is designed for flex-
ibility aud in&operability. Unlike RPC, it allows classes unknown
at compile time to be exchanged between a client and a server and
to be downloaded into a running program. In Java, an actual pa-
rameter object in an RMI can be a subclass of the method’s formal
parameter type. In polymorphic object-oriented languages, the dy-
numic type of the parameter-object (the subclass) should be used
by the method, not the static type of the formal parameter. When
the subclass is not yet known to the receiver, it has to be fetched
over the network from a remote process and be downloaded into
the receiver. This high level of flexibility is the key distinction be-
tween RMI and RPC [30]. RPC systems simply use the static type
of the formal parameter (thereby type-converting the actual param-
eter), and thus do not support polymorphism and break with the
object-oriented model.

The key problem is to obtain the efficiency of RPCs Ed the
flexibility of Java’s RMI. This paper discusses a new compiler-
based Java system, called Manta,’ which is designed from scratch
to implement polymorphic RMIs efficiently. On our Myrinet clus-
ter, for example, Manta obtains a null-latency of 34 pet, a factor
of 36 improvement over the JDK 1.1.4. Table 1 shows two-way
null-RMI latencies and throughput of Manta, Sun’s JDK (a byte

1A fast, Rexible, black-and-white, tropical fish, fhat can be found in the Indonesian

archipelago.

173

code interpreter), Sun’s JIT (a just-in-time byte code compiler), and
Panda (a conventional RPC in C), on two different processors and
two different networks. The table shows that Manta is substantially
faster than Sun’s RMI, and close to a Panda RPC. (The difference
between Panda 3.0 and 4.0 is explained in Section 3.)

Manta replaces Sun’s run time protocol processing as much as
possible by compile time analysis. We use a native compiler to
generate efficient serial code and specialized serialization routines
for serializable argument classes. The generated serialixers allow
a simpler RMI protocol that avoids type inspection at run time al-
together. Since type information is known at compile time, it suf-
fices to carry a simple type-id in the protocol, instead of elaborate
type descriptions. In this way, almost all of the protocol overhead
has been pushed to compile time, off the critical path. The prob-
lems with this approach, however, are how to interface with other
Java Virtual Machines (which is required for interoperability) and
how to address dynamic class loading (required to support poly-
morphism). To intemperate with other (non-Manta) JVMs, Manta
supports the standard Sun RMI and serialization protocols in addi-
tion to its own fast protocols. Dynamic class loading is supported
by compiling methods and generating serializers at run time.

The Manta system combines high performance with the flex-
ibility and interoperability of RMI. In a metacomputing applica-
tion [lo], for example, some clusters can run our Manta software
and communicate internally using the fast Manta RMI protocol.
Other machines may run other JVMs (containing, for example, a
graphical user interface program) and Manta communicates with
these machines using the standard Sun RMI protocol. The ma-
chines running Manta and the JVM can both invoke each other’s
methods. Manta implements almost all other functionality required
for Java RMI, including heterogeneity, multithreading, synchro-
nixed methods, and distributed garbage collection.

The main contributions of this paper are as follows. First, the
paper shows that Java RMI can be implemented efficiently and can
obtain a performance close to that of RPC systems. On Myrinet,
a null-RMI takes 1228 psec for Sun’s JDK, and 34 psec for our
system, only 4 pet more than a C-based RPC. Second, we show
that the efficiency improvement can be achieved without sacrificing
polymorphic RMIs and interoperability.

The rest of the paper is structured as follows. The design and
implementation of the Manta system are discussed in Section 2.
At the time of this writing, most of the system is up and running,
though some parts of the interface to Sun JDK RMIs are still being
finished; Section 2.4 reports on the implementation status. In Sec-
tion 3 we give a detailed performance analysis of our system. In
Section 4 we look at related work. Section 5 presents conclusions.

2 Design and Implementation of Manta

This section will discuss the design of the Manta system (including
the unimplemented parts) and describe the current implementation
status of the system. We will focus on the Manta RMI implemen-
tation.

2.1 Manta Structure

Since Manta is designed for high-performance parallel computing,
it uses a native compiler rather than a JIT. The most important ad-
vantage of a native compiler is that it can do more aggressive op-
timixations and therefore generate better code. To support interop-
erability with other JVMs, however, Manta also has to be able to
process the byte code for the application, and contains a run-time
byte-code-to-native compiler.

The Manta system is illustrated in Figure 1. The box in the
middle describes the structure of a node running a Manta appli-
cation. Such a node contains the executable code for the applica-

tion and (de)serialization routines, both of which are generated by
Manta’s native compiler. A Manta node can communicate with an-
other Manta node (the box on the left) through a fast RMI protocol
(using Manta’s own serialization format); it can communicate with
another JVM (the box on the right) through a JDK-compliant proto-
col (using Sun’s serialization format). Determining which protocol
to use is done with an initial probe RMI, which is only recognized
by a Manta application, not by a JVM.

A Manta-to-Manta RMI is performed with Manta’s own fast
protocol, which is described in detail in the next subsection. This is
the common case for high performance parahel programming, for
which Manta is optimized. Manta’s serialization and deserialixa-
tion protocols support heterogeneity.

