
Protecting Applications with Transient Authentication

Abstract

How does a machine know who is using it? Current sys-
tems authenticate their users infrequently, and assume the
user’s identity does not change. Such persistent authentica-
tion is inappropriate for mobile and ubiquitous systems, where
associations between people and devices are fluid and unpre-
dictable. We solve this problem with Transient Authentica-
tion, in which a small hardware token continuously authen-
ticates the user’s presence over a short-range, wireless link.
We present the four principles underlying Transient Authenti-
cation, and describe two techniques for securing applications.
Applications can be protected transparently by encrypting in-
memory state when the user departs and decrypting this state
when the user returns. This technique is effective, requiring
just under 10 seconds to protect and restore an entire machine,
but indiscriminate. Instead, applications can utilize an API
for Transient Authentication, protecting only sensitive state.
We describe our ports of three applications—PGP, SSH, and
Mozilla—to this API. Mozilla, the most complicated applica-
tion we have ported, suffers less than 4% overhead in page
loads in the worst case, and in typical use can be protected in
less than 250 milliseconds.

1 Introduction

How does a device know that the right person is using
it? Unfortunately, authentication between people and
their devices is both infrequent and persistent. Should
a device fall into the wrong hands, the imposter has
the full rights of the legitimate user while authentication
holds.

Authentication requires that a user supply some proof
of identity—via password, smartcard, or biometric—to
a device. Unfortunately, it is infeasible to ask users to
provide authentication for each request made of a de-
vice. Imagine a system that requires the user to man-
ually compute a message authentication code [21] for
each command. The authenticity of each request can
be checked, but the system becomes unusable. Instead,
users authenticate infrequently to devices. User authen-
tication is assumed to hold until it is explicitly revoked,
though some systems further limit its duration to hours
or days. Regardless, in this model authentication is per-
sistent.

Persistent authentication creates tension between se-
curity and usability. To maximize security, a device must
constantly reauthenticate its user. To be usable, authen-
tication must be long-lived.

We resolve this tension with a new model, called
Transient Authentication. In this model, a user wears
a small token, such as the IBM Linux watch [18],
equipped with a short-range wireless link and modest
computational resources. This token is able to authen-
ticate constantly on the user’s behalf. It also acts as a
proximity cue to applications and services; if the token
does not respond to an authentication request, the device
can take steps to secure itself.

At first glance, Transient Authentication merely
seems to shift the problem of authentication to the to-
ken. However, mobile and ubiquitous devices are not
physically bound to any particular user; either they are
carried or they are part of the surrounding infrastructure.
As long as the token can be unobtrusively worn, it af-
fords a greater degree of physical security.

Transient Authentication has been applied to crypto-
graphic file systems [6] and could be extended to pro-
tect swap space [23]. These provide a good first line
of defense, protecting persistent storage from physical
possession attacks. Unfortunately, they do not protect
applications. An application that reads data from a cryp-
tographic file system—or receives data from a secure
network connection [1, 29]—holds that data in memory
without protection. This paper extends Transient Au-
thentication to address this vulnerability.

We first describe the trust and threat model we con-
sider, and enumerate the four principles underlying
Transient Authentication. We then present two mech-
anisms for protecting in-memory application state.

The first, application-transparent protection, pro-
vides protection within the kernel. When the user de-
parts, all user processes are suspended and in-memory
pages encrypted. When the user returns, pages are de-
crypted and processes restarted. Protection and recovery
processes each take at most ten seconds on our hard-
ware, and applications need not be modified to benefit
from this service.

Application-transparent protection is effective but in-
discriminate. There are processes that can safely con-
tinue in the user’s absence, and a few processes may be

1

able to selectively identify and protect sensitive state.
Our second mechanism, application-aware protection,
supports such applications. We provide an API for ap-
plications to use Transient Authentication services di-
rectly. We have modified three applications—PGP, SSH,
and Mozilla—to make use of this API. In exchange for
such modifications, these applications can be protected
and restored in well under half a second, and suffer no
noticeable degradation of run-time performance.

2 Trust and Threat Model

Our focus is to defend against attacks involving phys-
ical possession of a device or proximity to it. Possession
enables a wide range of exploits. The easiest attack is to
use authentication credentials that are cached by the op-
erating system or individual applications. Even without
cached credentials, console access admits a variety of
well-known attacks; some of these result in root access.
A determined attacker may even inspect the memory of
a running machine using operating system interfaces or
hardware probing.

Transient Authentication must also defend against
observation, modification, or insertion of messages sent
between mobile devices and the token. Simple attacks
include eavesdropping in the hopes of obtaining sensi-
tive information. A more sophisticated attacker might
record a session between the token and laptop, and later
steal a misplaced laptop in the hopes of decrypting prior
traffic. We defeat these attacks through the use of well-
known, secure protocols [10, 21].

Transient Authentication’s security depends on the
limited range of the token’s radio. Repeaters or arbi-
trarily powerful transmitters and receivers could be used
to extend this range. This is sometimes called a worm-
hole attack [13]. The rapid attenuation of high frequency
radio signals makes attacks using powerful transmitters
difficult in practice. A better solution would use tim-
ing information to detect the distance of the token from
the device. This technique has been proposed by Brands
and Chaum [3] and explored in the Wormhole detection
project [13], though neither has built a practical imple-
mentation.

Transient Authentication does not defend against a
trusted but malicious user who leaks sensitive data. It
also does not consider network-based exploits to gain
access to a machine, such as buffer overflow attacks [7].
Finally, we do not protect against denial of service at-
tacks that jam the spectrum used by the laptop-token
channel.

3 Transient Authentication Principles

Transient Authentication is governed by a set of four
guiding principles. First, users must hold the sole means
to access sensitive resources or invoke trusted operations
on the device. Second, the system must impose no ad-
ditional usability or performance burdens. Third, the
mechanisms to secure and restore sensitive data do not
need to be faster than people using them. Fourth, users
must give explicit consent to actions performed on their
behalf. This section expands on each of these principles.

3.1 Tie Capabilities to Users

The ability to perform sensitive operations must ulti-
mately reside with the user rather than her devices. For
example, the keys that decrypt private data must reside
on the user’s token, and not on some other device.

At the same time, it is unlikely that the token—a
small, embedded device—can perform large computa-
tions such as bulk decryption. Furthermore, requiring
the token to perform cryptographic operations in the crit-
ical path of common actions will lead to unacceptable
latency. In such cases, it may be necessary to cache
capabilities on a device for performance. Most often,
cached capabilities are obtained through a cryptographic
operation using keys only on the token. The decrypted
capabilities must be destroyed when the user (and her to-
ken) leave, and the master capability cannot be exposed
beyond the token.

One could instead imagine a simple token that re-
sponded to authentication challenges. This gives evi-
dence of the user’s presence but does not supply a cryp-
tographic capability. An operating system could use this
evidence to govern access to resources, data, and ser-
vices. Unfortunately, this model is insufficient. If the
device is capable of acting without the token, then an
attacker with physical possession can potentially force
it to do so. As a simple example, consider memory ac-
cess control. The operating system can be forced to pro-
vide the contents of physical memory through direct OS
interfaces such as Linux’s /dev/mem and Windows’
\Device\PhysicalMemory. An encrypted mem-
ory store, with the keys stored only on the token, is not
subject to the same attack.

3.2 Do No Harm

Investing capabilities with users increases the secu-
rity of the system. However, increases in security can-
not impose additional burdens. When faced with incon-
venience, however small, users are quick to disable or
work around security mechanisms. Both performance
and usability must remain unaffected.

2

Users already accept infrequent tasks required for se-
curity. For instance, passwords are used occasionally,
usually on the order of once a day. More frequent re-
quests for passwords are perceived as burdensome; a
transparent authentication system can impose no usabil-
ity constraints beyond those of current systems.

Transient Authentication must also preserve perfor-
mance, despite the additional computation increased se-
curity requires. As long as this computation is impercep-
tible to the user, it is an acceptable burden. For example,
the Secure Socket Layer (SSL) [11] protocol requires
processing time for encryption and authentication. How-
ever, this cost is masked by network latency.

3.3 Secure and Restore on People Time

Cached capabilities—and the data they protect—can
only remain while the token is present; when the token is
out of range, sensitive items must be protected. This pro-
cess must happen before an attacker gains access to the
machine. One might think that this must happen quickly.
However, since people are slow, the limit is on the order
of seconds, not milliseconds.

Rather than simply erasing sensitive information, one
might prefer to encrypt and retain it. This additional
work can save time on restoration: when the user re-
turns, one can obtain the proper key from the token
and decrypt the data in place, restoring the machine to
pre-departure state. Since the restoration process begins
when the user re-enters radio range, it can complete be-
fore the user resumes work.

3.4 Ensure Explicit Consent

Tokens and devices must interact securely, and with
the user’s knowledge. In a wireless environment, it is
particularly dangerous to carry a token that could pro-
vide capabilities to unknown devices autonomously. A
“tailgating” attacker could force another user’s token to
provide capabilities, nullifying the security of the sys-
tem. Instead, the user must authorize individual requests
from devices or create trust agreements between individ-
ual devices and the token.

Theoretically, users could confirm every capabil-
ity requested by the device. However, usability is
paramount, so the granularity of authorization must be
much larger. Instead of an action-by-action basis, user
consent is given periodically on a device-by-device ba-
sis.

To ensure explicit consent, our model provides for the
binding of tokens to devices. Binding is a many-to-many
relationship; One might interact with any number of de-
vices, and any number of users might share a device.

Use PIN

Bind to Token

Authentication/
Session Keys

Poll Token

Secure Laptop

Token Returns

This figure shows the process for authenticating and in-
teracting with the token. Once an unlocked token is
bound to a device, it negotiates session keys and can de-
tect the departure of the token.

Figure 1. Token Authentication System

Binding requires the user’s assent but can be long-lived,
limiting the usability burden. The binding process re-
quires mutual authentication between device and token.

Unfortunately it is possible for a user to lose a token.
Token loss is a serious threat, as tokens hold authenticat-
ing material; anyone holding a token can act as that user.
To guard against this, users must periodically authenti-
cate to the token. This authentication can be persistent,
on the order of many days. Nominally, any authenticat-
ing material in the token is encrypted by a user-supplied
password. When the authentication period expires, the
token flushes any decrypted material, and will no longer
be able to authenticate on the user’s behalf. Placing au-
thentication material in PIN-protected, tamper-resistant
hardware [28] further strengthens the token in the event
of loss or theft. The Transient Authentication process,
illustrating all of these principles, is shown in Figure 1.

4 Application-Transparent Protection

Applications store sensitive information, such as
credit card numbers and passwords, in their virtual ad-
dress space. Even with an encrypted file system [6] and
swap space [23], the in-memory portions of an appli-
cations address space vulnerable to attack. The memory

3

bus or chips may be probed by a knowledgeable attacker,
or OS interfaces can be exploited to examine raw mem-
ory contents.

This section describes a technique, called
application-transparent protection, for protecting
in-memory process state. The main benefit of this
technique is that it protects processes without modifica-
tion. The application designer does not need to identify
which data structures contain secret data and users do
not have to designate which processes to protect.

4.1 Design

Applying the first stated goal of Transient Authen-
tication requires that the capability of reading memory
be tied to the user. One approach would be to require
each load and store to use encryption, using keys only
available on the token. The performance of the ma-
chine would suffer greatly, clearly violating the princi-
ple of “do no harm”. An alternative would be to pro-
tect the machine by flushing the contents of memory
into the swap space and zeroing the memory whenever
the user departs. This scheme would make use of swap
space encryption, combined with keys available only on
the token. On return, the paged-out memory would be
read back from the disk into the memory pages. Unfor-
tunately, both protecting and maintaining the machine
would require a significant amount of overhead in disk
operations, leaving the machine vulnerable longer and
burdening the user. This would violate the principle of
“securing and restoring on people time”.

Instead, the system must encrypt the virtual memory
of processes in place. Since all the encryption opera-
tions are done in memory, this mechanism provides both
fast protection and recovery. To avoid corrupting the en-
crypted memory, processes must first be placed in a hi-
bernation state, preventing them from executing while
the user is away. Certain processes can be designated
as unprotected, but most processes will not execute until
the user returns. On recovery, the memory is decrypted
and the process is re-animated; to a returning user it ap-
pears as if nothing has changed.

We have found that the recovery process is fast
enough to remain unnoticed by users. However, if the
ratio of memory size to processing speed were much
greater than on our test machine, it is possible that the
securing or recovery process could be too lengthy. If the
securing process is too slow, the application-aware tech-
niques presented later in the paper will be required. If re-
covery is the bottleneck, it is possible to first recover ap-
plications the user will interact with quickly. Operating
systems already track interactive jobs to provide good
response time in process scheduling [26], enabling in-
formed selection of recovery order. However, we expect

that the current memory/processor balance will continue
for the foreseeable future making this technique unnec-
essary.

4.2 Implementation

We have built a Linux prototype to protect the in-
memory portions of application state. At startup, an
in-kernel module receives a fresh key from the token
to govern the memory of running processes. The mod-
ule receives notifications of the token’s status from an-
other in-kernel module. When it receives notification of
user departure, each processes is set to hibernate, using
techniques borrowed from the Linux Software Suspend
project [5]. First, each process is marked as hibernating
and also as having a pending signal. The only processes
allowed to continue running are essential tasks related
to Transient Authentication and the operating system.
The processes are woken up and the kernel signal dis-
patcher prevents the process from running until the hi-
bernate flag is cleared. This has the property of having
to wait for uninterruptible processes to become inter-
ruptible. However processes normally last in this state
only for a short time. It may be the case that a buggy
process has become stuck in an uninterruptible state; we
are currently unable to handle this situation.

After hibernation is complete, the module walks the
virtual memory space of each process, looking for in-
memory pages. Each in-memory page is encrypted us-
ing the pre-fetched key, and marked as such to prevent
multiple encryptions of shared memory pages. The de-
crypted copy of the key is then thrown away. On user
return, the process is reversed—the kernel fetches a de-
crypted version of key from the token, the memory is
decrypted and all processes are awoken from where they
left off.

Free memory pages present a special difficulty. Ap-
plications may have allocated memory, stored secret in-
formation in that space, and then terminated. This mem-
ory is returned to the OS, and it may still contain rem-
nants of that information. To protect these remnants, the
module must walk the list of free pages and zero the
memory of each page in the list.

An overview of the transparent protection system is
shown in Figure 2. Fetching the encryption key from
the token is handled by a pair of user space daemons,
keyiod on the laptop and keyd on the token, com-
municating via a wireless link. Exposure of the virtual
memory encryption key would nullify its protections, so
each message between keyiod and keyd must be en-
crypted. Further, since the token is used to create fresh
encryption keys, the link must be authenticated as well.

Mutual authentication can be provided with public-
key cryptography [19]. In public-key systems, each

4

Keyiod

Proximity
Module

Generic
Application

Keyd
(Token)

User Space
Kernel Space

VM Crypt
Module

Authentication System

This figure shows the components in the transparent pro-
tection system. When authentication is lost, a kernel
module encrypts the in-memory state of any generic ap-
plication. Authentication and token communication are
handled by a kernel proximity module and a user space
daemon.

Figure 2. Transparent Protection

principal has a pair of keys, one public and one secret.
To be secure, each principal’s public key must be certi-
fied, so that it is known to belong to that principal. Be-
cause laptops and tokens fall under the same adminis-
trative domain, that domain is also responsible for certi-
fying public keys. Keyiod and keyd use the Station-
to-Station protocol [10], which combines public-key au-
thentication and Diffie-Hellman key exchange.

Each message includes a nonce, a number that
uniquely identifies a packet within each session to pre-
vent replay attacks [4]. In addition, the session key is
used to compute a message authentication code, verify-
ing that a received packet was neither sent nor modified
by some malicious third party [21].

The kernel cryptographic module must be informed
when the token is no longer present. To provide this no-
tification, we add a periodic challenge/response between
the laptop and the token. These proximity polling mes-
sages are generated by a second module in the kernel.
We currently set the interval to be one second; this is
long enough to produce no measurable load, but adds
little to the amount of time needed to protect the laptop.

5 Application-Aware Protection

Transparent application support is an effective tech-
nique, but an indiscriminate one. There are several dis-
advantages in protecting every process on the machine,
regardless of the sensitivity of their contents. A pro-
cess that only occasionally conducts sensitive operations
must be completely stopped, regardless of its current
tasks. Certain processes could be statically designated
as non-sensitive, or the process could mark itself as sen-
sitive dynamically. However, if two processes commu-
nicate through shared memory, both must be stopped,
even though only one may be sensitive. Also, some ap-
plications that depend on constant input or network traf-

fic may not survive the hibernation process. This bur-
dens the user, who must either restart those applications
or perform work to restore the previous state.

To combat these shortcomings we provide an inter-
face for an application to manage its own sensitive in-
formation. This allows greater flexibility in handling
loss of authentication and permits the application to con-
tinue to run regardless of authentication state. In order to
provide this capability, we have designed an application
programming interface, or API, hat allows applications
to use Transient Authentication services. Applications
must be restructured to depend on capabilities, such as
keys, held by the token. For performance, these capabil-
ities can be cached, but they must be flushed when the
token leaves.

Some applications and services already manage au-
thentication and access to sensitive resources. Most of
these systems revoke access through either explicit user
logout or expiration of a long-lived session. Some of
these applications and servers may also provide various
levels of service, depending on the specific credentials of
the user. Such applications already manage identity and
privilege, and would benefit from direct use of Transient
Authentication services.

