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ABSTRACT

NOMADS is a mobile agent system that supports strong mobility
(i.e., the ability to capture and transfer the full execution state of
mobile agents) and safe Java agent execution (i.e., the ability to
control resources consumed by agents, facilitating guarantees of
quality of service while protecting against denial of service
attacks). The NOMADS environment is composed of two parts:
an agent execution environment called Oasis and a new Java-
compatible Virtual Machine (VM) called Aroma. The
combination of Oasis and the Aroma VM provides key
enhancements over today’s Java agent environments.
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1. INTRODUCTION

Java is currently the most popular and arguably the most mobility-
minded and security-conscious mainstream language for agent
development. However, current versions fail to address many of
the unique challenges posed by agent software. While few if any
requirements for Java mobility, security, and resource
management are entirely unique to agent software, typical
approaches used in non-agent software are usually hard-coded and
do not allow the degree of on-demand responsiveness,
configurability, extensibility, and fine-grained control required by
agent-based systems.

The security model in Java is rapidly evolving to provide some of
the increased flexibility and fine-grained control required for
agents. From the beginning, Java has featured a typed pointerless
virtual machine instruction set, a bytecode verifier, class loaders, a
security manager, and the concept of a “sandbox” to prevent
executable code from accessing “dangerous” methods. Version
1.1 added an API for user security features such as signing of JAR
archives. A major feature of the security model in the Java 2
release is that it is permission-based. Unlike the previous “all or
nothing” approach, Java applets and applications can be given
varying amounts of access to system resources based upon
security policies created by the developer, system or network
administrator, the end user, or even a Java program.

Despite these improvements, there is still much work that remains
to be done. The ultimate goal is to define a set of standard
underlying Java security policies and mechanisms that will make
agent mobility as simple and safe as possible for both the agent
and its host [12]. The mobile agent must be able to deal with
situations where it has been shipped off to the wrong address, or
to a place where needed resources are not available, or to what
turns out to be a hostile environment [18]. Agent hosts may
become unavailable or compromised at a moment’s notice, and
the agent may need to immediately migrate to a safe place or
“die.” Also, there is the very real possibility of unauthorized

inspection or tampering while the agent is traveling. Agent hosts,
on the other hand, have to deal with a variety of resource
management issues.

The NOMADS agent system aims to support strong mobility and
safe Java agent execution. The NOMADS environment is
composed of two parts: an agent execution environment called
Oasis and a new Java compatible Virtual Machine (VM) called
the Aroma. The combination of Oasis and the Aroma VM
provides two key enhancements over today’s Java agent
environments:

1. The ability to capture and transfer the full execution state of
mobile agents (strong mobility). This allows agents to be
moved “anytime” at the demand of the server or the agent
rather than just at specific pre-determined points.

2. The ability to control the resources consumed by agents
thereby facilitating guarantees of quality of service while
protecting against denial of service attacks (safe execution).
Adding these resource control capabilities to the access
control mechanisms already provided by the new Java 2
security model allows mobile agents to be deployed with
greater confidence in open environments.

In the following sections, we describe the requirements for strong
mobility and safe agent execution in the context of past research
on these topics. We discuss the specific limitations of previous
efforts that we are attempting to address in our own work. We
then describe the Aroma VM followed by a discussion on
capturing and transferring the agent state and enforcing resource
controls. Then, we briefly describe the Oasis agent execution
environment. Finally, we outline issues and directions for future
work.

2. NOMADS Requirements

Until recently, each mobile agent system has defined its own
approach to agent mobility. Though new proposals such as
FIPA’s agent mobility standards (http://www.fipa.org) and
OMG’s Mobile Agent System Interoperability Facility [16] are a
step forward, some of the required elements of strong and safe
mobility cannot be implemented without foundational support in
the Java language standard.
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The general problem of protecting mobile agents against
malicious hosts is not discussed here, but see [25] for a
discussion of one promising software-only approach.



Many of the early mobile agent systems recognized the need for
strong and safe mobility. For example, the short-lived Telescript
system provided some of the features we are implementing in
NOMADS [27]. In particular, Telescript provided transparent
agent migration and resource usage control. Resources used by
agents were accounted in terms of “clicks,” a unit of charge that
was then billed to the user or deducted from a user’s account.
During the same timeframe, other groups also developed other
agent systems. Systems such as Agent TCL, ARA, and others [6;
9; 22; 26] were primarily based on the Tcl [20] [21] language and
interpreter although they ultimately provided support for a variety
of languages. AgentTCL and Ara were also able to save the
execution state of the agent to provide strong mobility. A few
systems provided varying degrees of resource usage control.