A Manta-to-JVM RMI is performed with a slower protocol that
is compatible with Sun’s RMI standard. Manta uses generic rou-
tines to (de)serialixe the objects to or from Sun’s format. These
routines use runtime type inspection (reflection), and are similar to
Sun’s protocol. The routines am written in C (as is all of Manta’s
run time system) and execute more efficiently than Sun’s protocol,
which is written mostly in Java.

A Manta application must be able to work with byte codes from
other nodes, to implement polymorphic RMIs with JVMs. When
a Manta application requests a byte code from a remote process,
Manta will invoke its byte code compiler to generate the meta-
classes, the serialization routines, and the object code for the meth-
ods (as if they were generated by the Manta source code compiler).

The dynamicahy generated object code is linked into the appli-
cation with the dlopenf) dynamic linking interface. If a remote
node requests byte code from a Manta application, the JVM byte
code loader retrieves the byte code for the requested class in the
usual way through a shared &system or through an http daemon.
RMI does not have separate support for retrieving byte codes (see
also http://sirius.ps.uci.edNsmkhaeUrmi.htm). Sun’s javac com-
piler is used to generate the byte code at compile time.

Two Manta applications can also implement polymorphism by
exchanging the Java source code instead of the byte code. In this
case (not shown in Figure l), the native Manta compiler is invoked
during runtime, resulting in better object code than with the byte
code compiler. Manta applications must still be able to compile
byte codes, however, since a class may originate from a non-Manta
JVM, in which case the source may not be available.

The structure of the Manta system is more complicated than
that of a JVM. Much of the complexity of implementing Manta ef-
ficiently is due to the need to interface a system based on a native-
code compiler with a byte code-based system. The fast communi-
cation path in our system, however, is straightforward the Manta
RMI protocol just calls the compiler-generated serialization rou-
tines and uses a simple scheme to communicate with other Manta
nodes.

2.2 Serialization and Communication

RMI systems can be split into three major components: low-level
communication, the RMI protocol (stream management and method
dispatch), and serialization. Below, we discuss how Manta imple-
ments this functionality.

Low-level Communication

Java RMI implementations am built on top of TCP/IP, which was
not designed for parallel processing. Manta uses the Panda com-
munication library [l], which has efficient implementations on a
variety of networks. On Myrinet, Panda uses the LFC communi-
cation system [4, 51. To avoid the overhead of operating system
calls, LFC and Panda run in user space. On Fast Ethernet, Panda
is implemented on top of UDP. In this case, the network interface

174

System Version Processor Network Latency Thnxqhput
ols) (MByte/s)

Sun JDK 1.1.3 300 MHz Spare Ultra 10 Fast Ethernet 1630 1.0
Sun JlT 1.1.6 1210 4.1
Sun JIT 1.2 beta 1311 3.0
Manta/Panda 3.0 338 1.4
Panda 3.0 328 8.7
Sun JDK 1.1.4 200 MHz Pentium Pm Fast Ethernet 1711 0.97
Manta/Panda 3.0 233 7.3
Panda 3.0 228 10.3
Sun JDK 1.1.4 200 MHz Pentium Pro Myrinet 1228 4.66
Manta/Panda 3.0 34 20.6
Manta/Panda 4.0 39 51.3
Panda 3.0 30 55.7
Panda 4.0 31 59.4

Table 1: Two-way NuIl-RMI Latency aud Throughput

r------------_------_____I r---___---___----___------------------------------, -0

1 MANTAPRCIC&S i h4ANTABMI i MANTAPROCESS
0

;------------------

I ; JVM

GENERATED SEiUALUERS

I APPLICATION I

Is-~t2~tii GENERATION]

BYTEODE COMPILER

I

BYTECODE LOADER

[F]j ““i
.------------_------~-~ I I

I
r-------------------,

I

: HTrPsBRvBR

I

:-

I ’

I 1

I ’

0 ’

’ : ! I F=l I

I

c------------------

CLASS FILES

I

: HlTPsERvBR

1 ’ UI I , 1 I ’ I 0 !--.---------,------.
t

9 /B
CLASS FILES

BYlECWK
I

Figure 1: Manta/JVM Intemperability

175

is managed by the kernel, but the Panda RPC protocols run in user
space.

The Panda RPC interface is based on an upcall model: concep
tually a new thread of control is created when a message arrives,
which will execute a handler for the message. The interface has
been designed to avoid thread switches in simple cases. Unlike ac-
tive message handlers [29], upcall handlers in Panda are allowed
to block in a critical section, but a handler is not allowed to wait
for another message to arrive. This restriction allows the imple-
mentation to handle all messages using a single thread and to avoid
context switches for handlers that execute without blocking [19].

