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ABSTRACT 

NOMADS is a mobile agent system that supports strong mobility 
(i.e., the ability to capture and transfer the full execution state of 
mobile agents) and safe Java agent execution (i.e., the ability to 
control resources consumed by agents, facilitating guarantees of 
quality of service while protecting against denial of service 
attacks). The NOMADS environment is composed of two parts: 
an agent execution environment called Oasis and a new Java-
compatible Virtual Machine (VM) called Aroma. The 
combination of Oasis and the Aroma VM provides key 
enhancements over today’s Java agent environments. 
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1. INTRODUCTION 
Java is currently the most popular and arguably the most mobility-
minded and security-conscious mainstream language for agent 
development. However, current versions fail to address many of 
the unique challenges posed by agent software. While few if any 
requirements for Java mobility, security, and resource 
management are entirely unique to agent software, typical 
approaches used in non-agent software are usually hard-coded and 
do not allow the degree of on-demand responsiveness, 
configurability, extensibility, and fine-grained control required by 
agent-based systems. 
The security model in Java is rapidly evolving to provide some of 
the increased flexibility and fine-grained control required for 
agents. From the beginning, Java has featured a typed pointerless 
virtual machine instruction set, a bytecode verifier, class loaders, a 
security manager, and the concept of a “sandbox” to prevent 
executable code from accessing “dangerous” methods. Version 
1.1 added an API for user security features such as signing of JAR 
archives. A major feature of the security model in the Java 2 
release is that it is permission-based. Unlike the previous “all or 
nothing” approach, Java applets and applications can be given 
varying amounts of access to system resources based upon 
security policies created by the developer, system or network 
administrator, the end user, or even a Java program. 
Despite these improvements, there is still much work that remains 
to be done. The ultimate goal is to define a set of standard 
underlying Java security policies and mechanisms that will make 
agent mobility as simple and safe as possible for both the agent 
and its host [12]. The mobile agent must be able to deal with 
situations where it has been shipped off to the wrong address, or 
to a place where needed resources are not available, or to what 
turns out to be a hostile environment [18]. Agent hosts may 
become unavailable or compromised at a moment’s notice, and 
the agent may need to immediately migrate to a safe place or 
“die.” Also, there is the very real possibility of unauthorized 

inspection or tampering while the agent is traveling.4 Agent hosts, 
on the other hand, have to deal with a variety of resource 
management issues. 
The NOMADS agent system aims to support strong mobility and 
safe Java agent execution. The NOMADS environment is 
composed of two parts: an agent execution environment called 
Oasis and a new Java compatible Virtual Machine (VM) called 
the Aroma. The combination of Oasis and the Aroma VM 
provides two key enhancements over today’s Java agent 
environments: 
1. The ability to capture and transfer the full execution state of 

mobile agents (strong mobility). This allows agents to be 
moved “anytime” at the demand of the server or the agent 
rather than just at specific pre-determined points. 

2. The ability to control the resources consumed by agents 
thereby facilitating guarantees of quality of service while 
protecting against denial of service attacks (safe execution). 
Adding these resource control capabilities to the access 
control mechanisms already provided by the new Java 2 
security model allows mobile agents to be deployed with 
greater confidence in open environments. 

In the following sections, we describe the requirements for strong 
mobility and safe agent execution in the context of past research 
on these topics. We discuss the specific limitations of previous 
efforts that we are attempting to address in our own work. We 
then describe the Aroma VM followed by a discussion on 
capturing and transferring the agent state and enforcing resource 
controls. Then, we briefly describe the Oasis agent execution 
environment. Finally, we outline issues and directions for future 
work. 