An overview of the system is shown in Figure 3.
Generic applications can take advantage of Transient
Authentication using transparent protection. Modified
applications are compiled with a Transient Authentica-
tion library and communicate with the kernel using a
user-space server. All interactions with the token pass
through the proximity polling module and a user-space
communication daemon. We have implemented parts of
the system in the kernel to make the system fail-safe. If
any part of the system fails, the application should still
receive a notice of authentication loss.

5.1 Protecting Targeted Secrets

Identifying secret data is the most difficult part of
protecting an application. The application designer must
first consider the threat model and user requirements.
For instance: Is all of the user’s data secret? What about
the meta-data? What about data received from the net-
work? For example, the text of a word processor doc-
ument is probably private, the formating of that docu-
ment may or may not be, and the state of local program
variables is probably not. There are no hard rules for de-
termining these classifications and it must be left to the
designer of the application.

Once secrets have been identified, we use two differ-
ent mechanisms to tie capabilities to the token. One is
to encrypt secrets when the user leaves and forget the
locally stored copy of the key. When the user returns,
that key can be retrieved from the token and the secret

5

Keyiod

TA API
Module

Proximity
Module

TA API
Server

Generic
Application

Keyd
(Token)

TA
Application

TA
Library

User Space
Kernel Space

VM Crypt
Module

ZIAfs
Module

Application
Protections

Authentication System

This figure shows the various components used in the
Transient Authentication system. Generic applications
can be protected by the virtual memory encryption sys-
tem and the ZIA file system. Modified applications
are compiled with a Transient Authentication library
and communicate with the kernel through a user-space
server. All communications with the token go through a
proximity polling module and a user-space communica-
tion daemon.

Figure 3. TA Components

decrypted. Another choice is to always store the infor-
mation encrypted, and decrypt it for every short term
use.

Choosing which mechanism to use depends on the
properties of the data, including size and frequency
of use. Accessing secrets must not take a noticeable
amount of time, and protection and restoration must be
done in “human time”. In some cases, both of the mech-
anisms will each conform to the principles of Transient
Authentication, allowing the programmer to pick the
more convenient option.

5.2 Application Programming Interface

Before a user starts an application that employs the
Transient Authentication API, that user must have one or
more master keys for that application installed on their
token. In our implementation, master keys are 128-bit
AES [8] keys. These keys must be installed by an ad-
ministrative authority, and can never be exposed beyond
the token. As we will see, the master key is typically
used as a key-encrypting key, but can sometimes protect
small data items directly. Once a key is installed, the
API is available. It is summarized in Figure 4.

On startup, each protected application registers itself
with the API, providing the its name and the user run-
ning it. It then installs a handler. The handler is called

/ � Register an application with the library � /
int ta application reg (IN char � app name,

IN char � username);

typedef
enum ta change

�
TA LOSS, TA GAIN � ta change t;

typedef
int (� ta auth hdlr t) (IN ta change t change,

IN int flags);

/ � Register a handler for change in
authentication � /

int ta auth change reg (IN int appid,
IN ta auth hdlr t hdlr);

typedef char � ta keyname t ;

/ � Decrypt a buffer on the token with a key � /
int ta decr buf (IN int appid,

IN ta keyname t keyid ,
IN char � inbuf ,
IN size t inlen ,
OUT char ��� outbuf,
OUT size t � outlen);

/ � Encrypt a buffer on the token with a key � /
int ta encr buf (IN int appid,

IN ta keyname t keyid ,
IN char � inbuf ,
IN size t inlen ,
OUT char ��� outbuf,
OUT size t � outlen);

This listing shows the API for Transient Authentication.
Three types of functions are included: registration with
the user-space server, registration of authentication call-
back functions, and buffer decryption using the token
and previously registered key.

Figure 4. Transient Authentication API

when the token fails to respond to a request, revoking
authentication, or when a departed token once again is
in range, reestablishing authentication.

Each master key acts as the capability to perform sen-
sitive actions on behalf of its user and application. Sim-
ple examples of such actions are reading cached pass-
words or credit card numbers. These items are small; it
is feasible to ship encrypted copies of them to the token,
decrypt them, and send them back. This can be done
directly with ta encr buf and ta decr buf. The
application may decrypt and cache such items, but must
clear them when notified of token departure.

6

Some things cannot be handled with direct encryp-
tion and decryption. Passing large data elements directly
to the token for decryption would likely impose too great
of a performance penalty. To protect large elements,
the application must first create a sub-master key. Sub-
master keys cover large objects. Encrypted copies of the
sub-master can be stored at any time, while decrypted
copies can be kept only while authentication holds. Our
idiom for creating sub-master keys is to choose a ran-
dom number as the encrypted key, and have the token
“decrypt” it. This ensures that a secret key is never gen-
erated without the token’s involvement.

On startup, applications do not hold any sensitive
data; they must first either decrypt an item or obtain a
derived key. These decryption requests will fail if the to-
ken is out of range, leaving the application in a safe state.
Once the first item or key is successfully decrypted, the
user is considered authenticated. Thereafter, the run
time system tracks the token’s comings and goings, re-
porting them to registered handler. The next three sec-
tions describe how three user applications were modified
to use this API.

5.3 Pretty Good Privacy (PGP)

Pretty Good Privacy [1], or PGP, uses the RSA asym-
metric encryption algorithm to digitally sign and encrypt
data. Users possess a pair of keys, one public and one
private. Data can be encrypted using the public key and
only someone who knows the private key can decrypt
it. The private key can also be used to sign the message,
and anyone can verify the signature using the public key.
PGP can be used to provide data integrity and privacy to
a great variety of applications, however we will focus on
email.