Today, there are many commercial Java-based mobile agent
systems currently available such as ObjectSpace Voyager [19],
Concordia from Mitsubishi Electric ITA Horizon Laboratories
[17], Jumping Beans from Ad Astra
(http://lwww.JumpingBeans.com), and Aglets from IBM [14].
While all of these systems provide the ability to transport an agent
from one server to another across a network connection, none of
these transport mechanisms are completely transparent; none
allow full capture of agent execution state. The security measures
provided in these systems are also not mature enough to enforce
the level of fine-grained security and resource control we desire.
This is due in part to the lack of underlying support in Java for
some of these mechanisms.

2.1 Strong Mobility

Strong mobility is vital for situations in which there are long-
running or long-lived agents and, for reasons external to the
agents, they need to suddenly move or be moved from one host to
another. In principle, such a transparent mechanism would allow
the agents to continue running without any loss of their ongoing
computation and, depending on circumstances, the agents need
not even be aware of the fact that they have been moved (e.g., in
forced mobility situations). Such an approach will be useful in
building distributed systems with complex load balancing
requirements. The same mechanism could also be used to
replicate agents without their explicit knowledge. This would
allow the support system to replicate agents and execute them on
different hosts for safety, redundancy, performance, or other
reasons.

Strong mobility requires that the entire state of the running agent,
including its execution stack, be saved prior to a move so that it
can be restored once the agent has moved to its new location. The
standard term describing this process is checkpointing [23]. Over
the last few years, the more general concept of orthogonal
persistence has also been developed by the research community
[2]. The goal of orthogonal persistence research is to define
language-independent ~ principles  and language-specific
mechanisms by which persistence can be made available for all
data, irrespective of type. Ideally, the approach would not require
any special work by the programmer (e.g., implementation of
serialization methods in Java, the use of transaction interfaces in
conjunction with object databases), and there would be no
distinction made between short-lived and long-lived data.

One of the powerful features of Java as a programming language
is that its bytecode format, which is interpreted or compiled on-
the-fly by the Java VM residing on the host platform, enables us

to save execution state in a machine-independent format. In
principle, the design of Java allows the execution state to be
restored on machines of differing architecture [24]. A similar but
somewhat less general approach was originally implemented in
General Magic’s Telescript language [27]. While it is possible to
achieve some measure of transparent persistence by techniques
such as having a special class loader insert read and write barriers
into the source code before execution, such an approach poses
many problems [13]. First, the transformed bytecodes could not
be reused outside of a particular persistence framework, defeating
the Java platform goal of code portability. Second, such an
approach would not be applicable to the core classes, which
cannot be loaded by this mechanism. Third, the code
transformations would be exposed to debuggers, performance
monitoring tools, the reflection system, and so forth,
compromising the goal of complete transparency.

Modern mobile agent systems that use standard Java VMs
typically transfer the instance data of objects from the source
platform to the destination platform and restart execution of the
agent on the remote platform. The task of writing mobile agents is
more complicated when systems do not provide strong mobility.
Figure 1(a) shows a basic agent written using Aglets that moves
from one platform to another and displays a message. Figure 1(b)
shows a significantly simpler agent written using the NOMADS
system that accomplishes the same task. Note that the complexity
is not particular to Aglets but to any mobile agent system without
strong mobility.

NOMADS is not the only Java agent system providing strong
mobility. Sumatra [1] and Ara [15] are other mobile agent systems
that also provide strong mobility. However, both of these systems

public class Exanple extends Aglet {
bool ean _theRenpte = fal se;
public void onCreation (Cbhject init) {
addMbbi li tyLi stener (
new MobilityAdapter() {
public void onArrival (MbilityEvent e) {
_theRenpte = true;
}
}
)

}

public void run() {
if (!_theRenote) {
Systemout.println (“On Source”);
di spat ch(desti nation);

el se {
Systemout.println (“On Destination”);
}

}

}

Figure 1(a): Example Aglets-based Mobile Agent

public class Exanpl e extends Agent
public static void main (String[] args)

Systemout.println (“On source”);
go (destination);
Systemout.println (“On destination”);
}
}

Figure 1(b): Example NOMADS-based mobile agent




have been implemented by modifying Sun’s implementation of
the Java VM. The disadvantage is that the system can only be
redistributed to others who also have a source-code license to the
Java platform. Also, as far as we are aware, both of these systems
use version 1.0.2 of the Java VM.

Designing and implementing a new Java compatible VM has both
advantages and disadvantages. The biggest disadvantages are the
difficulty of achieving both compatibility and efficient
performance. Implementers are bound to face a challenge in both
implementing the complete Sun Java specification and
maintaining complete compatibility as the specifications evolve.
However we feel that there are also some advantages in
implementing a VM from scratch while taking into account
specific needs of mobile agent systems. In particular, NOMADS
is able to provide strong mobility even in the presence of multiple
concurrent threads and to dynamically control resource allocation
on a fine-grained level. Another major advantage is the ability to
freely distribute the VM and agent system.!

Another approach to being able to capture execution state is to use
a pre-processor that rewrites or instruments the Java bytecode. An
example of such an approach is [8]. The system requires a pre-
processor that instruments the code by adding state-saving code
where necessary. During execution time, the system utilizes the
exception throwing mechanism in Java to capture and save the
execution state of the process. Restoring the state is accomplished
by wrapping blocks of code with conditional statements that skip
over code that has already been evaluated. A limitation of the
code instrumenting approach is that only the thread requesting
migration may be migrated transparently. If an agent has multiple
threads, then the system does require that all threads periodically
call a function that “polls” whether any of the other threads has
requested a checkpoint. Therefore, this requires that agents with
multiple threads structure their code within certain requirements
to allow for strong mobility, which is a disadvantage. The
advantage of this approach is the ability to use a standard VM.

2.2 Safe Execution

Mechanisms for monitoring and controlling agent use of host
resources are important for three reasons [18]. First, it is essential
that access to critical host resources such as the hard disk be
denied to unauthorized agents. Second, the use of resources to
which access has been granted must be kept within reasonable
bounds, making it easier to provide a specific quality-of-service
for each agent. Denial-of-service conditions resulting from a
poorly-programmed or malicious agent’s overuse of critical
resources are impossible to detect and interrupt without
monitoring and control mechanisms for individual agents. Third,
tracking of resource usage enables accounting and billing
mechanisms that hosts may use to calculate charges for resident
agents.

Resource protection mechanisms are available at several levels to
software developers, including those provided by the networking
environment, hardware, the operating system, and the features of a
high-level language. In the case of agent technology, however, a
persuasive case can be made for the advantages of an approach

! The new Community Source licensing policies from Sun
Microsystems may allow third-party developers to modify and
distribute Sun’s implementation of the Java VM.

based on language-based protection primitives [11]. While such
an approach limits the developer to a restricted set of languages
that can be supported, the increased precision in specification of
rights, the relative efficiency of rights amplification, the ability to
analyze programs statically and not just at runtime, and the
portability of the language-based approach argue strongly in its
favor. 2 An additional advantage in the context of our work with
DARPA[5], NASA [4], and the NTA is that most of the language-
based mechanisms we describe below can be incorporated
transparently into any Java-based agent framework with little or
no code modification required.

Given its status as the most popular and most rapidly evolving
general-purpose safe language for Internet and agent applications,
Java is the best first target for a language-based resource
management approach for the agent community. However, there is
still much to do to make it suitable for the industrial-strength
agent applications of the future. Although the Java 2 security
model is a step in the right direction, we anticipate that agent
developers will require ever-greater levels of flexibility and host
systems will need ever-greater protection against vulnerabilities
that could be exploited by malicious agents. It is likely that some
of these features will ultimately require changes to the Java
architecture, such as the inclusion of an explicit Resource
Manager to complement the current Class Loader and Security
Manager [7]. For example, while new iterations of the Java
security model will increasingly support configurable directory
access by supplying the equivalent of access control lists to the
Java Security Manager, there is no way to impose limits on how
much disk storage or how many /O operations or how many
simultaneous print jobs may be performed by agents. Nor are
there ways of controlling thread and process priorities, memory
allocation, or even basic functions such as the number of windows
that can be opened. A unique opportunity of our research is to
explore techniques for dynamic negotiation of resource
constraints between agents and the host. In NOMADS, we are
taking a two-pronged approach: one prong relying on features
provided by standard Java mechanisms and security policies, and
the other relying on special features of our own VM and agent
framework implementations. In the next sections we describe
some of the details of our approach.

3. AROMA VIRTUAL MACHINE

The Aroma VM is a Java compatible VM designed and
implemented with the specific requirements of strong mobility
and safe execution. The primary goals for Aroma were to support:

1. Capturing the execution state of a single Java thread, thread
group, or all threads (complete process) in the VM

2. Capturing the execution state at fine levels of granularity
(ideally, between any two Java instructions)

3. Capturing the execution state as transparently to the Java
code executing in the VM as possible

4. Cross-platform  compatibility for the execution state
information

Approaches for overcoming two possible disadvantages
associated with language-based approaches (rights revocation
and performance) are discussed in [10].



5. Flexibility in how much information is captured (in
particular whether to include the definitions of Java classes)

6. Easy Portability to a variety of platforms (at least Win32 and
various UNIX/Linux platforms)

7. Flexible usage in different contexts and inside different
applications

8. Enforcement of fine-grained and dynamically changing limits
of access to resources such as the CPU, memory, disk,
network, and GUI

The current implementation of the Aroma VM falls short of some
of the goals listed above. The limitations are that the VM can only
capture the execution state of all threads and not the execution
state of a subset of the threads present in the VM. Also, only the
disk and network resource limits have been implemented. These
limitations will be overcome in future versions of the Aroma VM.

The Aroma VM is implemented in C++ and consists of two parts:
the VM library and a native code library. The VM library can be
linked to other application programs. Currently, two programs use
the VM library — avm (a simple wrapper program that is similar to
the java executable) and oasis (the agent execution environment).
The VM library consists of approximately 40,000 lines of C++
code. The native code library is dynamically loaded by the VM
library and implements the native methods in the Java API. Both
the VM and the native code libraries have been ported to Win32,
Solaris (on SPARC) and Linux (on x86) platforms. In general, the
Aroma VM should be portable to any platform that supports
ANSI C++, POSIX or Win32 threads, and POSIX style calls for
file and socket 1/0. We plan to port the Aroma VM to WinCE-
based platforms as well.

Users use a standard Java compiler (such as the one provided with
Sun’s Java Development Kit) to compile Java source code to run
on Aroma. The Aroma VM loads and executes files in the
standard Java class file format.

3.1 Capturing Execution State

Aroma is capable of capturing the execution state of all threads
running inside the VM. This state capture may be initiated by
either a thread running inside the VM or by an external thread.
The former is useful when the agent requests an operation that
needs the execution state to be captured. The latter is useful when
the system wants the execution state to be captured (for example,
to implement forced mobility).

For several reasons, we chose to map each Java thread to a
separate native operating system thread. The other alternatives
were to develop our own threads package (which would be
platform specific and difficult to port) or use an existing threads
package (which may or may not be available on different
platforms). Also, mapping to native threads allows the VM to take
advantage of the presence of multiple CPUs. Therefore, if a VM
has two Java threads running (JT, and JT,), then there are two
native threads (NT, and NT,) that correspond to JT; and JT,. If
the execution state of the VM is captured at this point and
restored later (possibly on a new host), then two new native
threads will be created (NT; and NT,) to correspond to the two
Java threads JT; and JT,.

However, mapping Java threads to native threads complicates the
mechanism of capturing the execution state. This is because when
one Java thread (or some external thread) requests a state capture,

the other concurrently running threads may be in many different
states. For example, other Java threads could be blocked trying to
enter a monitor, waiting on a condition variable, sleeping,
suspended, or executing native code. We wanted as few
restrictions as possible on when a thread’s state may be captured
so that we can support capturing execution state at fine levels of
granularity. Therefore, the implementation of monitors was
carefully designed to accommodate state capture. For example, if
a Java thread is blocked trying to enter a monitor, then there is a
corresponding native thread that is also blocked on some IPC
primitive. If at this point the execution state is captured and
restored later (possibly on a different system and of a different
architecture), a new native thread must resume in the same
blocked state that the original native thread was in when the state
was captured. To support this capability, the monitors were
designed in such a way that native threads blocked in monitors
could be interrupted and stopped and new native threads could
take their "place” in the monitor at a later point in time. As an
example, consider a native thread NT; on host H, that represents a
Java thread JT;. NT; could be blocked because JT; was trying to
enter a monitor. The VM will allow another thread to capture the
execution state at such a time and when the state is restored later,
a new native thread NT, (on possibly a new host H,) will be
created to represent JT;. