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Abstract. A scheme has been developed that enables a Java program to
be migrated across computers while preserving its execution state, such
as the values of local variables and the dynamic extents of try-and-catch
blocks. This scheme provides the programmer with flexible control of mi-
gration, including transparent migration. It is based on source-code-level
transformation. The translator takes as input code a Java program writ-
ten in a Java language extended with language constructs for migration,
and outputs pure Java source code that uses JavaRMI. The translated
code can run on any Java interpreter and can be compiled by any just-in-
time compiler. We have measured some execution performance for several
application programs, and found that the translated programs are only
about 20% slower than the original programs. Because migration is com-
pletely controlled by using only three language constructs added to the
Java language (go, undock and migratory), the programmer can write
programs to be migrated easily and succinctly. Our system is available
in the public domain.

1 Introduction

Mobile agent systems are a promising infrastructure for distributed systems,
in which communication is based on migration. Migration is called transparent
[7] if a migrated program resumes its execution at a destination site with ex-
actly the same execution state as that before migration began. Compared to
non-transparent migration, transparent migration is more desirable (3,5, 7] for
writing programs to be migrated and understanding the semantics of migra-
tion. The migration transparency of existing mobile systems is, however, not
satisfactory.

— Almost all existing mobile systems [9, 10] based on Java do not preserve the
calling stack.

— Telescript [17,18], an early mobile agent system, provides transparent mi-
gration, but the unit of migration is restricted to only one object (agent) [6]
at a time.



— In the few systems [3, 5, 7, 13] that support transparent migration, the contin-
uation (the complete execution state of the remaining computation) always
migrates to the destination, which incurs considerable performance loss, as
pointed out by Cejtin et al. [2]

We have extended the Java language by adding three constructs for con-
trolling migration. They are based on our mobile calculus [11] and on mobile
languages, such as that developed by Watanabe [16], and allow more flexible
control of migration, including transparent migration. We call this flexible mi-
gration mechanism controllable transparent migration.

With Java, it is difficult to implement a transparent migration mechanism
without degrading portability or efficiency for several reasons.

— Consider the case where the runtime system is extended in order to support
migration. In this case, we can expect that the execution performance of
a migrating program is almost the same as before, and that existing class
files can be used for the extended system without recompilation. In return,
however, migrating programs are not portable because they can only be
executed on a specific interpreter or on the runtime system of a specific just-
in-time compiler. This scheme thus does not fit the philosophy of Java, that
is, “write once, run anywhere”.

— When a migration mechanism is provided as a class library, it offers nearly
the same benefits as when a runtime system is extended. Unfortunately,
there are several obstacles that are difficult to overcome in this approach.
Transparent migration requires transmission of the stack. Dynamic inspec-
tion of the stack by Java bytecode itself is forbidden by the Java security
policy. 1 Therefore, it is difficult to implement transparent migration as a
class library.

— In an approach based on source-code-level translation (e.g., Arachne [3]), a
Java program is transformed in such a way that the translated Java program
can explicitly manage its execution states as Java objects, which enables
transparent migration. The major drawback is a slowdown in execution speed
due to the code fragments inserted to maintain the information for migration.
In a straightforward implementation [3], execution of a transformed program
was about twice as slow as that of the original program.

Our migration scheme is based on a source-code-level translation that offers
the following features:

portability Programs translated using our scheme require only standard Java
and JavaRMI, so a translated program can be run on any Java interpreter
and can be compiled by any just-in-time compiler.

efficiency In our scheme, most of the execution state is saved at the time of mi-
gration by using an exception-handling mechanism. Therefore, the overhead
for ordinary execution is low (about 20% in most cases).

1 A native method can inspect the execution stack at runtime, but the memory layout
of objects in the stack heavily depends on the implementation of the runtime system.



accuracy In migration schemes based on source-to-source transformation, it
is difficult to simulate exception handling (try-and-catch and throw state-
ments) appropriately. In our scheme, the dynamic extents of the try-and-
catch blocks are completely preserved at the time of migration.

Testing of our scheme showed that it can migrate Java programs with a
graphical user interface (like migratory applications [1]) between IBM-PC (Pen-
tium / Windows-NT) and Sun workstation (SPARC / Solaris).

The rest of this paper is organized as follows. In Sect. 2, we describe the
language constructs we use for migration and explain how the programmer’s
intention for migration can be described by using the constructs. In Sect. 3
we briefly overview our migration scheme. In the subsequent three sections, we
describe our program transformation for transparent migration in detail. In Sect.
7 we discuss the difficulties induced by the source-code-level transformation, and
in Sect. 8 we present experimental results showing the execution performance and
growth in code size. In Sect. 9, we present photographs in which Java applications
are migrated. In Sect. 10, we summarize our scheme and compare it with a related
one. We also briefly discuss the need for extending JavaRMI.

2 Java Language Extension

In this section we give a simple example of migration and describe how the
programmer specifies migration in source code. The programmer can describe
flexible migration by using three language primitives (go, undock and migratory)
added to the Java language.

2.1 Starting Migration by Using Go Primitive

Migration takes place by executing a “go” statement. Suppose a method of some
object has the following lines of code:

System.out.println (“bye!");
go ("//ritsuko:2001/JavaGoExecutor");
System.out.println ("nice to meet you!");

The argument of a go statement is the name of a migration server registered in
the JavaRMI registry. The migration server is an object that manages migration.
When the go statement is executed, the execution state and object are trans-
mitted to the destination host, where the object continues executing just after
the go statement. In the above example, "bye!" is displayed on the departure
host, and "nice to meet you!" is displayed on the destination host (ritsuko).

The migration mechanism in our system is transparent. (1) Even in cases
where a go statement appears in a compound statement, such as a for state-
ment, try statement, switch statement, or if statement, the migrated program
resumes executing at the destination host. (2) If callee method foo including a
go statement is invoked by caller method bar, control returns to method bar
on the destination host after the method foo returns. This behavior is quite



different from that of remote evaluation [14], remote procedure call (RPC) and
remote method invocation (RMI). For instance, a migratory Fibonacci method
can be written in our language as follows:

boolean Moved = false;
public migratory int fib( int n ) {
if (n==0) {
if ( !'Moved ) {
go ("//aki:2001/JavaGoExecutor");
Moved = true;

}

return 1;
}
else if (n==1)
return 1;
else
return fib (n-1) + fib (n-2);
}

Method £ib computes a Fibonacci number by recursively invoking itself. During
the computation, fib (and the object executing it) migrates only once (when
n is equal to 0), that is, at the point where the execution stack is the deepest.
Many systems (e.g., those described in Refs. [9] and [10]) that support mobile
computation do not allow the transmission of recursive function invocations. The
programmer must therefore write a method and auxiliary class definitions that
represent the rest of the computation explicitly. (When we wrote a Fibonacci
method in Voyager [10], we had to add extra 35 lines and a class definition
representing the execution state.) The keyword migratory at the head of the
method above is explained in Sect. 2.3.

2.2 Controlling Transparency by Using Undock Primitive

An undock statement serves as a marker that specifies the range of the area to
be migrated in the execution stack. It makes it possible to control migration
transparency. The brackets of the undock statement restrict the effect of a go
statement to the enclosed statements. When the go statement in the undock
statement is executed, the rest after the go statement in the undock statement
resumes executing at the destination host, while the statements after the undock
statement are concurrently executed on the departure host.

undock {
go ("//ritsuko:2001/JavaGoExecutor");
System.out.println ("nice to meet you!");
}
System.out.println (“bye!");

In the above lines of code, only the statements enclosed in the undock brackets
are migrated. Therefore, "bye!" is displayed on the departure host, not on the
destination host. An undock statement has a dynamic extent similar to a try-
and-catch statement. When a go statement is executed in the nested extents



of several undock statements, the migrating part is the inside area of the most
recently executed undock statement. An area to migrate can be specified by an
undock statement in any method defined in any class.