The most valuable secret held by PGP is the user’s
private key ��� . Commonly, ��� is protected by a user’s
password, � , denoted as �

�
��� � . When using an email

client, such as Pine, the user is prompted for the pass-
word on each signature or decryption operation. In
adding Transient Authentication services to PGP we
have chosen to preserve the original semantics of the
application and minimize modifications. To do this we
have protected � � with a random password, � , en-
crypted by a key on the token, �����	� . This chain of
keys is written as �
���	�

�
� ���� �

� � � . The modifica-
tions made to PGP are summarized in Figure 5. When
a user asks PGP to decrypt or sign a piece of email, the
private key, ��� , is required. PGP reads both � �����

�
� �

and �
�
��� � from the user’s PGP key directory. It sends

a decryption request to the token containing � �����
�
� �

and the token returns � . � is used to decrypt ��� and
is then thrown away. The signing or decryption process
uses � � for as long as the operation takes, and the token
is no longer needed.

Laptop

User Password (P)

Private Key (K_p)

PGP Master KEY (K_PGP)

User Password (P)

Token

PGP Master KEY (K_PGP)

K_PGP

P P

This figure illustrates the modifications made to PGP.
The private key, ��� of the user is protected by a pass-
word, � . � is encrypted by ������� , which is only
known to the token. Each time PGP needs to use � �
it asks the token to decrypt � , which enables the laptop
to decrypt � � .

Figure 5. PGP Modifications

Email encryption and decryption is a short process.
To keep the modifications to PGP as simple as possible,
any loss of authentication while using the private key
causes the process to exit. Any secrets contained in freed
memory can be protected by the zeroing of free pages in
the transparent protection kernel.

A mail program, such as pine, must employ PGP’s
output with care. For instance, if decrypted messages
are displayed to the screen, the mailer must take steps
to obscure that data upon loss of authentication. One
possible mechanism would be to reset the display to the
message index. Another option would be to redisplay
the encrypted form of the message and recover the de-
crypted version when the user returns.

5.4 OpenSSH

The Secure Shell [29] suite of tools provides au-
thenticated and encrypted equivalents for rsh and rcp,
called ssh and scp. Client applications authenticate
servers based on public key cryptography. Servers au-
thenticate users based on passwords or public keys. Data
transmitted during the session is encrypted using a key
exchanged in the authentication stage. We have modi-
fied an open-source secure shell, OpenSSH; a summary
of the modifications is shown in Figure 6.

OpenSSH contains two secrets that need protection,
the private key, ��� , used for authentication, and the ses-
sion key, � , used to encrypt data. The private key is
covered by the same methods as PGP—the password,
� , for � � can be decrypted by the token’s ������� .

7

Token

Laptop

User Password (P)

Private Key (K_p)

SSH Master KEY (K_SSH)

User Password (P)

SSH Master Key (K_SSH)

Session KeK (K_s)

Session KeK (K_s)

Session Keys (S)

K_SSH

P P K_s

K_SSH

K_s

This figure illustrates the modifications made to
OpenSSH. The user’s private authentication key is pro-
tected by a password � , which is encrypted by a key
������� . When the user is not present, the session keys,�

, are encrypted by a session key encrypting key ��� ,
which is encrypted by ������� , as well. When OpenSSH
needs to authenticate, it uses the token to decrypt � , giv-
ing it access to � � . Similarly, when the user returns, the
token is used to decrypt � � , giving access to the session
keys.

Figure 6. OpenSSH Modifications

The authentication phase generates the session key,
� , which is cached. Before the session continues,
OpenSSH must protect the session key. First, OpenSSH
creates a new “encrypted” key, � �����

�
��� � . It then uses

the token to decrypt the encrypted key, yielding �	� . Fi-
nally, OpenSSH uses �
� to create an encrypted version
of the session key, denoted �
�

�
� � , which it caches.

While the user remains present, � remains decrypted
in memory for session encryption and decryption. If a
disconnection notification is received, OpenSSH flushes
both � and � � , but retains � �

�
� � and �
�����

�
� � � .

When the user returns, OpenSSH must decrypt �	� us-
ing the token. It can then decrypt � and continue the
session.

Each use of the session key requires a simple check
that � is still available. This check takes a small
amount of time, slowing data transmission by a negli-
gible amount. If � is encrypted, the transmission of data
blocks, and received data is held in the network buffer—
still encrypted—until the user returns. Any blocked ses-
sions are resumed where they left off. It may be possible
for unencrypted data to get passed between the terminal
and SSH after a disconnection. We are currently work-
ing on methods to prevent this from happening, such as
locking the keyboard first, rejecting all data from the ter-
minal, or returning an error to the pipe.

5.5 Mozilla Web Browser

Web browsers provide secure access to online ac-
counts, e-commerce, and web-based email. Consider a
typical session for accessing a secure web server at a
bank. First, the browser creates a Secure Socket Layer
(SSL) session with the bank’s server. SSL provides ses-
sion encryption to an authenticated server. The user au-
thenticates himself by typing an account number and
password into a web form. The browser often caches
this information to make future logins easier. The server
then sets a cookie on the user’s local machine to authen-
ticate future requests during this session. Note that SSL
can provide for client authentication, but the vast major-
ity of sites use cookies instead. Web pages, such as an
account statement, can now be retrieved from the server
and remain available in the browser’s cache. This exam-
ple identifies several places where secret information re-
sides in the browser’s address space: SSL session keys,
cached passwords, cookies and the cache of the browser.

We have added Transient Authentication to the
Mozilla web browser. Mozilla is a large and com-
plex piece of software, containing more than 250MB
of code and using several different programming lan-
guages. Some effort was made in the original source
code to separate confidential and non-confidential data;
however, this mostly pertained to secret keys themselves
and not to sensitive data such as cookies and the cache.
Mozilla also includes a module, the Secret Decoder Ring
(SDR), that can be used to encrypt and decrypt arbitrary
data. The SDR module depends on a user login to ex-
plicitly provide a decryption key. This provides an ideal
location to add Transient Authentication to the system.
SSL keys are contained in the same module as SDR,
and therefore it uses these internal encryption functions,
rather than the external interface. A diagram of the com-
ponents in the modified browser is shown in Figure 7.

