
A Machine Learning Approach to Automatic
Production of Compiler Heuristics

Antoine Monsifrot, François Bodin, and René Quiniou

IRISA-University of Rennes France
{amonsifr,bodin,quiniou}@irisa.fr

Abstract. Achieving high performance on modern processors heavily
relies on the compiler optimizations to exploit the microprocessor archi-
tecture. The efficiency of optimization directly depends on the compiler
heuristics. These heuristics must be target-specific and each new proces-
sor generation requires heuristics reengineering.
In this paper, we address the automatic generation of optimization
heuristics for a target processor by machine learning. We evaluate the
potential of this method on an always legal and simple transformation:
loop unrolling. Though simple to implement, this transformation may
have strong effects on program execution (good or bad). However decid-
ing to perform the transformation or not is difficult since many inter-
acting parameters must be taken into account. So we propose a machine
learning approach.
We try to answer the following questions: is it possible to devise a
learning process that captures the relevant parameters involved in loop
unrolling performance? Does the Machine Learning Based Heuristics
achieve better performance than existing ones?

Keywords: decision tree, boosting, compiler heuristics, loop unrolling.

1 Introduction

Achieving high performance on modern processors heavily relies on the abil-
ity of the compiler to exploit the underlying architecture. Numerous program
transformations have been implemented in order to produce efficient programs
that exploit the potential of the processor architecture. These transformations
interact in a complex way. As a consequence, an optimizing compiler relies on
internal heuristics to choose an optimization and whether or not to apply it. De-
signing these heuristics is generally difficult. The heuristics must be specific to
each implementation of the instruction set architecture. They are also dependent
on changes made to the compiler.

In this paper, we address the problem of automatically generating such
heuristics by a machine learning approach. To our knowledge this is the
first study of machine learning to build these heuristics. The usual approach
consists in running a set of benchmarks to setup heuristics parameters. Very few

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 41–50, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



42 A. Monsifrot, F. Bodin, and R. Quiniou

papers have specifically addressed the issue of building such heuristics. Never-
theless approximate heuristics have been proposed [8,11] for unroll and jam a
transformation that is like unrolling (our example) but that behaves differently.

Our study aims to simplify compiler construction while better exploiting
optimizations. To evaluate the potential of this approach we have chosen a simple
transformation: loop unrolling [6]. Loop unrolling is always legal and is easy to
implement, but because it has many side effects, it is difficult to devise a decision
rule that will be correct in most situations.

In this novel study we try to answer the following questions: is it possible to
learn a decision rule that selects the parameters involved in loop unrolling effi-
ciency? Does the Machine Learning Based Heuristics (denoted MLBH) achieve
better performance than existing ones? Does the learning process really take into
account the target architecture?

To answer the first question we build on previous studies [9] that defined an
abstract representation of loops in order to capture the parameters influencing
performance. To answer the second question we compare the performance of our
Machine Learning Based Heuristics and the GNU Fortran compiler [3] on a set
of applications. To answer the last question we have used two target machines,
an UltraSPARC machine [12] and an IA-64 machine [7], and used on each the
MLBH computed on the other.

The paper is organized as follows. Section 2 gives an overview of the loop
unrolling transformation. Section 3 shows how machine learning techniques can
be used to automatically build loop unrolling heuristics. Section 4 illustrates an
implementation of the technique based on the OC1 decision tree software [10].

2 Loop Unrolling as a Case

The performance of superscalar processors relies on a very high frequency1 and
on the parallel execution of multiple instructions (this is also called Instruction
Level Parallelism –ILP). To achieve this, the internal architecture of superscalar
microprocessors is based on the following features:
Memory hierarchy: the main memory access time is typically hundreds of
times greater than the CPU cycle time. To limit the slowdown due to memory
accesses, a set of intermediate levels are added between the CPU unit and the
main memory; the level the closest to the CPU is the fastest, but also the small-
est. The data or instructions are loaded by blocks (sets of contiguous bytes in
memory) from one memory level of the hierarchy to the next level to exploit
the following fact: when a program accesses some memory element, the next
contiguous one is usually also accessed in the very near future. In a classical
configuration there are 2 levels, L1 and L2 of cache memories as shown on the
figure 1. The penalty to load data from main memory tends to be equivalent to
executing 1000 processor cycles. If the data is already in L2, it is one order of
magnitude less. If the data is already in L1, the access can be done in only a few
CPU cycles.
1 typically 2 gigahertz corresponding to a processor cycle time of 0.5 nanosecond