2. NOMADS Requirements 
Until recently, each mobile agent system has defined its own 
approach to agent mobility. Though new proposals such as 
FIPA’s agent mobility standards (http://www.fipa.org) and 
OMG’s Mobile Agent System Interoperability Facility [16] are a 
step forward, some of the required elements of strong and safe 
mobility cannot be implemented without foundational support in 
the Java language standard. 
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Many of the early mobile agent systems recognized the need for 
strong and safe mobility. For example, the short-lived Telescript 
system provided some of the features we are implementing in 
NOMADS [27]. In particular, Telescript provided transparent 
agent migration and resource usage control. Resources used by 
agents were accounted in terms of “clicks,” a unit of charge that 
was then billed to the user or deducted from a user’s account. 
During the same timeframe, other groups also developed other 
agent systems. Systems such as Agent TCL, ARA, and others [6; 
9; 22; 26] were primarily based on the Tcl [20] [21] language and 
interpreter although they ultimately provided support for  a variety 
of languages. AgentTCL and Ara were also able to save the 
execution state of the agent to provide strong mobility. A few 
systems provided varying degrees of resource usage control. 
Today, there are many commercial Java-based mobile agent 
systems currently available such as ObjectSpace Voyager [19], 
Concordia from Mitsubishi Electric ITA Horizon Laboratories 
[17], Jumping Beans from Ad Astra 
(http://www.JumpingBeans.com), and Aglets from IBM [14]. 
While all of these systems provide the ability to transport an agent 
from one server to another across a network connection, none of 
these transport mechanisms are completely transparent; none 
allow full capture of agent execution state. The security measures 
provided in these systems are also not mature enough to enforce 
the level of fine-grained security and resource control we desire. 
This is due in part to the lack of underlying support in Java for 
some of these mechanisms. 

2.1 Strong Mobility 
Strong mobility is vital for situations in which there are long-
running or long-lived agents and, for reasons external to the 
agents, they need to suddenly move or be moved from one host to 
another. In principle, such a transparent mechanism would allow 
the agents to continue running without any loss of their ongoing 
computation and, depending on circumstances, the agents need 
not even be aware of the fact that they have been moved (e.g., in 
forced mobility situations). Such an approach will be useful in 
building distributed systems with complex load balancing 
requirements. The same mechanism could also be used to 
replicate agents without their explicit knowledge. This would 
allow the support system to replicate agents and execute them on 
different hosts for safety, redundancy, performance, or other 
reasons. 
Strong mobility requires that the entire state of the running agent, 
including its execution stack, be saved prior to a move so that it 
can be restored once the agent has moved to its new location. The 
standard term describing this process is checkpointing [23]. Over 
the last few years, the more general concept of orthogonal 
persistence has also been developed by the research community 
[2]. The goal of orthogonal persistence research is to define 
language-independent principles and language-specific 
mechanisms by which persistence can be made available for all 
data, irrespective of type. Ideally, the approach would not require 
any special work by the programmer (e.g., implementation of 
serialization methods in Java, the use of transaction interfaces in 
conjunction with object databases), and there would be no 
distinction made between short-lived and long-lived data. 
One of the powerful features of Java as a programming language 
is that its bytecode format, which is interpreted or compiled on-
the-fly by the Java VM residing on the host platform, enables us 

to save execution state in a machine-independent format. In 
principle, the design of Java allows the execution state to be 
restored on machines of differing architecture [24]. A similar but 
somewhat less general approach was originally implemented in 
General Magic’s Telescript language [27]. While it is possible to 
achieve some measure of transparent persistence by techniques 
such as having a special class loader insert read and write barriers 
into the source code before execution, such an approach poses 
many problems [13]. First, the transformed bytecodes could not 
be reused outside of a particular persistence framework, defeating 
the Java platform goal of code portability. Second, such an 
approach would not be applicable to the core classes, which 
cannot be loaded by this mechanism. Third, the code 
transformations would be exposed to debuggers, performance 
monitoring tools, the reflection system, and so forth, 
compromising the goal of complete transparency. 
Modern mobile agent systems that use standard Java VMs 
typically transfer the instance data of objects from the source 
platform to the destination platform and restart execution of the 
agent on the remote platform. The task of writing mobile agents is 
more complicated when systems do not provide strong mobility. 
Figure 1(a) shows a basic agent written using Aglets that moves 
from one platform to another and displays a message. Figure 1(b) 
shows a significantly simpler agent written using the NOMADS 
system that accomplishes the same task. Note that the complexity 
is not particular to Aglets but to any mobile agent system without 
strong mobility. 
NOMADS is not the only Java agent system providing strong 
mobility. Sumatra [1] and Ara [15] are other mobile agent systems 
that also provide strong mobility. However, both of these systems 