SSL session keys are used frequently, so it would be
inefficient to decrypt them on every use. Instead they
remain decrypted until a token departure; they are then
encrypted in-place. SSL session keys could be flushed
and recreated when the user returns, however to replicate
the current semantics we keep the SSL session open.

Cached passwords are used very infrequently and can
be stored on disk. In this case, it makes sense to have
SDR decrypt the information each time it is used—
Mozilla already has this capability. Cookies are used
more frequently than stored passwords, but less than
SSL keys. Thus, either method could be used. We have
chosen to leave them encrypted and decrypt them us-
ing SDR on each use. The evaluation presented in Sec-
tion 6.4 shows that this overhead is tolerable.

8

Laptop

Mozilla Master Key (K_MOZ)

SDR Password (K_sdr)

SDR Password (K_sdr)

Cookies

Token

Mozilla Master Key (K_MOZ)

SSL Submaster (K_ssl)

SSL Submaster (K_ssl)

Memory
Cache

K_MOZ

K_ssl

Passwords SSL Keys

K_ssl

K_MOZ

K_sdr K_sdr

This figure depicts the modifications made to the
Mozilla web browser. Cookies, passwords and the mem-
ory cache, all depend on Mozilla’s Secret Decoder Ring
for encryption and decryption. The password for the ring
can be accessed using the token. SSL operates in the
same way, and the sub-master key used to encrypt SSL
keys can be obtained using the token.

Figure 7. Modified Mozilla Components

The web cache is split into two parts, an in-memory
cache and an on-disk cache. Mozilla’s policy is to store
data from SSL connections only in memory and never
on disk. All non-SSL data is considered to be previ-
ously exposed on the network and is not protected, al-
though there is nothing that precludes protecting this via
file system encryption. The items in the cache are poten-
tially large in size and frequently accessed. However, the
cache is of limited size and can be encrypted in bulk very
quickly. Thus, each item in the cache retrieved from SSL
connections is SDR-encrypted on user departure and de-
crypted on user return. The password for SDR is erased
when the user leaves and retrieved from the token when
the user returns.

5.6 Application-Aware Limitations

After making the modifications to these applications
we have noted several limitations. First, sensitive data
may no longer be reachable in the application. These
include secrets contained in leaked memory and mem-
ory that has been freed. It is not possible to protect
the former. However, using a pre-loaded library, calls
to realloc, free, and delete can be intercepted
and modified to zero freed memory.

Second, if the application has written secret informa-
tion to the screen in a readable form, the application
itself must directly obscure it; it can overwrite it with
blank pixels or other non-protected information. More

generally, any secrets that have been passed to other
processes may not be protected if they do not employ
the API as well. We are currently looking at adding
application-aware support to windowing systems, win-
dow managers, and interface toolkits.

The third difficulty is the most challenging: identify-
ing the secrets in the application. In the examples, we
have made an effort at identifying data structures con-
taining secret data. However, this is an ongoing process
that improves as we learn more about the structure of
these programs. Since the modifications were not made
by the original author of the applications, the effort is
possibly more error-prone. In particular, if the applica-
tion has made a copy of secret data that was not noticed
during our examination, it will not be protected. We are
currently looking at methods to analyze the flow of se-
crets in the memory space. One alternative may be to
use language support [17].

6 Evaluation

In evaluating Transient Authentication, we set out to an-
swer the following questions:

� What overhead does Transient Authentication im-
pose on the system?

� Can Transient Authentication secure applications
quickly enough to prevent attacks when the user de-
parts?

� Can Transient Authentication recover application
state before a returning user resumes work?

To answer these questions, we subjected our proto-
type to a variety of benchmarks. For these experiments,
the client machine was an IBM ThinkPad X24, with
256 MB of physical memory and a 1.1 GHz Pentium III
CPU. The token was a Compaq iPAQ 3870 with 64MB
of RAM. They were connected by a Bluetooth [16] wire-
less network running in PAN mode. All encryption, ex-
cept the authentication phase, is done using AES [8]
with 128 bit keys. The token is somewhat more pow-
erful and larger than current wearable devices. How-
ever, the rapid advancements in embedded, low-power
devices makes this a realistic token in the near future.

6.1 Transparent Protection

Transparent protection has no effect on system per-
formance while the user is present. To measure the cost
of protection and recovery we allocated 200MB of mem-
ory to a user process, occupying all available physical
memory. The machine was also running a standard set of
user processes, including a window manager and several
shells—a total of 38 user processes not including those
used for Transient Authentication and Bluetooth. We

9

Time, sec Over Normal
Normal (small) 0.02 (0.00) -
With TA (small) 0.11 (0.01) 437%
Normal (large) 20.02 (1.24) -
With TA (large) 20.06 (0.59) 0.21%

Figure 8. PGP Signing and Encrypting

disconnected the token and reconnected it and measured
the time it took to secure and recover the machine. Se-
curing the machine required 632 microseconds to freeze
all the processes, 8.92 seconds to encrypt 215.9MB of
in-memory state, and 6.00 milliseconds to zero 2.25MB
of free pages. On recovery, the system required 7.72
seconds to decrypt the same 215.9MB of state, and 21.2
milliseconds to unfreeze the processes. Thus, the system
can encrypt state at 24MB/s, zero pages at 375 MB/s,
and decrypt state at 28 MB/s. In total the machine can
secure and recover our machine in less that 10 seconds
each.

6.2 PGP

We subjected PGP to 50 trials of signing and encrypt-
ing two files, one 10kB in size and one 10MB. This is
to simulate the two common cases of encrypting small
pieces of email and large messages containing attach-
ments. The mean and standard deviation for each exper-
iment are reported in Figure 8.

Recall that Transient Authentication-enabled PGP
uses the token only for initial authentication. Therefore
the only impact on performance is the additional over-
head of using the token to decrypt the private key pass-
word. Both large and small files only require a small
amount of overhead, although the effects are exagger-
ated for the otherwise fast operations on short files. In
either case, the user is unlikely to notice the difference.