The RMI Protocol

The run time system for the Manta RMI protocol is written in C. It
was designed to minimize serialization and dispatch overhead, such
as copying, buffer management, fragmentation, thread switching,
and indirect method calls. Figure 2 gives an overview of the layers
in our system and compares it with the layering of the JDK system.
The shaded layers denote compiled code, while the white layers are
interpreted (or JIT-compiled) Java. Manta avoids the stream lay-
ers of the JDK. Instead, RMIs are serialized directly into a Panda
buffer. Moreover, in the JDK these stream layers are written in Java
and their overhead thus depends on the quality of the interpreter or
JIT. In Manta all layers are either implemented as compiled C code
or compiler generated native code. Also, Manta applications can
call RMI serializers directly, instead of through the (slow) Java Na-
tive Interface. Heterogeneity between little-endian and big-endian
machines is achieved by sending data in the native byte order of
the sender, and having the receiver do the conversion, if necessary.
Another important optimization in our RMI protocol is to avoid
generating a new thread at the receiving node. The Manta compiler
determines for each remote method whether it is guaranteed to ex-
ecute without blocking (whether it may execute a “wait()” opera-
tion). If the method will never block, it is executed without doing
a thread context switch. The compiler currently makes a conserva-
tive estimation and only guarantees the non-blocking property for
methods that do not call other methods.

The Manta RMI protocol cooperates with the garbage collector
to keep track of references across machine boundaries. Manta uses

a local garbage collector based on a mark-and-sweep algorithm.
Each machine runs this local collector, using a dedicated thread
that is activated by the run time system or the user. The distributed
garbage collector is implemented on top of the local collectors, us-
ing a reference counting mechanism for remote objects (distributed
cycles remain undetected).

The Serialization Protocol

The serialization of method arguments is an important source of
overhead of existing RMI implementations. Serialization takes Java
objects and converts (serializes) them into an array of bytes. The
JDK serialization protocol is written in Java and uses reflection to
determine the type of each object during run time. With Manta, all
serialization code is generated by the compiler, avoiding the over-
head of dynamic inspection. Serialization code for most RMI calls
is generated at compile time. Only serialization code for polymor-
phic RMI calls that are not locally available is generated, by the
Manta compiler, at run time. The overhead of this run time code
generation is incurred only once, the first time the new class is used
as a polymorphic argument to some method invocation. For sub-
sequent uses, the fast serializer object code is then available for
reuse. The overhead of run time serializer generation is on the or-
der of seconds at worst, depending mostly on whether the Manta
compiler is resident, or whether it has to be paged in over NFS.

To accomplish fast serialization with correct Java semantics,
the compiler generates special (un)marshall methods. For every
method in the method table, a method pointer is maintained here
to dispatch to the right (un)marshaller for that method. A similar
optimization is used for serialization: every object has two pointers
in its method table to the serializer and deserializer for that ob-
ject. When a particular object is to be serialized the method pointer
is extracted from the object’s method table and invoked. On de-
serialization the same procedure is applied. The serialization and
deserialization code is generated by the compiler and has complete
information about fields and their types. When a class to be serial-
ized/deserialized is marked “final”, the cost of the virtual function
call to the right serializer/deserializer is optimized away, since the
correct function pointer can be determined at compile time.

The Manta serialization protocol performs optimizations for
simple objects. An array whose elements are of a primitive type is
serialized by doing a direct memory-copy into the message buffer,
which saves traversing the array. Serialization produces a deep
copy. In order to detect duplicate objects, the marshalling code
uses a hash table containing objects that have already been serial-
ized. If the method does not contain any parameters that are ob-
jects, however, the hash table is not created, which again makes
simple methods faster. Also, the hash table itself is not transferred
over the network, instead, the table is rebuilt on-the-fly by the re-
ceiver. Compiler generation of serialization is one of the major
improvements of Manta over the JDK.

2.3 Generated Marshalling Code

Figures 3, 4, and 5 illustrate the generated marshalling code. Gen-
eration of meta classes and marshallers is described in more detail
in [28]. Consider the “RemoteMonkey” class in Figure 3. The
“foo()” method can be called from another machine, therefore the
compiler generates marshalling and unmarshalling code for it.

The generated marshaller for the “foo()” method is shown in
Figure 4 in pseudo code. Because "foo()” has a String as param-
eter, which is an object in Java, a hash-table is created to detect
duplicates. A special create thread flag is set in the header data
structure. This is done because “foo” contains a method call (“Sys-
tem.out.println()“) and might therefore potentially do a “wait()“, or

import jara.rmi.*;
import java.zni.s~rrer.UnicastRanot~Objrct;

Public class ilmot&mkay axtar& UniceatRmoteObj~ct
implements BmotmmkryIatmface c

int ralus;
String name;

syncbronie~d int foo(int i, String 8) throws RmoteBxception C

ve.lue = i;
nams = s;

Systsn.out.println("i = " + i);

rdxrn i*i;

1
1

Figure 3: A simple remote class.

ception is thrown, the hash table is reused to detect duplicates in
the exception object The programmer may define his own excep-
tions in Java, so it is not guaranteed that the thrown exception does
not contain a cycle. The writeobject call will serialize the string
object to the buffer at the current position. TheflushFuncGon does
the actual writing out to the network buffer. It is also used, together
with the@lFuncGon, for fragmentation.

marshall__foo(Re~t~Object *this. int i, class--String l st <

allocBuffers(kinBuffar. CoutBuffor);
hasbTabla = crmt&iasbTableO;

vritaB~ader(toutBuffer, this,
OPCODE-CALL, CREATB-TBBBAD, flu&Function);

vritaInt(koutBuffer. i, flushFunction);
uritaObject(&outBuffer, s, flushFunction. haahTabla1;

// Request aasmga is created, now writ@ it to tba r&work.
flushFunction(outBuffer);

cloarUashTabla(hMhTabl*);

// Becaiw raply.
fillFunction(kinBuff*r);

opcode = rmdInt(&inBuffor, fillFunction);

if (opcoda == OPCODE-EICePTION) {

class--Exception **rception =
readObjwt(tinBuff~r, filllunction, hashTable);

freeBuff~rs(inBuffer, outBuffer);
kil~MhTlbl~(hMhTabl*);

TBRW_eXCEPTION(oxc~ption);

1 else c

int result = rmdInt(kinEuffer, fillFunction);

fraaBuffers(inBuffer, outBuffer);
killBashT&bl~(hashTabl~);

BETUSN(rasult);

)
)

Figure 4: The generated marshaller for the “foe” method.

Pseudo code for the generated unmarshaller is shown in Fig-
ure 5. The header is already unpacked when this unmarshaller is
called. Because the creare thread flag in the header was set, this
unmarshaller will run in a new thread started by the runtime sys-
tem. The marshaller itself does not know about this. Note that the
this parameter is already unpacked and is a valid reference for the
machine the unmarshaller will run on.

-rshall__foo(clasa__Object *this) <
allocBuffers(tinBuffer, toutBuffer);
he&Table = crmtaliashTable();

int i = readInt(&inBuffer, fillFunction);
claw--String *s = rmdObject(&inBuffer,

fillFunction, hashTable);

result = CALL-JAVA-FUNCTION(foo, this, i, s, Carception);

ha&Table - cl.arHashTable();

if(exc*ption) <

mit~Int(toutBuffar, OPCODE_ExCEPTION. flu&Function);
vritaObject(toutBuffer,

exception, flu&Function, ha&Table);

) also I

vritaInt(&outBuffer, OPCODE~IWCLT~CALL, flushFunction);
mit~Int(toutBuffer, result, flu&Function);

// Reply message ia created, now urite it to the network.
flushfunction(outBuifar);

freeBuffers(inBuffrr, outBuffer);
killHashTable(hashTable);

Figure 5: The generated unmarshaller for the “foe” method.

2.4 implementation status

Our work on an efficient Java RMI started out as an attempt to
make a fast version of JavaParty [24]. JavaParty does not use a
registry, and uses a syntax that differs slightly from Sun RMI. It
uses the keyword remote for classes that can be called remotely.
For example, the RemoteMonkey class declaration from Figure 3
would be written as public remote class RemoteMonkey {.
The Manta system is now being extended to also support the stan-
dard Sun RMI syntax. Further extensions needed to intemperate
with Sun JVMs are support for the Sun RMI registry, support for

~ the Sun RMI wire protocol, and the ability to work with byte code
files. Some of these extensions a already working, although the
efficient Myrinet implementation of polymorphic remote method
calls currently only works for the JavaParty syntax.

The Manta compiler and fast RMI protocol are operational and
have been used to run several applications. The compiler currently
generates code for the Pen&m and Spare architectures. The Manta
run time system supports several networks (including UDP/IP net-
works and Myrlnet). On Myrinet, the user-level communication
system we use (LFC) offers no protection, so the Myrinet network
can be used by a single process only. (This problem can be solved
with other Myrinet protocols that do offer protection [4].) The Fast
Ethernet implementation uses a kernel-space UDPmP protocol and
does not have this problem.

In addition, we are finishing the implementation of the dynamic
byte code compiler, which includes the ability to generate serial-

177

ization routines from byte codes. We have implemented dynamic
source code compilation, which can be used for polymorphic RMIs
between two Manta nodes (see Section 2.2). The linking of dynam-
ically generated object code works on Linux and Solaris. On BSD
3.0 (one of the operating systems used for our Myrinet cluster) it
does not work because of a bug in BSD 3.0’s implementation of
dlopen0. Interoperability with Sun RMI, including polymorphic
RMI, poses the largest engineering challenges. At the time of this
writing, we have run a small mixed Sun/Manta RMI application,
and we have run a small application compiled by the Manta byte
code compiler. Currently, interfacing with Sun JVMs, and the abil-
ity to use the Sun RMI syntax over the fast Myrinet protocol, are
being finished.

3 Performance Measurements

In this section, the performance of Manta is compared against the
Sun JDK 1.1.4. Experiments are run on a homogeneous cluster of
Pentium Pro processors. Each node contains a 200 MHz Pentium
Pro and 128 MByte of EDG-RAM. All boards are connected by
two different networks: 1.2 GbiVsec Myrinet [6] and Fast Ethernet
(100 Mbitisec Ethernet). The system runs the BSD/OS (Version
3.0) operating system from BSDI and RedHat Linux version 2.0.36.
Timing differences between BSD and Linux are small to negligible.
Except where otherwise noted, the numbers reported are from runs
on BSD. Both Manta and Sun’s JDK run over Myrinet and Fast
Ethernet. We have created a small user-level layer that implements
socket functionality in order to run JDK RMI over Myrinet, on top
of Illinois Fast Messages (FM) [23]. FM’s round-trip latency is 4 ps
higher than that of LFC.