Figure 1(a): Example Aglets-based Mobile Agent 

public class Example extends Aglet {
boolean _theRemote = false;
public void onCreation (Object init) {
addMobilityListener(
new MobilityAdapter() {
public void onArrival (MobilityEvent e) {
_theRemote = true;
}
}
);
}
public void run() {
if (!_theRemote) {
System.out.println (“On Source”);
dispatch(destination);
}
else {
System.out.println (“On Destination”);
}
}
}

Figure 1(b): Example NOMADS-based mobile agent 

public class Example extends Agent
{
public static void main (String[] args)
{
System.out.println (“On source”);
go (destination);
System.out.println (“On destination”);

}
}



have been implemented by modifying Sun’s implementation of 
the Java VM. The disadvantage is that the system can only be 
redistributed to others who also have a source-code license to the 
Java platform. Also, as far as we are aware, both of these systems 
use version 1.0.2 of the Java VM. 
Designing and implementing a new Java compatible VM has both 
advantages and disadvantages. The biggest disadvantages are the 
difficulty of achieving both compatibility and efficient 
performance. Implementers are bound to face a challenge in both 
implementing the complete Sun Java specification and 
maintaining complete compatibility as the specifications evolve. 
However we feel that there are also some advantages in 
implementing a VM from scratch while taking into account 
specific needs of mobile agent systems. In particular, NOMADS 
is able to provide strong mobility even in the presence of multiple 
concurrent threads and to dynamically control resource allocation 
on a fine-grained level. Another major advantage is the ability to 
freely distribute the VM and agent system.1 
Another approach to being able to capture execution state is to use 
a pre-processor that rewrites or instruments the Java bytecode. An 
example of such an approach is [8]. The system requires a pre-
processor that instruments the code by adding state-saving code 
where necessary. During execution time, the system utilizes the 
exception throwing mechanism in Java to capture and save the 
execution state of the process. Restoring the state is accomplished 
by wrapping blocks of code with conditional statements that skip 
over code that has already been evaluated. A limitation of the 
code instrumenting approach is that only the thread requesting 
migration may be migrated transparently. If an agent has multiple 
threads, then the system does require that all threads periodically 
call a function that “polls” whether any of the other threads has 
requested a checkpoint. Therefore, this requires that agents with 
multiple threads structure their code within certain requirements 
to allow for strong mobility, which is a disadvantage. The 
advantage of this approach is the ability to use a standard VM. 

2.2 Safe Execution 
Mechanisms for monitoring and controlling agent use of host 
resources are important for three reasons [18]. First, it is essential 
that access to critical host resources such as the hard disk be 
denied to unauthorized agents. Second, the use of resources to 
which access has been granted must be kept within reasonable 
bounds, making it easier to provide a specific quality-of-service 
for each agent. Denial-of-service conditions resulting from a 
poorly-programmed or malicious agent’s overuse of critical 
resources are impossible to detect and interrupt without 
monitoring and control mechanisms for individual agents. Third, 
tracking of resource usage enables accounting and billing 
mechanisms that hosts may use to calculate charges for resident 
agents. 
Resource protection mechanisms are available at several levels to 
software developers, including those provided by the networking 
environment, hardware, the operating system, and the features of a 
high-level language. In the case of agent technology, however, a 
persuasive case can be made for the advantages of an approach 
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based on language-based protection primitives [11]. While such 
an approach limits the developer to a restricted set of languages 
that can be supported, the increased precision in specification of 
rights, the relative efficiency of rights amplification, the ability to 
analyze programs statically and not just at runtime, and the 
portability of the language-based approach argue strongly in its 
favor. 2 An additional advantage in the context of our work with 
DARPA[5], NASA [4], and the NTA is that most of the language-
based mechanisms we describe below can be incorporated 
transparently into any Java-based agent framework with little or 
no code modification required. 
Given its status as the most popular and most rapidly evolving 
general-purpose safe language for Internet and agent applications, 
Java is the best first target for a language-based resource 
management approach for the agent community. However, there is 
still much to do to make it suitable for the industrial-strength 
agent applications of the future. Although the Java 2 security 
model is a step in the right direction, we anticipate that agent 
developers will require ever-greater levels of flexibility and host 
systems will need ever-greater protection against vulnerabilities 
that could be exploited by malicious agents. It is likely that some 
of these features will ultimately require changes to the Java 
architecture, such as the inclusion of an explicit Resource 
Manager to complement the current Class Loader and Security 
Manager [7]. For example, while new iterations of the Java 
security model will increasingly support configurable directory 
access by supplying the equivalent of access control lists to the 
Java Security Manager, there is no way to impose limits on how 
much disk storage or how many I/O operations or how many 
simultaneous print jobs may be performed by agents. Nor are 
there ways of controlling thread and process priorities, memory 
allocation, or even basic functions such as the number of windows 
that can be opened. A unique opportunity of our research is to 
explore techniques for dynamic negotiation of resource 
constraints between agents and the host. In NOMADS, we are 
taking a two-pronged approach: one prong relying on features 
provided by standard Java mechanisms and security policies, and 
the other relying on special features of our own VM and agent 
framework implementations. In the next sections we describe 
some of the details of our approach. 

3. AROMA VIRTUAL MACHINE 
The Aroma VM is a Java compatible VM designed and 
implemented with the specific requirements of strong mobility 
and safe execution. The primary goals for Aroma were to support: 
1. Capturing the execution state of a single Java thread, thread 

group, or all threads (complete process) in the VM 
2. Capturing the execution state at fine levels of granularity 

(ideally, between any two Java instructions) 
3. Capturing the execution state as transparently to the Java 

code executing in the VM as possible 
4. Cross-platform compatibility for the execution state 

information 
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5. Flexibility in how much information is captured (in 
particular whether to include the definitions of Java classes) 

6. Easy Portability to a variety of platforms (at least Win32 and 
various UNIX/Linux platforms) 

7. Flexible usage in different contexts and inside different 
applications 

8. Enforcement of fine-grained and dynamically changing limits 
of access to resources such as the CPU, memory, disk, 
network, and GUI 

The current implementation of the Aroma VM falls short of some 
of the goals listed above. The limitations are that the VM can only 
capture the execution state of all threads and not the execution 
state of a subset of the threads present in the VM. Also, only the 
disk and network resource limits have been implemented. These 
limitations will be overcome in future versions of the Aroma VM. 
The Aroma VM is implemented in C++ and consists of two parts: 
the VM library and a native code library. The VM library can be 
linked to other application programs. Currently, two programs use 
the VM library – avm (a simple wrapper program that is similar to 
the java executable) and oasis (the agent execution environment). 
The VM library consists of approximately 40,000 lines of C++ 
code. The native code library is dynamically loaded by the VM 
library and implements the native methods in the Java API. Both 
the VM and the native code libraries have been ported to Win32, 
Solaris (on SPARC) and Linux (on x86) platforms. In general, the 
Aroma VM should be portable to any platform that supports 
ANSI C++, POSIX or Win32 threads, and POSIX style calls for 
file and socket I/O. We plan to port the Aroma VM to WinCE-
based platforms as well. 
Users use a standard Java compiler (such as the one provided with 
Sun’s Java Development Kit) to compile Java source code to run 
on Aroma. The Aroma VM loads and executes files in the 
standard Java class file format. 