04.d() { ... go(...) ...}
03.¢() { ... 04.d0) ... }
02.b() { ... undock { ... 03.c() ... } ...}
ot.a() { ... 02.b() ... }

Fig. 1. Conceptual diagram of a stack.

Figure 1 depicts the migrating areas in a stack where methods a, b, ¢, and 4
are called in this order. The stack grows upwards according to a method invo-
cation. The 0.m() denotes the invocation of method m of object 0. The portions
underlined show the migrating areas. The stack frame of the o1.a() is not mi-
grated because the execution of the go statement in method d is in the extent of
the undock statement in method b. The stack frames corresponding to the mi-
grating methods are transmitted to the destination host by using the JavaRMI
mechanism. In addition to the stack frames, the receiver objects executing the
migrating methods are also transmitted. Object 02 executes on both the depar-
ture and destination hosts.

2.3 Declaring Method by Using Migratory Primitive

When migration takes place in the extent of a method, the method itself must
be declared as such. This is done using the migratory primitive. That is, the
go statement and the invocation of a migratory method must be written in a
migratory method. If they are put in a non-migratory method, they must be
enclosed within an undock statement.

3 Overview of Our Transparent Migration

To achieve transparent migration, a method being executed must be suspended,
transmitted, and then resumed. In the next three sections we describe our mi-
gration scheme based on source-level transformation. In this section we give a
brief overview.

The unit of our source-to-source translation is a method. A method is trans-
formed in such a way that the translated method can explicitly manage its
execution state as Java objects. The migratory modifier of a method is used to
determine if the method is to be transformed for migration. Migratory declara-
tions make source-level translation easier. The system proposed by Fiinfrocken
[5] is also based on source-to-source translation, but it requires the fixed-point it-
eration of a call-graph to determine the set of methods that should be translated
because it lacks this kind of declaration.



3.1 Saving the Execution State

The execution state of each method consists of the execution point from which
the method resumes and the values of all local variables. A method is transformed
in such a way that (1) all the variable declarations are elevated and moved
to the head of the method and (2) it captures NotifyMigration exceptions.
The current execution point is continuously saved to a newly introduced special
variable during ordinary execution of the method. When migration takes place,
an exception is raised and captured by the method. This causes the method
to store the values of all local variables into a state object. The method then
propagates the exception to the caller. A state object is defined for each method,
and all the state objects created during the state-saving process are connected
as a chain. The details of this state-saving will be described in Sect. 5.

3.2 Transmitting the Execution State

Eventually, the exception is either captured by an undock statement or it reaches
the bottom of the stack. Then, the chained state objects are serialized and trans-
mitted to the destination host by using JavaRMI. The receiver objects executing
the migrating methods are also transmitted.

3.3 Restoring the Execution State

The execution state is recovered from the chain of state objects. A method
is transformed so that (1) it takes the corresponding state object as an extra
parameter and (2) it can resume its execution from any statement in its body, as
will be described in Sect. 4. When a method m was being suspended by calling
another method m' at the time of migration that was caused by calling m/', a
code fragment is inserted so that m' is called before resuming the execution of
m. The value of each local variable is properly restored before executing the
body of the method, as described in Sect. 5. The state of the execution stack
(and the dynamic extents of the try-and-catch statements) is reconstructed at
the destination host by calling the method at the bottom of the stack with
the corresponding state object as the extra argument. This reconstruction is
described in Sect. 6.

4 Resuming a Method

To enable a migrated method to resume execution, a mechanism that enables
execution to jump to any program point is needed. In other words, a way to
resume control is needed.

Migration in the C language by using source-code translation [3] exploits
a simple jump mechanism: goto statements. Java, however, does not have goto
statements. Its break and continue statements permit only escaping from a block
statement, there is no way to jump into a compound statement. Our scheme



implements the jump facility with low overhead by using switch-case statements
and the unfolding technique. This facility is based on transforming a method into
a form in which the method can be resumed from any program point. Doing this
requires two preprocessings.

4.1 Preprocessings

Splitting an Expression with Side-Effects. Resuming execution of a state-
ment needs special care that contains side effects. Consider the following assign-
ment statement (where foo is a migratory method):

y = alx++] + foo(x) + b[x++];

If the method containing this statement is to be resumed immediately after
method foo is invoked, we must know the values of a[x++] + foo(x) before
migration and assigns the sum and b[x++] to variable y after migration. Al-
though these intermediate values do not appear as local variables in the method,
they must be captured and restored after migration. To handle these intermedi-
ate values, a statement including side effects is decomposed into a sequence of
atomic operations. The above statement is decomposed as follows.

tmp3 = a; tmp4d = x++;
tmp5 = tmp3[tmp4];

tmp6 = foo(x);

tmp7 = b; tmp8 = x++;
tmp9 = tmp7 [tmp8] ;

y = tmp5 + tmp6 + tmp9;

New variables (tmp3,...,tmp9) are generated to keep track of the intermediate
values. This transformation guarantees that we can avoid resumption from within
an expression. This does not seem to be the case in Fiinfrocken’s scheme [5].

Elevating Variable Declarations. Next, we identify all the local variables
(including the intermediate variables introduced in the first preprocessing) in
the method, elevate the variable declarations, and move them to the head of the
method. Unlike the C language, Java allows variable declarations to be placed
almost anywhere in a method. Because the statements in a method may be
reordered or duplicated during the subsequent transformations, elevating the
variable declarations avoids the difficulties of code reordering and duplication. If
we duplicated a block of statements including a variable declaration, the resulting
code fragment would contain two declarations for the same variable. Elevating
avoids this. When a variable is declared with its initial value, we elevate only its
declaration and leave the assignment of the initial value at the original program
position.

4.2 Jump Facility

Our scheme enables execution to jump to any top-level statement in the method.
A top-level statement is one that is not enclosed in an other statement, such as



a if statement or a for statement. Note that the goto facility of the C language
can be simulated in Java, but only at the top-level. Consider the following Java
code fragment.

TopLevel: for( ;; ) switch (EntryPoint) {
case 0:

case 1:
case 2:

}

Each case statement can be considered a label used as a destination of a goto
statement. An occurrence of goto n; is encoded as {EntryPoint = n; continue
TopLevel; }. By following this approach, a method in which every statement ap-
pears at the top level can be transformed into a resumable form. Consider the
following method.

void bar() {
foo(); // migratory method invocation
System.out.println("after foo");

}

To resume this method after invoking foo, we make the following transformation
by adding a switch statement, assuming variable EntryPoint is set to 1.

void bar() {
TopLevel: for( ;; ) switch (EntryPoint) {
case 0:
foo(); // migratory method invocation
case 1:

System.out.println("after foo");
return;

}

In our migration scheme, a method does not have to be resumable from every
statement because a method is resumed only immediately after a migratory
method is invoked. The reason for this will be explained in Sect. 6.

4.3 TUnfolding Technique

To enable execution to be resumed in the middle of a compound statement, such
as if statements and for statements, (1) the sub-statements after the resumption
point and (2) the subsequent statements that should be executed until control
reaches the top level are duplicated at the top level. By representing a compound
statement as a while construct, we illustrate the necessary transformation below.
Consider the following code fragment.



while(C1) {
while (C2) {

A;
foo(); // migratory method invocation;
B;
}
}
return;

A and B are arbitrary non-migratory statements, and C1 and C2 are arbitrary non-
migratory expressions. By unfolding the loops, we translate this code fragment
into the following code fragment.

labell:
while(C1) {
while(C2) {

A;
foo(); // migratory method invocation;
B;
}
}
return;
label2:
while(C2) {
A;
foo(); // migratory method invocation;
B;
}
goto labell;
label3:
B;

goto label2;

(This unfolding duplicates the contents of the inner loop at the top level.) The
resumption point is at label3 when method foo is called at the time of migra-
tion. All the labels are at the top level so they can be implemented by top-level
jumps. By jumping to label3, execution is apparently resumed immediately af-
ter foo(). As illustrated above, if we have top-level jumps, a method is resumable
from any point by using unfolding.

The size of a transformed method increases in proportion to O(n?), where n
is the maximum depth of the loops, because the body of a loop with a depth of
n is unfolded n times.

Because labels must be at the top level, a try block cannot bridge several
labels. If a loop appears in a try block, the block is duplicated so that it does not
bridge labels. In our current implementation, to reduce the size of a transformed
method, an optimization is performed such that the bodies of the catch blocks
are shared among the duplicated try-and-catch statements.



5 Saving and Restoring Local Variable Values

Saving and restoring the values of local variables in a method play an important
role in implementing migration. In this section, we first touch upon a related
study in which migration is implemented by source-code translation and then
describe our scheme.

5.1 The Arachne Scheme

In the Arachne scheme [3], migration in the C language is based on source-
code translation. A native stack frame is not used to save the values of local
variables; instead a stack is managed at the user-program level. A special object
representing a stack frame is allocated for every function invocation. Each access
to a local variable is replaced with the corresponding field access to the special
object. A stack is transmitted to a remote site by transmitting these special
objects. Unfortunately, applying the Arachne migration scheme to Java causes
a considerable performance loss, as discussed in Sect. 8.

5.2 Our Scheme

Our scheme for saving the values of local variables is as follows. The body of each
migratory method is enclosed by a try statement to capture a special exception,
NotifyMigration, that is signaled by the occurrence of migration. When the
method actually captures the exception, the values of all local variables are
stored into a new state object, and the exception is raised again. This procedure
repeats until the exception reaches the bottom of the stack or is captured by an
undock statement.

For each method, a class for the state object is defined. The instance variables
of the class record (1) the values of all the local variables, including EntryPoint,
(2) a reference to the receiver object of the method (i.e., the value of this), and
(3) the state object of the sub-method invoked by this method on resumption.
Every state class inherits a common base class, so that state objects can consti-
tute a chain.

When restoring the values of local variables, a state object containing the
values is applied to the method as an extra argument. The values of the local
variables are set to those stored in the object at the head of the method. For
ordinary method invocation, the null value is passed to the extra argument.

Putting saving and restoring together, the transformation of a method looks
like the following.



void foo() { void foo(State_X_foo State) {

int x = 0; int x;
. the body of a method ... if ( State == null )
} x = 0;
else
x = State.x;
= try {
. the body of a method ...
} catch (NotifyMigration e) {
State = new State_X_foo(this);
State.x = x;
e.Append(State) ;
throw e;
}
}

In the code on the righthand side, State X foo is the name of a state object.
A state object is defined for each method and contains all the local variables of
that method. Exception e maintains the chain of state objects. A state object
is appended to the chain by executing e.Append(State). The chain of state
objects is transmitted to a destination site by using the JavaRMI mechanism.
At the destination, the execution state is reconstructed based on the chain of
state objects, and execution resumes there.

6 Reconstructing Stack of Method Invocations

A method is resumed by using a combination of the techniques described in the
previous two sections. Resuming a call stack of method invocations, however, re-
quires a different technique because the dynamic extents of try-and-catch blocks
spanning method invocations must be reconstructed. If these dynamic extents
are not preserved, the semantics of throwing an exception is violated. The call
stack of method invocations is reconstructed by calling each method in the stack
with its own state object as the extra argument in the order that the methods
were invoked before migration. Suppose method m' was called by method m,
and migration takes place. We need to insert a code fragment that executes the
rest of m' at the resumption point in method m. When method m is called with
its state object, m resumes m' and after returning from m/', the rest of m is ex-
ecuted. To implement such a behavior, method bar from Sect. 4.2 is translated
as follows.

void bar(State_X_bar State) {
TopLevel: for( ;; ) switch (EntryPoint) {
case 0:
EntryPoint = 1;
foo (null); // migratory method invocation
case 1:
if ( State !'= null ) {
foo ((State_X_foo)State.Child);
State = null;



}
System.out.println("after foo");
return;

}

State X _bar and State X foo are the names of the state classes defined for
methods bar and foo, respectively. Suppose that a migration takes place when
method foo is being called. On restart, a state object is passed to the corre-
sponding method bar (the state object is referred to by variable State in the
above code fragment). The state object shows that the value of EntryPoint has
been set to 1. Therefore, control is transferred to case 1. Then, method foo is
invoked with State.Child, where State.Child refers to the state object of the
callee of this method, namely the state object of method foo.