3.1 Latency

For the first benchmark, we have made a breakdown of the time
that Manta spends in remote method invocations, using zero to
three (empty) objects as parameters, and no return value. The mea-
surements were done by inserting timing calls, using the Pentium
Pro performance counters. These counters have a granularity of 5
nanoseconds. The results for Manta over Myrinet (using Panda 3.0)
are shown in Table 2.

The simplest case is an empty method without any parameters,
the null-RMI. On Myrinet, a null-RMI takes about 34 pus. only 4
microseconds are added to the latency of the Panda RPC, which is
3Ops. When passing primitive data types as a parameter to a remote
call, the latency grows with less than a microsecond per parameter,
regardless of the type of the parameter (this is not shown in the
table). When one or more objects are passed as parameters in a
remote invocation, the latency increases with several microseconds.
The reason is that a table must be created by the run time system
to detect possible cycles and duplicates in the objects. Separate
measurements show that almost all time that is taken by adding an
object parameter is spent at the remote side of the call, deserialixing
the call request (not shown). The serialization of the request on the
calling side, however, is affected less by the object parameters.

To compare the overhead of the JDK and Manta, we have per-
formed the same breakdown of these two systems on Pentium Pros
connected by Fast Ethernet. We use Fast Ethernet rather than Myri-
net for the comparison between the JDK and Manta, so we can run
the JDK “out-of-the-box” (without making any changes to it). The
results are given in Table 3. On the JDK and the JlT, the communi-
cation times still include a small amount of Java overhead. Pipelin-
ing effects in the communication layers complicate measurements,
which is why the timings in the columns in the table do not add up
exactly to the measured overall run time. The timings on Fast Eth-
ernet are less consistent than on My&ret, which may be the cause
of small discrepancies in the table.

A null-RMI for Manta over Fast Ethernet takes 233 microsec-
onds, while a JDK RMI takes 1711 microseconds; Manta thus is
7.3 times faster. The table shows how expensive Sun’s serialization
and RMI protocol (stream and dispatch overhead) are, compared to
Manta. With 3 object-parameters, for example, the total difference
is a factor 60 (2036 p versus 34 ps).

Part of the overhead of the JDK 1.1.4 is caused by the usage
of an interpreter. To determine the impact of a JIT compiler we
have also run tests with the Sun JlT 1.1.6 just-in-time byte code
compiler. We were unable to run Sun’s JIT on BSD/OS or Linux;
we used UltraSpares- (running Solaris) for these teats instead.
(Other JITs, such as Kaffe, do not yet support RMI.) The results
are shown in Table 4. As can be seen, the performance gap between
the JlT and Manta is lower than between the JDK and Manta, but
the gap is still large. Part of the difference in the communication
times is due to Manta using Panda, which runs on UDP, whereas
Sun RMI uses TCP Also, the difference between Manta and the
JlT in serialization and RMI-protocol overhead is still large. With
3 object-parameters, for example, the difference is a factor 25 (1170
ps versus 46 p).

Finally, we also measured the time to create a new thread for an
incoming invocation request, which Manta uses for methods that
potentially block. On the Pentium Pm, starting a new thread for
an invocation costs 16 p with the Manta mn time system, so a
remote call that is executed by a new thread costs at least 50~s (on
Myrinet). Our optimization for simple (nonblocking) methods thus
is useful.

3.2 Throughput

The second benchmark we use is a Java program that measures
the throughput for a remote method invocation with an array of a
primitive type as argument, and no return type. The reply message
is empty, so the one-way throughput is measured. In Manta, all
arrays of primitive types are serialized with a memory copy, so
the actual type does not matter. The resulting measurements were
shown in Table 1 in Section 1.

The table also shows the measured throughput of the Panda
RPC protocol, with the same message size as the remote method
invocation. Two versions of Panda am shown. The basic version,
with which almost all measurements in this paper are performed,
is Panda 3.0. On Myrinet we have also performed measurements
with Panda 4.0, which supports a scatter/gather interface. This scat-
ter/gather interface makes it possible to remove some copying of
user data from the critical path, resulting in an improved through-
put. Unfortunately, dereferencing the scatter/gather vector involves
extra processing, which increases the latency somewhat. Panda 3.0
achieves a throughput of 55.7 MByte/s on Myrinet, which is much
higher than the throughput for Manta (20.6 MByte/s). The differ-
ence is due to two extra memory copies that Manta RMI needs for
serialization (at the sending side) and deserialization (at the receiv-
ing side). Since memory-copies are expensive on a Pentium Pro
[8], they decrease throughput significantly. For larger array sixes,
the memory-to-memory copies have a larger impact on the perfor-
mance. On Panda 4.0 the extra copying is avoided, and we achieve
a throughput of 51.3 MByte/s, compared to 59.4 MByte/s of the
raw Panda 4.0.

For the Sun JlT throughput is significantly less, and even more
so for the JDK. On UltraSparcs-10 with Fast Ethernet, Manta ob-
tains a throughput of 7.4 MByte/s, the JlT obtains 4.1 MByte/s, and
the JDK obtains only 1 MByte/s.