A Machine Learning Approach 43

Memory
Main L2

Cache Cache
L1 CPU

x1000

x100 x10 x1

Fig. 1. Memory hierarchy

Multiple Pipelined Functional Units: the processor has multiple functional
units that can run in parallel to execute several instructions per cycle (typically
an integer operation can be executed in parallel with a memory access and a
floating point computation). Furthermore these functional units are pipelined.
This divides the operation in a sequence of steps that can be performed in
parallel. Scheduling instructions in the functional units is performed in an out-
of-order or in-order mode. Contrary to the in-order, in the out-of-order mode
instructions are not always executed in the order specified by the program. When
a processor runs at maximum speed, each pipelined functional unit executes one
instruction per cycle. This requires that all operands and branch addresses are
available at the beginning of the cycle. Otherwise, functional units must wait
during some delays. The processor performance depends on these waiting delays.

The efficiency of the memory hierarchy and ILP are directly related to the
structure and behavior of the code. Many program transformations reduce the
number of waiting delays in program execution.

Loop unrolling [6] is a simple program transformation where the loop body
is replicated many times. It may be applied at source code level to benefit from
all compiler optimizations. It improves the exploitation of ILP: increasing the
size of the body augments the number of instructions eligible to out-of-order
scheduling. Loop unrolling also reduces loop management overhead but it has
also some beneficial side effects from later compiler steps such as common sub-
expression elimination. However it also has many negative side effects that can
cancel the benefits of the transformation:

– the instruction cache behavior may be degraded (if the loop body becomes
too big to fit in the cache),

– the register allocation phase may generate spill code (additional load and
store instructions),

– it may prevent other optimization techniques.

As a consequence, it is difficult to fully exploit loop unrolling. Compilers are
usually very conservative. Their heuristics are generally based on the loop body
size: under a specific threshold, if there is no control flow statement, the loop is
unrolled. This traditional approach under-exploits loop unrolling [5] and must
be adapted when changes are made to the compiler or to the target architecture.

The usual approach to build loop unrolling heuristics for a given target com-
puter consists in running a set of benchmarks to setup the heuristics parameters.
This approach is intrinsically limited because in most optimizations such as loop
unrolling, too many parameters are involved. Microarchitecture characteristics



44 A. Monsifrot, F. Bodin, and R. Quiniou

(for instance the size of instruction cache, ...) as well as the other optimizations
(for instance instruction scheduling, ...) that follow loop unrolling during the
compilation process should be considered in the decision procedure. The main
parameters, but not all (for instance number instruction cache misses), which
influence loop unrolling efficiency directly depend on the loop body statements.
This is because loop unrolling mainly impacts code generation and instruction
scheduling. As a consequence, it is realistic to base the unrolling decision on the
properties of the loop code while ignoring its execution context.

3 Machine Learning for Building Heuristics

Machine learning techniques offer an automatic, flexible and adaptive framework
for dealing with the many parameters involved in deciding the effectiveness of
program optimizations. Classically a decision rule is learnt from feature vectors
describing positive and negative applications of the transformation. However,
it is possible to use this framework only if the parameters can be abstracted
statically from the loop code and if their number remains limited. Reducing the
number of parameters involved in the process is important as the performance
of machine learning techniques is poor when the number of dimensions of the
learning space is high [10]. Furthermore learning from complex spaces requires
more data.

To summarize the approach, the steps involved in using a machine learning
technique for building heuristics for program transformation are:

1. finding a loop abstraction that captures the “performance” features involved
in an optimization, in order to build the learning set,

2. choosing an automatic learning process to compute a rule in order to decide
whether loop unrolling should be applied,

3. setting up the result of the learning process as heuristics for the compiler.

In the remainder of this section, we present the representation used for abstract-
ing loop properties. The next section shows how to sort the loop into winning
and loosing classes according to unrolling. Finally, the learning process based on
learning decision trees is overviewed.

3.1 Loop Abstraction

The loop abstraction must capture the main loop characteristics that influence
the execution efficiency on a modern processor. They are represented by integer
features which are relevant static loop properties according to unrolling. We
have selected 5 classes of integer features:

Memory access: number of memory accesses, number of array element reuses
from one iteration to another.

Arithmetic operations count: number of additions, multiplications or divi-
sions excepting those in array index computations.

Size of the loop body: number of statements in the loop.



A Machine Learning Approach 45

Control statements in the loop: number of if statements, goto, etc. in the
loop body.

Number of iterations: if it can be computed at compile time.

In order to reduce the learning complexity, only a subset of these features are
used for a given compiler and target machine. The chosen subset was determined
experimentally by cross validation (see Section 4). The quality of the predictions
achieved by an artificial neural network based on 20 indices was equivalent to
the predictive quality of the 6 chosen features.

Figure 2 gives the features that were selected and an example of loop ab-
straction.

do i=2,100
a(i) = a(i)+a(i-1)*a(i+1)

enddo

Number of statements 1
Number of arithmetic operations 2
Minimum number of iterations 99
Number of array accesses 4
Number of array element reuses 3
Number of if statements 0

Fig. 2. Example of features for a loop.

3.2 Unrolling Beneficial Loops

A learning example refers to a loop in a particular context (represented by
the loop features). To determine if unrolling is beneficial, each loop is executed
twice. Then, the execution times of the original loop and of the unrolled loop
are compared. Four cases can be considered:

not significant: the loop execution time is too small and therefore the timing
is not significant. The loop is discarded from the learning set.

equal: the execution times of the original and of the unrolled loop are close. A
threshold is used to take into account the timer inaccuracy. Thus, the loop
performance is considered as invariant by unrolling if the benefit is less than
10%.

improved: the speedup is above 10%. The loop is considered as being benefi-
cial by unrolling.

degraded: there is a speed-down. The loop is considered as a degraded loop by
unrolling.

The loop set is then partitioned into equivalence classes (denoted loop classes
in the remainder). Two loops are in the same loop class if their respective ab-
stractions are equal.

The next step is to decide if a loop class is to be considered as a positive or
a negative example. Note that there can be beneficial and degraded loops in the
same class as non exhaustive descriptions are used to represent the loops. This
is a natural situation as the loop execution or compilation context may greatly
influence its execution time, for instance due to instruction cache memory effects.
The following criterion has been used to decide whether a class will represent a
positive or a negative example:



46 A. Monsifrot, F. Bodin, and R. Quiniou

1. In a particular class, a loop whose performance degrades by less than 5% is
counted once, a loop that degrades performance by 10% is counted twice. A
loop that degrades performance more than 20% is counted three times.

2. if the number of unrolling beneficial loops is greater than the number of
degraded loops (using the weights above), then the class represents a positive
example, else the class represents a negative example.

3.3 A Learning Method Based on Decision Trees and Boosting

We have chosen to represent unrolling decision rules as decision trees. Decision
trees can be learnt efficiently from feature based vectors. Each node of the de-
cision tree represents a test checking the value(s) of one (or several) feature(s)
which are easy to read by an expert. This is not the case for statistical meth-
ods like Nearest Neighbor or Artificial Neural Network for instance, which have
comparable or slightly better performance.

We used the OC1 [10] software. OC1 is a classification tool that induces
oblique decision trees. Oblique decision trees produce polygonal partitionings
of the feature space. OC1 recursively splits a set of objects in a hyperspace by
finding optimal hyperplanes until every object in a subspace belongs to the same
class.

n

ny

y

x

y

y n

BA

6x+y > 60 ?

3x−2y > 6 ?

B

−x+2y > 8 ?

A

A

B

B

A

Fig. 3. The left side of the figure shows an oblique decision tree that uses two attributes.
The right side shows the partitioning that this tree creates in the attribute space.

A decision tree example is shown in Figure 3, together with its 2-D related
space. Each node of the tree tests a linear combination of some indices (equiva-
lent to an hyperplane) and each leaf of the tree corresponds to a class. The main
advantages of OC1 is that it finds smaller decision trees than classical tree learn-
ing methods. The major drawback is that they are less readable than classical
ones.

The classification of a new loop is equivalent to finding a leaf loop class.
Once induced, a decision tree can be used as a classification process. An object
represented by its feature vector is classified by following the branches of the
tree indicated by node tests until a leaf is reached.

To improve the accuracy obtained with OC1 we have used boosting [13].
Boosting is a general method for improving the accuracy of any given algorithm.



A Machine Learning Approach 47

Boosting consists in learning a set of classifiers for more and more difficult prob-
lems: the weights of examples that are misclassified by the classifier learnt at
step n are augmented (by a factor proportional to the global error) and at step
n + 1 a new classifier is learnt on this weighted examples. Finally, the global
classification is obtained by a weighted vote of the individual classifier according
to their proper accuracy. In our case 9 trees were computed.

4 Experiments

The learning set used in the experiments is

Number of loops 1036
Discarded loops 177
Unrolling beneficial loops 233
Unrolling invariant loops 505
Unrolling degraded loops 121
Loop classes 572
Positive examples 139
Negative examples 433

Table 1. IA-64 learning set.
made of loops extracted from programs in
Fortran 77. Most of them were chosen in
available benchmarks [4,1]. We have studied
two types of programs: real applications (the
majority comes from SPEC [4]) and compu-
tational kernels. Table 1 presents some char-
acteristics of a loop set (cf section 3.2).

The accuracy of the learning method was
assessed by a 10-fold cross-validation. We
have experiment with pruning. We have ob-
tained smaller trees but the resulting quality was degraded. The results without
pruning are presented in Table 2. Two factors can explain the fact that the
overall accuracy cannot be better than 85%:
1. since unrolling beneficial and degraded loops can appear in the same class

(cf section 3.2) a significant proportion of examples may be noisy,
2. the classification of positive examples is far worse than the classification of

negative ones. Maybe the learning set does not contain enough beneficial
loops.

To go beyond cross validation another set of experiments has been performed
on two target machines, an UltraSPARC and an IA-64. They aim at showing
the technique does catch the most significant loops of the programs. The g77 [3]
compiler was used. With this compiler, loop unrolling can be globally turned on
and off. To assess our method we have implemented loop unrolling at the source

Table 2. Cross validation accuracy

UltraSPARC IA-64
normal boosting normal boosting

Accuracy of overall
example classification

79.4% 85.2% 82.6% 85.2%

Accuracy of positive
example classification

62.4% 61.7% 73.9% 69.6%

Accuracy of negative
example classification

85.1% 92.0% 86.3% 92.3%



48 A. Monsifrot, F. Bodin, and R. Quiniou

code level using TSF [2]. This is not the most efficient scheme because in some
cases this inhibits some of the compiler optimizations (contrary to unrolling
performed by the compiler itself). We have performed experiments to check
whether the MLB heuristics are at least as good as compiler heuristics and
whether the specificities of a target architecture can be taken into account. A
set of benchmark programs were selected in the learning set and for each one we
have:

1. run the code compiled by g77 with -O3 option,
2. run the code compiled with -O3 -funroll options : the compiler uses its own

unrolling strategy,
3. unroll the loops according to the result of the MLB heuristics and run the

compiled code with -O3 option. The heuristics was learned for the target
machine from learning set where the test program was removed.

4. unroll the loops according to the result of the MLB heuristics learnt for the
other target machine and run the compiled code with -O3 option.

Fig. 4. IA-64 : -O3 is the reference execution time.

The performance results are given in Figure 4 and Figure 5 respectively for
the IA-64 and UltraSPARC targets.

The average execution time of the optimized programs for the IA-64 is 93.8%
of the reference execution time (no unrolling) using the MLB heuristics and
96.8% using the g77 unrolling strategy. On the UltraSPARC we have respectively
96% and 98.7% showing that our unrolling strategy performs better. Indeed,



A Machine Learning Approach 49

Fig. 5. UltraSPARC : -O3 is the reference execution time.

gaining a few percent on average execution time with one transformation is
significant because each transformation is not often beneficial. For example, only
22% of the loops are beneficial by unrolling on IA-64 and 17% on UltraSPARC.

In the last experiment we exchanged the decision trees learnt for the two
target machines. On the UltraSPARC, the speedup is degraded from 96% to
97.9% and on the IA-64 it is degraded from 93.8% to 96.8%. This shows that
the heuristics are effectively tuned to a target architecture.

5 Conclusion

Compilers implement a lot of optimization algorithms for improving perfor-
mance. The choice of using a particular sequence of optimizations and their
parameters is done through a set of heuristics hard coded in the compiler.

At each major compiler revision, but also at new implementations of the
target Instruction Set Architecture, a new set of heuristics must be reengineered.

In this paper, we have presented a new method for addressing such reengi-
neering in the case of loop unrolling. Our method is based on a learning process
which adapts to new target architectures or new compiler features. Using an
abstract loop representation we showed that decision trees that provide target
specific heuristics for loop unrolling can be learnt.

While our study is limited to the simple case of loop unrolling it opens
a new direction for the design of compiler heuristics. Even for loop unrolling,
there are still many issues to consider to go beyond this first result. Are there
better abstractions that can capture loop characteristics? Can hardware counters



50 A. Monsifrot, F. Bodin, and R. Quiniou

(for instance cache miss counters) provide better insight on loop unrolling? How
large should the learning set be? Can other machine learning techniques be more
efficient than decision trees?

More fundamentally our study raises the question whether it could be pos-
sible or not to quasi automatically reengineer the implementation of a set of
optimization heuristics for new processor target implementations.

Acknowledgments. We would like to gratefully thank I. C. Lerman and L.
Miclet for their insightful advice on machine learning techniques.

References

1. David Bailey. Nas kernel benchmark program, June 1988.
http://www.netlib.org/benchmark/nas.

2. F. Bodin, Y. Mével, and R. Quiniou. A User Level Program Transformation Tool.
In Proceedings of the International Conference on Supercomputing, pages 180–187,
July 1998, Melbourne, Australia.

3. GNU Fortran Compiler. http://gcc.gnu.org/.
4. Standard Performance Evaluation Corporation. http://www.specbench.org/.
5. Jack W.Davidson and Sanjay Jinturkar. Aggressive Loop Unrolling in a Retar-

getable, Optimizing Compiler. In Compiler Construction, volume 1060 of Lecture
Notes in Computer Science, pages 59–73. Springer, April 1996.

6. J. J. Dongarra and A. R. Hinds. Unrolling loops in FORTRAN. Software Practice
and Experience, 9(3):219–226, March 1979.

7. IA-64. http://www.intel.com/design/Itanium/idfisa/index.htm.
8. A. Koseki, H. Komastu, and Y. Fukazawa. A Method for Estimating Optimal

Unrolling Times for Nested Loops. In Proceedings of the International Symposium
on Parallel Architectures, Algorithms and Networks, 1997.

9. A. Monsifrot and F. Bodin. Computer Aided Hand Tuning (CAHT): “Applying
Case-Based Reasoning to Performance Tuning”. In Proceedings of the 15th ACM
International Conference on Supercomputing (ICS-01), pages 196–203. ACM Press,
June 17–21 2001, Sorrento, Italy.

10. Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A System for Induction
of Oblique Decision Trees. Journal of Artificial Intelligence Research, 2:1–32, 1994.

11. Vivek Sarkar. Optimized Unrolling of Nested Loops. In Proceedings of the 14th
ACM International Conference onSupercomputing (ICS-00), pages 153–166. ACM
Press, May 2000.

12. UltraSPARC. http://www.sun.com/processors/UltraSPARC-II/.
13. C. Yu and D.B. Skillicorn. Parallelizing Boosting and Bagging. Technical report,

Queen’s University, Kingston, Ontario, Canada K7L 3N6, February 2001.


	Introduction
	Loop Unrolling as a Case
	Machine Learning for Building Heuristics
	Loop Abstraction
	Unrolling Beneficial Loops
	A Learning Method Based on Decision Trees and Boosting

	Experiments
	Conclusion
	References