7 Limitations due to Source-Level Translation

There are limitations in the current implementation of our migration scheme.
Most of the limitations are essentially due to source-level translation. There-
fore, similar limitations apply to other migration schemes based on source-level
translation.

There are three areas in a program from which a go statement and a migra-
tory method cannot be called, meaning that migration cannot take place.

— in a class initializer (a static initializer)
— in an instance initializer, and
— in a constructor

It is difficult to resume in a class or instance initializer because it is difficult for
a user program to reconstruct the effects of executing these initializers. They are
invoked by the runtime system when a class is loaded or an object is created. A
constructor is also invoked by the runtime system, so it cannot be resumed. To
allow invoking a migratory method from these areas, we must simulate the effects
of these initializers and a constructor by combining other language constructs.

Another limitation is that locking cannot be preserved on migration. If a lock
has been acquired by a synchronized statement or a synchronized method, it is
released at the time of migration by the exception notifying migration. Although
the locked state of an object is correctly recovered after migration, the state of the
threads that were waiting on the migrating object cannot be preserved because
the exception used in our migration scheme releases the object lock. The locked
state is thus temporarily lost on migration.

8 Performance

To evaluate the overheads imposed by our translation scheme, we carried out
benchmark testing by executing several Java application programs. The execu-
tion performance of programs transformed by our scheme was compared with



elapsed time(ms) byte code size(bytes)
program original|transformed| growth |original|transformed|growth
fib(25) 290 821 +183% | 1274 3563 2.80
gsort(200000)| 7691 9794 +27.3% | 2765 5035 1.82
nqueen(11) 17816 20580 +15.5% | 1647 2387 1.45
Richards 4777 4783 +0.125%| 10868 25482 2.34
DeltaBlue 25881 28047 +8.37% | 28257 50983 1.80

(JDK 1.1.7a, AMD-k6 200MHz)

Table 1. Execution performance and growth in byte code size of programs transformed
by our scheme.

that of the original programs. Migration does not take place during the execution
of the benchmark programs. The results are shown in Table 1. The overheads
with the Fibonacci method is rather high because the body of Fibonacci is very
small. Most of the overhead is due to extra control transfers induced by the
unfolding. When the body of a method is very small, the overhead of code in-
sertion is tend to be high. For the quick sort and N-queen applications, the
elapsed times were approximately 20% higher than those of the original appli-
cations. Richards is a medium-scale benchmark program simulating the task
dispatcher in an operating system. DeltaBlue [4] is a medium-scale constraint
solver benchmark program (about 1000 lines in the case of Java). Java versions of
Richards and DeltaBlue are available with the source code from Sun Microsys-
tems Laboratories [15]. (Richards has seven variants. We used the one called
“richards_gibbons”.)

The growth in code size due to program transformation is also shown in
Table 1. The growth rate was less than twice except for the Fibonacci method
and Richards, but even in these cases it was less than 3 times. In general, the
code size grows in proportion to the square of the depth of the loops.

elapsed time(ms)
original quicksort 7691
Arachne-style quicksort 16300
cost of field selection 5825
cost of state object allocation 2784

(JDK 1.1.7a, AMD-k6 200MHz)

Table 2. Performance of Arachne scheme.

For comparison, we applied the Arachne scheme to Java and measured the
execution performance. As shown in Table 2, the direct adoption of the Arachne
scheme to Java causes a considerable performance loss. The elapsed time for
executing a method transformed by using the Arachne scheme was about twice



that of the original method. The overheads can be roughly divided into two
parts. The first and major overhead is the cost of field selection. The second is
the cost of allocating state objects at the head of the method.

Fig. 2. Applications migrating from one computer to another.

9 Sample Mobile Applications

The two photographs in Fig. 2 show three applications migrating between two
computers. The applications are the graph layout program included in JDK
as a demo application, the tower of Hanoi, and quick sorting. The latter two
applications are written using conventional recursive functions. We used two
hosts, and the applications migrated from one to the other at different times.
Each application had a window (an instance of java.awt.Frame class). Because a
window is serializable, it can be transmitted to a remote host by using JavaRMI.
When a visible window is transmitted to a remote host by using JavaRMI,
the window still remains at the departure host and the moved window is not
mapped on the display of the destination host automatically. Therefore, when
an application migrates, the window remaining at the departure host must be
explicitly deleted, and the window at the destination host must be explicitly
mapped. This behavior is simply implemented by using go and undock. The
code fragment that deletes the window at the departure host is as follows.

undock {

. the body of an application ...
}
dispose();

When an application migrates, the control at the departure host exits the un-
dock statement shown above. The code fragment that maps the window at the
destination host is as follows.

go (destination);
show() ;



If migration succeeds, show() is executed at the destination.

In the left picture of Fig. 2, all the applications are running on the host whose
monitor is shown on the left. In the right picture, Hanoi and quick sorting have
migrated to the right host.

10 Conclusion

We have developed language constructs for describing controllable transparent
migration and its portable and efficient implementation based on Java source-
code-level transformation. The translated code can run on any Java interpreter
and be compiled by any just-in-time compiler. Nevertheless, it usually runs only
about 20% slower than the original code. The transformation algorithm (1) trans-
lates the method into a form that makes it restartable from any of its statements,
(2) inserts code for saving and restoring the values of local variables, and (3)
inserts code for reconstructing the calling stack and the dynamic extents of the
try-and-catch statements. The translator is written in Standard ML and is avail-
able in the public domain [12].

Transference of several threads at a time is not supported in our current
migration scheme, but we believe that it can be added by simply extending the
scheme.

Although our scheme and Fiinfrocken’s [5] were developed independently,
both are based on Java source-code translation and use exception handling to
transmit the execution stack. An important difference between them is in the way
that method execution is resumed. In Fiinfrocken’s scheme, a so-called artificial
program counter is used to skip the code fragments that have been already exe-
cuted. An additional code fragment that checks whether the current statement
should be skipped is inserted for each statement. (Successive statements can
be grouped if they do not include migratory method invocations.) Our scheme
does not need such checking, but in some cases, a compound statement needs
to be unfolded. In saving a state, Fiinfrocken’s scheme inserts additional code
that records the values of local variables into the state object for each migratory
method invocation. In contrast, additional code is inserted for each method in our
scheme because all variable declarations are moved to the head of the method.
Fiinfrocken’s scheme performs fixed-point iteration of a call-graph to find the
set of migratory methods. Our scheme does not need such an iteration because
a migratory method is declared as such. The difference in performance cannot
be directly compared because Fiinfrocken did not report execution performance.
He did report the growth in code size due to source-code transformation. The
growth factor was about 3.65 to 4.7 times compared to the original programs.
In our scheme, the growth factor is about 1.45 to 2.8 times.

From our experience in writing mobile applications with graphical user inter-
faces, we feel that the JavaRMI mechanism needs to be extended for transmitting
graphical user interfaces. When a visible window is transmitted to a remote host
by using JavaRMI, the window remains at the departure host and the moved
window is not mapped on the display of the destination host automatically.



Therefore, when an application migrates, the window remaining at the depar-
ture host is explicitly deleted, and the window at the destination host is explicitly
mapped. The applications we wrote had only one window; if applications with
several windows were written, this code insertion would be cumbersome. There-
fore, we need a mechanism that specified methods are automatically invoked
before and after migration, analogous to that of the :before and :after methods
in the common lisp object system (CLOS) [8]. Such a mechanism would be useful
for any resource that needs initialization and finalization, not for only graphical
user interfaces.
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