3.3 Manta versus Sun Protocol

Sun’s RMI protocol contains type information overhead; Manta’s
RMI protocol is substantially leaner. We have measured the com-

178

Serialization
empty 1 object 2 objects 3 objects

- 7 13 19
RMI Overhead 4 5 5 5
Panda 30 32 33 33
Total 34 44 51 57

Table 2: Breakdown of Manta RMI on Pentium Pro and Myrinec times are in pus

I Manta I Sun JDK

Serialization
1 empty 1 object 2objects 3objects 1 empty 1 object 2objects 3 objects
I 11 17 241 - 667 879 1088

RMI Overhead 5 10 9 10 907 947 942 948
Communication 227 232 235 243 799 795 797 862
Overall 233 254 262 278 1711 2409 2619 2899

Table 3: Breakdown of Manta and Sun JDK 1 .1.4 on Pentium Pro and Fast Ethernet; times are in pus

munication traffic of the two protocols. The result is shown in Ta-
ble 5. The table shows the number of bytes for a null RMI, for an
RMI with a single integer argument, with a 100 element array of in-
teger argument, and one with a single object containing an integer
and a double as argument. The table also shows the communica-
tion times in microseconds, on a 200 MHz Pentium Pro over Fast
Ethernet, including the serialization and RMI protocol processing
overhead, for Manta and the Sun JDK 1.1.4.

The JDK protocol sends only moderately more data than the
Manta protocol, yet the JDK spends a considerable amount of time
in processing and communicating the data. Most of this time is
spent in analyzing type information and managing streams. Manta
shows that this mn time overhead can be reduced significantly.

3.4 Application Performance

In addition to the low-level latency and throughput benchmarks,
we have also used three parallel applications to measure the perfor-
mance of our system. The applications are Successive Overrelax-
ation (a numerical grid computation), Traveling Salesperson Prob-
lem (a combinatorial optimization program), and Iterative Deepen-
ing A* (a search program). For TSP we used a 15 city problem, for
SOR a 2048 x 512 matrix, for IDA* we solved a random instance
of a sliding tile puzzle (with solution length 56). The applications
am described in more detail in [201. We have implemented the pm-
grams with Sun RMI 1.1.4 (on Fast Ethernet) and Manta/Panda 3.0
RMI (on Fast Ethernet and Myrinet). Figure 6 shows run times,
in seconds, for the serial program, and for runs of the parallel pro-
gram, on 1 and 16 processors. Note the different scale for the 16
processor run. The pmgrams are run on the Pentium Pros on BSD.

Performance differences between Sun and Manta can be at-
tributed to differences in serial execution speed (interpreter versus
compiler) and to differences in the RMI run time system, which is
why we show the speed of the serial code in addition to single pm-
cessor performance of the parallel code. Furthermore, we have run
the serial codes with the Kaffe just-in-time compiler, to give some
idea of how Manta compares to a JIT.’

The measurements show that Manta is substantially faster than
the Sun 1.1.4 JDK. Both for the serial and the parallel run times

“Ile parallel codes cannot LX IUUII since Kaffe does not yet support RMI. We tried
Kaffe version 0.92 and l.Ob3, on Linux and BSD. SOR and IDA* worked with Kaffe
1.1X3 on Linux, TSP worked with Katk 0.92 on BSD. We wen unable to get other
combinations to work. Kaffe’s long run time for IDA* is due to its slow garbage
collector.

the difference is large, about an order of magnitude. These par-
ticular applications/problem sixes generate a communication pat-
tern that is relatively coarse grain. Manta’s performance advantage
is therefore mostly due to higher speed of the serial code of the
Manta compiler. For finer grain communication, the advantage of
Manta’s faster RMI implementation will become more prevalent.
Even so, the relative difference in performance between Sun JDK
and Manta is larger on 16 processors than on 1 processor, indicating
that Manta’s faster RMI subsystem does make a difference.

4 Related Work

Many projects for parallel programming in Java exist (see, for ex-
ample, the JavaGrande web page at hrtp:/Wjuvugrde.oq/).
Titanium [32] is a Java based language for high-performance par-
allel scientific computing. It extends Java with features like im-
mutable classes, fast multidimensional array access and an explic-
itly parallel SPMD model of communication. The Titanium com-
piler translates Titanium into C. It is built on the Split-C/Active
Messages back-end. The JavaParty system [24] is designed to ease
parallel cluster programming in Java. In particular, its goal is to
run multi-threaded programs with as little change as possible on
a workstation cluster. JavaParty is implemented on top of Java
RMI, and thus suffers from the same performance problem as RMI.
Java/DSM [33] implements a JVM on top of TreadMarks [16], a
distributed shared memory system. No explicit communication is
necessary, all communication is handled by the underlying DSM.
No performance data for JavalDSM were available to us. Breg et
al [7] study RMI performance and interoperability. Krishnaswamy
et al [18] improve RMI performance somewhat by using caching
and UDP instead of TCP. Sampemane et al [27] describe how RMI
can be run over Myrinet using the socketFactory facility. Gokhale
et al [111 discuss high-performance computing issues for CfJRBA.
Hirano et al [121 provide performance figures of RMI and RMI-like
systems on Fast Ethernet.

Our system differs by being designed from scratch to provide
high performance, both at the compiler and run time system level.
For the non-polymorphic RMI part, Manta’s compiler-generated
serialization is similar to Orca’s serialization 121. The buffering and
dispatch scheme is similar to the single-threaded upcall model 1191.
Small, non-blocking, procedures are run in the interrupt handler, to
avoid expensive thread switches. Optimistic Active Messages is a
related technique based on rollback at run time [31]. Instead of
kernel-level TCP/IP, Manta can use Panda on top of LFC, a highly

179

efficient user-level communication substrate [S]. Lessons learned
from the implementation of other languages for cluster computing
were found to be quite useful. These implementations are built
around user level communication primitives, such as Active Mes-
sages [29]. Examples are Concert [15], CRL [13], Orca [l, 21,
Split-C [9], and Jade [26]. Other projects on fast communication in
extensible systems are SPIN [3], Exo-kernel [141, and Scout [21] .

5 Conclusion

We have built a new compiler-based Java system (Manta) that was
designed from scratch to support efficient Remote Method Invo-
cations on parallel computer systems. Performance measurements
show that Manta’s RMI implementation is substantially faster than
the Sun JDK and JIT. For example, on Fast Ethernet, the null la-
tency is improved from 1711 p (for the JDK) to 233 p, on Myrinet
from 1228 p to 34 ps, in both cases only a few microseconds
slower than a C-based RPC. The gain in efficiency is due to three
factors: the use of compile time type information to generate spe-
cialized serlalizers; a more streamlined and efficient RMI protocol;
and the usage of faster communication protocols.

RMI is originally designed for flexible distributed (client/server)
computing, and allows subclasses to be downloaded into a running
program. Sun’s implementation handles serialization, dispatch and
buffer management at run time. It is designed for flexibility, not
speed. Our system uses compile time information to make the run
time protocol as lean as possible, so that processing it will be fast.
Flexibility is achieved by recompiling classes and generating serial-
izers as and when they are needed. Our implementation is designed
for sd, yet preserves the polymorphism of RMI.

We find that with the right combination of user level messaging,
compile time type information, and run time compilation, Java’s
RMI can be made almost as fast as a C-based RPC implementa-
tion while retaining the flexibility of RMI, making Java a viable
alternative for high performance parallel pmgramming.

6 Acknowledgements

This work is supported in part by a USF grant from the Vrije Uni-
versiteit. Aske Plaat is supported by a SION graut from the Dutch
research council NWO. We thank Kees Verstoep for writing a Java
socket layer for Myrinet on FM. Ceriel Jacobs and Rutger Hofman
implemented and debugged a substantial part of the Manta system.
We thank Raoul Bhoedjang for his keen criticism on this work. We
thank Michael Philippsen for providing us with JavaParty, and for
helpful discussions. We thank Thilo Kielmann for discussions on
polymorphism in distributed object oriented languages and for his
feedback on an earlier draft of this paper. We thank the anonymous
referees for helpful feedback.

References

[l] H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G.
Lange&en, T. Rtil, and M.F. Kaashoek Performance Eval-
uation of the Orca Shared Object System. ACM Trans. on
Computer Systems, 16(l):lAO, February 1998.

[2] H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G.
Langendoen, and K. Verstoep. Performance of a High-Level
Parallel Language on a High-Speed Network. Journal of
Paralkl and Distributed Computing, 40(1):49-64, February
1997.

[3] B. Bershad, S. Savage, P. Pardyak, E. Gun Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibil-
ity, Safety and Performance in the SPIN Operating System.

141

PI

WI

r71

WI

PI

WI

WI

WI

1131

u41

I151

1161

1171

In 15th ACM Symposium on Operating System Principks
(SOSP-IS), pages 267-284, 1995.

R. A. F. Bhoedjang, T. Rtil, and H. E. Bal. User-Level
Network Interface Protocols. IEEE Computer, 31(11):53-60,
November 1998.

R.A.F. Bhoedjang, T. Rtthl, and H.E. Bal. Efficient Multicast
on Myrinet Using Link-Level Flow Control. In ht. Conf: on
Parallel Processing, pages 381-390, Minneapolis, MN, Au-
gust 1998.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L.
Seitz, J.N. Seizovic, and W. Su. Myrinet: A Gigabit-per-
second Local Area Network. IEEE Micro, 15(1):29-36,1995.

F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Ak-
man, and D. Gannon. Java RMI Performance and Object
Model Interoperability: Experiments with Java/HPC++ Dis-
tributed Components. In ACM 1998 Workshop on Java for
High-Pelfonnance Network Computing, Santa Barbara, CA,
February 1998.

A. Brown and M. Seltzer. Operating System Benchmarking
in the Wake of Lmbench: A Case Study of the Performance
of NetBSD on the Intel x86 Architecture. Iu Proc. of the 1997
Corgt: on Measuremenr and Modeling of Computer Systems
(SIGMETRCS), pages 214-224, Seattle, WA, June 1997.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta-T. von Eicken, and K. Yelick. Parallel Program-
ming in Split-C. In Supercomputing, 1993.