3.1 Capturing Execution State 
Aroma is capable of capturing the execution state of all threads 
running inside the VM. This state capture may be initiated by 
either a thread running inside the VM or by an external thread. 
The former is useful when the agent requests an operation that 
needs the execution state to be captured. The latter is useful when 
the system wants the execution state to be captured (for example, 
to implement forced mobility). 
For several reasons, we chose to map each Java thread to a 
separate native operating system thread. The other alternatives 
were to develop our own threads package (which would be 
platform specific and difficult to port) or use an existing threads 
package (which may or may not be available on different 
platforms). Also, mapping to native threads allows the VM to take 
advantage of the presence of multiple CPUs. Therefore, if a VM 
has two Java threads running (JT1 and JT2), then there are two 
native threads (NT1 and NT2) that correspond to JT1 and JT2. If 
the execution state of the VM is captured at this point and 
restored later (possibly on a new host), then two new native 
threads will be created (NT3 and NT4) to correspond to the two 
Java threads JT1 and JT2. 
However, mapping Java threads to native threads complicates the 
mechanism of capturing the execution state. This is because when 
one Java thread (or some external thread) requests a state capture, 

the other concurrently running threads may be in many different 
states. For example, other Java threads could be blocked trying to 
enter a monitor, waiting on a condition variable, sleeping, 
suspended, or executing native code. We wanted as few 
restrictions as possible on when a thread’s state may be captured 
so that we can support capturing execution state at fine levels of 
granularity. Therefore, the implementation of monitors was 
carefully designed to accommodate state capture. For example, if 
a Java thread is blocked trying to enter a monitor, then there is a 
corresponding native thread that is also blocked on some IPC 
primitive. If at this point the execution state is captured and 
restored later (possibly on a different system and of a different 
architecture), a new native thread must resume in the same 
blocked state that the original native thread was in when the state 
was captured. To support this capability, the monitors were 
designed in such a way that native threads blocked in monitors 
could be interrupted and stopped and new native threads could 
take their "place” in the monitor at a later point in time. As an 
example, consider a native thread NT1 on host H1 that represents a 
Java thread JT1. NT1 could be blocked because JT1 was trying to 
enter a monitor. The VM will allow another thread to capture the 
execution state at such a time and when the state is restored later, 
a new native thread NT2 (on possibly a new host H2) will be 
created to represent JT1. Furthermore, NT2 will continue to be 
blocked in the monitor in the same state as NT1. 
Another requirement is the need to support multiple platforms. In 
particular, to support capturing the execution state on one 
platform (such as Win32) and restoring the state on a different 
platform (such as Solaris SPARC). The Java bytecode format 
ensures that the definitions of the classes are platform independent 
so transferring the code is not an issue. For transferring the 
execution state, the Aroma VM assumes that the word size is 
always 32-bits and that the floating-point representations are the 
same. With these assumptions, the only other major issue is 
transferring state between little-endian and big-endian systems. 
The Aroma VM writes a parameter as part of the state information 
indicating whether the source platform was big- or little-endian. 
The destination platform is responsible for byte-swapping values 
in the execution state if necessary. 
One limitation is that if any of the Java threads are executing 
native code (for example, by invoking a native method), then the 
VM will wait for the threads to finish their native code before 
initiating the state capture. This limitation is necessary because 
the VM does not have access to the native code execution stack. 

3.2 Enforcing Resource Limits 
The native code library is responsible for implementing the 
enforcement of resource limits. The current version is capable of 
enforcing disk and network limits. The limits may be grouped into 
three categories: rate limits, quantity limits, and space limits. Rate 
limits allow the read and write rates of any program to be limited. 
For example, the disk read rate could be limited to 100 KB/s. 
Similarly, the network write rate could be limited to 50 KB/s. The 
rate limits ensure that a program does not exceed the specified 
rate for any input and output operations. For example, if a 
network write rate of 50 KB/s was in effect and a thread tried to 
write at a higher rate, the thread would be slowed down until it 
does not exceed the write rate limit. 
Quantity limits allow the total bytes read or written to be limited. 
For example, the disk write quantity could be limited to 3 MB. 



Similarly, the network read quantity could be limited to 1 MB. If 
a program tried to read or write more data than allowed by the 
limit, the thread performing the operation would get an 
IOException. 
The last category of limits is the space limit, which applies only to 
disk space. Again, if a program tries to use more space than 
allowed by the disk space limit, then the VM would throw an 
IOException. Note that the disk space limit is different from the 
disk write quantity limit. If a program has written 10 MB of data, 
it need not be the case that the program has used up 10 MB of 
disk space because the program could have written over the same 
file(s) or erased some of the files that it had written. 
To enforce the quantity limits, the native code library maintains four 
counters for the number of bytes read and written to the network and 
the disk. For every read or write operation, the library checks 
whether performing the operation would allow the program to 
exceed a limit. If so, the library returns an exception to the program. 
Otherwise, the appropriate counter is incremented and the operation 
is allowed to proceed. To enforce the disk space limit, the library 
performs a similar computation except that seek operations and file 
deletions are taken into consideration. Again, if an operation would 
allow the program to exceed the disk space limit, the library returns 
an exception and does not complete the operation. 
To enforce the rate limits, the library maintains four additional 
counters for the number of bytes read and written to the network 
and the disk and four time variables, which record the time when 
the first operation was performed. Before an operation is allowed, 
the library divides the number of bytes by the elapsed time to 
check if the program is above the rate limit. If so, the library puts 
the thread to sleep until such time that the program is within the 
rate limit. Then, the library computes how many bytes may be 
read or written by the program in a 100ms interval. If the 
operation requested by the program is less than what is allowed in 
a 100ms interval, the library simply completes the operation and 
returns (after updating the counter). Otherwise, the library divides 
the operation into sub-operations and performs them in each 
interval. After an operation is performed, the library sleeps until 
the interval finishes. For example, if a program requested a write 
of 10 KB and the write rate limit was 5 KB/s, then the number of 
bytes that the program is allowed to write in a 100ms interval is 

512 bytes. Therefore, the library would loop 20 times, each time 
writing 512 bytes and then sleeping for the remainder of the 
100ms interval. One final point to make is that if a rate limit is 
changed then the counter and the timer is reset. This reset is 
necessary to make sure that the rate limit is an instantaneous limit 
as opposed to an average limit. 
We are currently evaluating two different implementation schemes 
for the CPU resource control. The first approach is to have each 
native thread (that represents a Java thread) check the percentage 
of CPU used by that thread (by querying the underlying operating 
system) and then sleep if necessary. The check would be 
performed periodically after executing a certain number of Java 
bytecode instructions. The second approach is to have a separate 
monitoring thread that checks the CPU utilization of all the Java 
threads and then pauses the Java threads as necessary. In this case, 
the monitoring thread will be assigned high-priority and will wake 
up periodically to perform its monitoring. 
Although we have not started implementing the memory resource 
control, we expect that it will be fairly straightforward since the 
VM handles all object instantiations. The VM can maintain a 
counter variable that keeps track of memory usage and throw an 
exception (or take other appropriate action) when memory usage 
is exceeded. 

4. OASIS EXECUTION ENVIRONMENT 
Oasis is an agent execution environment that embeds the Aroma 
VM. It is divided into two independent programs: a front-end 
interaction and administration program and a back-end execution 
environment. Figure 2 shows the major components of Oasis. The 
Oasis Console program may be used to interact with agents 
running within the execution environment. The console program 
is also used to perform administrative tasks such as creating 
accounts, establishing resource limits, and so forth. The Oasis 
process is the execution environment for agents. Among other 
things, it contains instances of the Aroma VM for running agents, 
a Policy Manager, and a Dispatcher. Each agent executes in a 
separate instance of the Aroma VM. However, all the instances of 
the Aroma VM are inside the same Oasis process, which results in 
all of the VM code being shared.  

Table 1 : Parameters Controlled by the Policy Manager 

Category Attributes 

Agent Transfer Maximum agent state size 

 Maximum agent state transfer duration 

Execution Execution Duration 

 Cloning Limit 

Communication Maximum incoming message queue size 

 Maximum incoming  message size 

Access Control Standard Java Security Manager Attributes 

Resource Usage Disk Data Transfer Rates / Sizes 

 Network Data Transfer Rates / Sizes 

 Memory Size 

 Maximum Thread Count 

 Maximum CPU Utilization (Percentage) 

Oasis Process

Policy
Manager

Dispatcher

AromaVM
(Running Agent A)

AromaVM
(Running Agent B)

Oasis Console
(Administration and Interaction Program)

Oasis Execution Environment

Agent Transfer
Handler

Agent Messaging
Handler

Figure 2: Oasis Agent Execution Environment 



Agents can communicate by sending and receiving messages. 
Message transfer is implemented by a simple API that provides a 
sendMsg() and a receiveMsg() functions. Agents are addressed via 
Universally Unique Identifiers (UUIDs). The messages 
themselves can contain any serializable Java object. Oasis 
maintains message queues for each agent. The message queues are 
maintained outside the Aroma VM instances so that it is easy to 
handle situations where a message arrives while a VM’s state is 
being captured. 
The Policy Manager is a major component of the execution 
environment. It is responsible for establishing security policies for 
all agents. Policies may be established on an individual account 
basis or on a group basis. The policy for each entity (individual or 
group) consists of four categories that address agent transfer, 
execution control, access control, and resource usage. Table 1 
shows the specific attributes that may be specified for each of the 
four categories. 
Upon startup, the Policy Manager reads a policies file. The 
policies file specifies resource limits that need to be applied to 
accounts. Figure 3 shows the format for the policies file.  

As Figure 2 shows, a user or administrator may interact with the 
Oasis environment through a separate administration process that 
allows the user to examine and change various resource limits for an 
individual agent or a group of agents. The policies file specifies 
the policies for resource limits applied to an agent when the agent is 
received by Oasis. Each agent running within Oasis may have most 
of these parameters adjusted dynamically by the Policy Manager; in 
the case of intelligent agents, we anticipate that this may involve a 
process of negotiation. Some parameters such as 
MaxAgentStateSize and MaxAgentTransferTime are not 
changeable, since they do not apply once an agent is already 
executing. 
Controlling so many parameters to set up a secure and foolproof 
environment requires a significant level of expertise on behalf of 
an administrator. We feel that in the near future, most 
administrators or maintainers of agent-systems are not likely to be 

security experts but rather experts in some domain of application. 
To simplify the task of setting up secure environments, we are 
also working on an Agent Management Tool (AMT) that in 
addition to offering a convenient interface will also contain 
suggested security policies for typical scenarios [5]. Domain 
knowledge in the AMT can help agent designers determine what 
kinds of policies are appropriate for a given situation. 
The AMT prototypes we have been building also provide a 
graphical interface for the monitoring, visualization, and dynamic 
control of resource usage at runtime so that certain agents in an 
application can have greater access to resources than others. The 
goal of the runtime interface is threefold: to guarantee some 
specified level of agent access or quality of service to agents 
providing critical functions; to minimize the possibility of 
unauthorized access or reduce the impact of denial-of-service 
attacks; and to provide the possibility of detailed resource 
accounting. In such a configuration, the AMT would 
communicate to the Policy Manager inside Oasis to gather 
information about executing agents and to control their limits. 
The other component within Oasis worth mentioning is the 
dispatcher, which is responsible for executing an agent once its 
state information has been received. The dispatcher also enforces 
some of the execution policies such as the maximum length of 
time for an agent to live on the platform (MaxTimeToLive). In 
the future, the dispatcher will also support the notion of agents 
and agent groups executing within separate, isolated processes. 
One important design choice was to run each agent within a 
separate instance of the Aroma VM. Such a design has both 
advantages and disadvantages. The advantage is that resource 
accounting and control is simplified. The disadvantage is 
increased overhead. We are working on the possibility of sharing 
class definitions between multiple Aroma VMs which should 
reduce the overhead significantly. 
The policy manager is not responsible for enforcing any of the 
security policies. Instead, the actual enforcement is carried out by 
the agent transfer protocol handler for authentication and agent 

Figure 3: Format for policies File 
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PolicyName=<policyname>

MaxAgentStateSize=<bytes>

MaxAgentTransferTime=<milliseconds>
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MaxIncomingMessageQueueSize=<bytes>

MaxIncomingMessageSize=<bytes>

JavaSecurityPolicyFile=<file path>
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DiskReadQuantityLimit=<bytes>

DiskWriteQuantityLimit=<bytes>

DiskSpaceLimit=<bytes>
NetworkReadRateLimit=<bytes/millisecond>

NetworkWriteRateLimit=<bytes/millisecond>

NetworkReadQuantityLimit=<bytes>

NetworkWriteQuantityLimit=<bytes>
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MaxThreads=<count; must be 1 or more> Figure 4: Security enforcement in Oasis 
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transfer control, the dispatcher for execution control, the Java 
security manager for access control, the Aroma execution 
environment for messaging control, and the Aroma VM for the 
resource usage control. Figure 4 shows the different components 
that enforce the various parts of the security policy established by 
the policy manager. 
Security enforcement usually results in one of two consequences 
for agents. When an agent tries to perform an operation that 
would result in the agent exceeding a quantity limit (e.g., disk 
space, memory), an exception is thrown back to the agent using 
the standard Java exception mechanism. On the other hand, when 
an agent tries to perform an operation that would result in the 
agent exceeding a rate limit (e.g., disk usage rate, network transfer 
rate) the agent’s request will be delayed until such time that 
processing the request would not result in the rate limit being 
exceeded. For example, if the agent’s limit on network transfer 
rate is 10 KB/sec and the agent requests that a 100 KB block of 
data be transmitted, the Aroma VM will block the agent for 10 
seconds while transmitting the data before allowing the agent to 
continue execution. Note that a rate limit is not based on 
averaging. A write rate limit of 10 KB/s does not imply that if the 
agent does not write anything for the first 10 seconds that it can 
write at 20 KB/s for the next 10 seconds. 
One of the goals of Oasis is to allow dynamic adjustment of 
resource limits of agents. This causes a potential problem for 
certain kinds of resources when resource limits are lowered below 
the threshold already consumed by an agent. For example, an 
agent may have already used 10 MB of disk space and the 
resource limit might be reduced to 8 MB. The current 
implementation does not attempt to reclaim the 2 MB of disk 
space back from the agent. Instead, any future requests for disk 
space simply fail until the agent’s disk usage drops below 8 MB. 
In the future, we would like to explore a mechanism to notify an 
agent about the change in resource limits (using a callback 
function) and allow the agent a fixed amount of time for the agent 
to comply with the changed limits or perhaps to negotiate some 
compromise. If the agent does not comply then Oasis has the 
option of terminating the agent or transmitting the agent back to 
its home or some other designated location. 

5. CONCLUSIONS 
We have described our motivations for developing a mobile agent 
system that provides both strong and safe mobility. We have also 
described the initial design and implementation of the Aroma VM 
and the Oasis agent execution environment. Initial performance 
results are promising. The speed of agent transfer using the current 
unoptimized NOMADS code ranges only from 1.27 to 1.71 times 
slower than the weak mobility competitors evaluated and we have 
several ideas for significantly increasing performance. The overhead 
for resource control in our experiment was less than 3%. 
To date, both the Aroma VM and Oasis have been ported to 
Windows NT, Solaris (on SPARC), and Linux (on x86). The 
Aroma VM is currently JDK 1.2 compatible but with several 
limitations and missing features, the major omission being support 
for AWT. The AWT implementation affords opportunities for 
evaluating resource management mechanisms for graphical 
resources. Opportunities for further tests of NOMADS 
compatibility and performance will come over the next few 
months as we evaluate variations of a layered architecture 
incorporating different combinations of NOMADS elements in 

conjunction with secure agent infrastructure collaborators at 
Boeing, Lawrence Berkeley National Laboratories (LBNL), and 
the National Institute of Standards and Technology (NIST) [12]. 
We will layer Boeing’s KAoS framework [3] on top of 
NOMADS, providing support for high-level agent conversations, 
teamwork, and platform-independent domain and policy 
management using languages and tools aimed at users rather than 
developers [5]. We will continue to participate in efforts such as 
the FIPA architecture committee and the DARPA CoABS agent 
grid and mobility experiments [6] to ensure consistency with 
evolving standards and to make our work available to the 
community at large [5]. 
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