6.3 OpenSSH

The modified OpenSSH uses Transient Authentica-
tion for initial authentication and for protection of the
session key. To measure the impact on a user’s session
we used a script to provide a typical user input to an ssh
session. The script logs into another machine and runs
a series of user commands: pine, opening a mailbox
and a single message, ls of the home directory, running
emacs, a find on a small directory, and logout. Be-
tween each user input there is an additional think time
of two seconds. The cost of acquiring the key to login
accounts for the majority of the overhead in the typi-
cal case. To measure this, we ran a second experiment:
logging into a remote machine 20 times and computed

the average overhead. A third experiment measures the
overhead of checking for a decrypted session key on
each key by using scp to copy a 10 MB file across the
network for 20 trials. The results for each of these ex-
periments are shown in Figure 9.

Time, sec Over Normal (%)
Normal (session) 41.01 (0.09) -
With TA (session) 41.31 (0.15) 0.72%
Normal (login) 0.47 (0.00) -
With TA (login) 0.72 (0.03) 52.9%
Normal (scp) 18.96 (3.88) -
With TA (scp) 19.21 (2.74) 1.31%

Figure 9. SSH Experiments

The results show that typical user sessions are almost
unaffected by use of the token—any overhead is dwarfed
by think-time and the length of the session. The login
micro-benchmark confirms that login accounts for most
of the overhead. Long sessions also mask the additional
login time, shown by the statistically identical times for
modified and unmodified scp.

We also want to know how long it takes to secure
and restore ssh session keys. Each ssh session has
an incoming key and an outgoing key and each are re-
covered separately. We instrumented ten disconnections
and reconnections of the token. The results show a neg-
ligible amount of time needed for protection and 130
milliseconds, with a standard deviation of 30 microsec-
onds, for recovery. Protecting ssh only requires erasing
the session key. Recovering the session key requires two
round-trips to the token to recover the outgoing and in-
coming session keys. An alternate implementation could
recover both session keys simultaneously, but the cost is
already small enough.

6.4 Mozilla

The only overhead to Mozilla’s normal operation is
the use of stored password data and cookies. Each of
these are encrypted and decrypted on each use. Pass-
words are already SDR-encrypted and decrypted by
Mozilla; our version does not add any overhead to this.
To benchmark the cost of cookies, we loaded three popu-
lar pages and measured the total overhead of encryption
and decryption. To put these costs in context, we also
report the fastest load time we observed for each page.
The cookie store was cleared between each trial and the
mean and standard deviation are reported in Figure 10.
For theses pages, the additional overhead of encrypting
and decrypting cookie data is small enough to be masked
by page loading times.

10

Overhead,sec Load Time,sec
CNN 0.010 (.004) 3.1
Ebay 0.035 (.001) 1.7
ESPN 0.134 (.004) 3.8

Figure 10. Mozilla Cookie Overhead

We also measured the amount of time required to pro-
tect and restore Mozilla when the user leaves. To mea-
sure this we connected to two secure sites, a bank and
our own department’s secure web server. We discon-
nected the token and measure the time to safety, then
reconnected the token and measured the recovery time.
The results for each component are shown in Figure 11.
We also report the amount of data in the memory cache,
and the amount of data consumed by SSL keys.

Protect, sec Restore, sec
Memory Cache 0.222 (0.002) 0.222 (0.004)
(518 kB)
SSL Keys 0.003 (0.000) 0.074 (0.006)
(788 bytes)
SDR N/A 0.066 (0.005)
(16 byte key)

Figure 11. Mozilla Protection and Recovery

Recall that the contents of the memory cache and
the SSL keys are encrypted when the user leaves. The
memory cache, stored passwords, and cookies depend
on SDR for encryption support, so SDR’s key must be
flushed on departure and recovered on return. Flushing
the key takes a negligible amount of time. SSL uses
its own key for protecting the SSL keys, and must re-
cover it when the user returns. The total time to secure
and restore Mozilla is less than four tenths of a second.
Compared to the amount of time between a user entering
range and resuming work, this cost will not be visible.

7 Related Work

Several efforts have used proximity-based hardware
tokens to detect the presence of an authorized user.
Landwehr [15] proposes disabling hardware access to
the keyboard and mouse of a machine when the trusted
user is away. A commercial alternative, XyLoc [27], has
a software-based guard on the protected machine that
refuses access when the token is absent. These systems
approximate Transient Authentication, but do not adhere
to its first principle. The capability to act in these sys-
tems does not reside on the token; the token is merely

advisory. Since the computing system is still capable of
carrying out a sensitive operation, it could be forced to
do so. Sensitive operations may be relegated to a secure
coprocessor [14], rendering these physical attacks more
difficult.

Rather than use hardware tokens, one could in-
stead use biometrics. However, biometric authentica-
tion schemes intrude on users in two ways. The first
is the false-negative rate: the chance of rejecting a valid
user [22]. For face recognition, this ranges between 10%
and 40%, depending on the amount of time between
training and using the recognition system. For finger-
prints, the false-negative rate can be as high as 44%, de-
pending on the subject. The second intrusion stems from
physical constraints. For example, a user must touch
a special reader to validate his fingerprint. Such bur-
dens encourage users to disable or work around biomet-
ric protection. A notable exception is iris recognition.
It can have a low false-negative rate, and can be per-
formed unobtrusively [20]. However, doing so requires
three cameras—an expensive and bulky proposition for
a laptop.

For Transient Authentication to succeed, a comput-
ing device must forget sensitive information, typically
through encryption. Thereafter, only the token can pro-
vide the key to recover this information. Such tech-
niques have also been applied to revocable backups [2]
and secure execution of batch jobs [24], and are some-
times referred to as non-monotonic protocols [25]. It can
be difficult to completely erase previously stored values,
whether in memory or on disk [12]. However, given a
small amount of easily erasable media one can solve this
problem for a much larger, more persistent store [9].

ZIA, a cryptographic file system, uses Transient Au-
thentication for file data protection [6]. ZIA imposes
overheads of less than 10% for representative work-
loads, and imposes no new usability burdens. Unfor-
tunately, ZIA does not protect data once an application
has read it. Application data that is paged out can be
protected [23], leaving only in-memory state vulnerable
to attack.

8 Conclusion

Mobile devices are susceptible to loss or theft, leav-
ing the state of running applications vulnerable to data
exposure. Current methods of authentication do not
solve this problem since authentication is both infre-
quent and persistent. As a solution to this problem, we
propose Transient Authentication, which allows a sys-
tem to constantly reaffirm the capability to read sensi-
tive data from memory, while giving the user no reason
to turn protections off.

11

In this paper, we have demonstrated two protection
methods that use Transient Authentication support. One
mechanism is transparent, operating without application
modification. The second is an API that gives greater
flexibility to application designers in dealing with au-
thentication. The evaluation of these two techniques
shows that transparent protection can both secure and re-
cover the entire physical memory of the machine within
10 seconds and that the API can be used to secure a com-
plex application within four tenths of a second.

References

[1] D. Atkins, W. Stallings, and P. Zimmermann. Pgp mes-
sage exchange formats. RFC 1991, August 1996.

[2] D. Boneh and R. J. Lipton. A revocable backup system.
In Proceedings of the 6th USENIX Security Symposium,
pages 91–96, San Jose, CA, July 1996.

[3] S. Brands and D. Chaum. Distance-bounding protocols.
In Proceedings of EUROCRYPT ’93, Lecture Notes in
Computer Science, no. 765, pages 344–359. Springer-
Verlag, 1993.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Transactions on Computer Systems,
8(1):18–36, February 1990.

[5] F. Chabaud. Linux software suspend.
http://sourceforge.net/projects/swsusp.

[6] Reference withheld to preserve anonymity.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
Stackguard: automatic adaptive detection and prevention
of buffer overflow attacks. In Proceedings of the Seventh
USENIX Security Symposium, pages 63–77, San Anto-
nio, TX, January 1998.

[8] J. Daemen and V. Rijmen. AES proposal: Rijndael. Ad-
vanced Encryption Standard Submission, 2nd version,
March 1999.

[9] G. Di Crescenzo, N. Ferguson, R. Impagliazzo,
M. Jakobsson, C. Meinel, and S. Tison. How to forget
a secret. In Proceedings of the 16th Annual Symposium
on Theoretical Aspects in Computer Science, pages 500–
509, Trier, Germany, March 1999.

[10] W. Diffie, P. van Oorschot, and M. Wiener. Design Codes
and Cryptograhpy. Kluwer Academic Publishers, 1992.

[11] A. Freier, P. Karlton, and P. Kocher. The SSL protocol
version 3.0. Internet Draft, March 1996.

[12] P. Gutmann. Secure deletion of data from magnetic and
solid-state memory. In Proceedings of the 6th USENIX
Security Symposium, pages 77–89, San Jose, CA, July
1996.

[13] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole detec-
tion in wireless ad hoc networks. Technical report, Rice
University Department of Computer Science, June 2002.

[14] IBM. IBM client security solutions. White Paper,
November 1999.

[15] C. E. Landwehr. Protecting unattended computers with-
out software. In Proceedings of the 13th Annual Com-
puter Security Applications Conference, pages 274–283,
San Diego, CA, December 1997.

[16] B. A. Miller and C. Bisdikian. Bluetooth Revealed. Pren-
tice Hall, Upper Saddle River, NJ, 2001.

[17] A. C. Myers and B. Liskov. Protecting privacy using
the decentralized label model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
2000.

[18] C. Narayanaswami and M. T. Raghunath. Application
design for a smart watch with a high resolution display.
In Proceedings of the Fourth International Symposium
on Wearable Computers, pages 7–14, Atlanta, GA, Oc-
tober 2000.

[19] R. M. Needham and M. D. Schroeder. Using encryption
for authentication in large networks of computers. Com-
munications of the ACM, 21(12):993–9, December 1978.

[20] M. Negin, T. A. Chemielewski Jr., M. Salganicoff, T. A.
Camus, U. M. Cahn von Seelen, P. L. Venetianer, and
G. G. Zhang. An iris biometric system for public and per-
sonal use. IEEE Computer, 33(2):70–5, February 2000.

[21] National Institute of Standards and Technology. Com-
puter data authentication. FIPS Publication #113, May
1985.

[22] P. J. Phillips, A. Martin, C. L. Wilson, and M. Przybocki.
An introduction to evaluating biometric systems. IEEE
Computer, 33(2):56–63, February 2000.

[23] N. Provos. Encrypting virtual memory. In Proceedings
of the Ninth USENIX Security Symposium, pages 35–44,
Denver, CO, August 2000.

[24] A. D. Rubin and P. Honeyman. Long running jobs in
an authenticated environment. In Proceedings of the 4th
USENIX Security Symposium, pages 19–28, Santa Clara,
CA, October 1993.

[25] A. D. Rubin and P. Honeyman. Nonmonotonic crypto-
graphic protocols. In Proceedings of the Computer Secu-
rity Foundations Workshop, pages 100–116, Franconia,
NH, June 1994.

[26] A. Silberschatz and P. B. Galvin. Operating Systems
Concepts, chapter 5: CPU Scheduling. John Wiley &
Sons, Fifth edition, 1999.

[27] Ensure Technologies. http://www.ensuretech.com/.

[28] B. Yee and J. D. Tygar. Secure coprocessors in elec-
tronic commerce applications. In Proceedings of the
First USENIX Workship of Electronic Commerce, pages
155–70, New York, NY, July 1995.

[29] T. Ylonen. SSH—Secure login connections over the In-
ternet. In Proceedings of the 6th USENIX Security Sym-
posium, pages 37–42, San Jose, CA, July 1996.

12