I. Foster and C. Kesselman. i’7ze Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

A. Gokhale and D Schmidt. Evaluating CORBA Latency
and Scalability Over High-Speed ATM Networks. In 17th
International Conference on Distributed Computing Systems,
pages 401410, Baltimore, MD, 1997.

S. Hirano, Y. Yasu, and H. Igarashi. Performance Eval-
uation of Popular Distributed Object Technologies for
Java. In ACM 1998 workshop on Java for High-
peflormance network computing, February 1998. Online at
http:llwww.cs.ucsb.edulconfexencesljava98/.

K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. CRL:
High-performance All-Software Distributed Shared Memory.
In 15th ACM Symp. on Operating Systems Principles, pages
213-228, Copper Mountain, CO, December 1995.

M.F. Kaashoek, D.R. Engler, G.R. Ganger, H.M. Briceno,
R. Hunt, D. Ma&es, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems. In 16th ACM Symposium on Opera&
ing Systems Principles, pages 52-65, 1997.

V. Karamcheti and A.A. Chien. Concert - Efficient Runtime
Support for Concurrent Object-Oriented. Supercofiputing ‘93,
pages 15-19, November 1993.

P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems. In Proc. of the Winter 1994
Usenix Cor#erence, pages 115-131, San Francisco, CA, Jan-
uary 1994.

A. Krall and R. Grafl. CACAO -A 64 bit JavaVM
Just-in-Time Compiler. Concurrency: Practice and L%-
perknce, pages 1017-1030, November 1997. Online at . , . . . http://www.complang.tuwien.ac.aWandU.

181

[18] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Ri-
ley, B. Topol, and M. Ahamad. Efficient Implementations of
lava RMI. In 4th USENIX Confernce on Object-Oriented
Technologies and Systems (COOTS’98), Santa Fe, NM, 1998.

[19] K. Langendoen, R. A. F. Bhoedjang, and H. E. Bal. Mod-
els for Asynchronous Message Handling. IEEE Concurrency,
5(2):28-38, April-June 1997.

[20] J. Maassen and R. van Nieuwpoort. Fast Parallel Java. Mas-
ter’s thesis, Vrije Universiteit, Amsterdam, August 1998. On-
line at http://www.cs.vu.nllalbanoss/.

[21] D. Mosberger and L. Peterson. Making Paths Explicit in the
Scout Operating System. In VSKNIX Symp. on Operating
Systems Design and Impiementation, pages 153-168, 1996.

[22] G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa, a
mixed offline compiler and interpreter for dynamic class load-
ing. In Third VSENlX Go@emnce on Object-Oriented Tech-
nologies (COOTS), Portland, OR, June 1997.

[23] S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Supenzomputing ‘95, San Diego, CA, December
1995.

[24] M. Philippsen and M. Zenger. JavaParty-Transparent Re-
mote Objects in Java. Concumncy: Practice and Ex-
perience, pages 1225-1242, November 1997. Online at
http://wwwipd.ira.ukadelJavaParty~.

[25] T.A. Pmebsting, G. Townsend, P. Bridges, J.H. Hartman,
T. Newsham, and S.A. Watterson. Toba: Java for applica-
tions - a way ahead of time (WAT) compiler. In Proceedings
of the 3rd Conference on Object-Oriented Technologies and
Systems, Portland, OR, 1997.

[26] M. C. Rinard, D. J. Scales, aud M. S. Lam. Jade: A high-
level, machine-independent language for parallel program-
ming. IEEE Computer, 26(6):28-38, June 1993.

[27] G. Sampemane, L. Rivera, L. Zhang, and S. Krishuamurthy.
HP-RMI : High Performance Java RMI over FM. Univer-
sity of Illinois at Urbana-Champaign, Online at http://www-
csag.cs.uiuc.edu/achienks491-f97/projectdhprmi.html.

[28] R. Veldema. Jcc, a native Java compiler. Master’s the-
sis, Vrije Universiteit, Amsterdam, August 1998. Online at
http://www.cs.vu.ulfalbauoss/.

[29] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In The 19th Annual Int.
Symposium on Computer Architecture, pages 256-266, Gold
Coast, Australia, May 1992.

[30] J. Waldo. Remote procedure calls and Java Remote Method
Invocation. IEEE Concurrency, pages 5-7, July-September
1998.

[31] D.A. Wallach, WC. Hsieh, K.L. Johnson, M.F. Kaashoek,
and W.E. Weihl. Optimistic Active Messages: A Mechanism
for Scheduling Communication with Computation. In Proc.
5th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ‘95), pages 217-226, Santa
Barbara, CA, July 1995.

[32] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. HilEnger, S. Graham, D. Gay,
P. Colella, and A. A&en. Titanium: a high-performance
java dialect. In ACM 1998 workshop on Java for High-
performance network computing, February 1998. Online at
http://www.cs.ucsb.edulconferencesljava98/.

[33] W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous
Computing. Concurrency: Practice and Experience, pages
1213-1224, November 1997.

182

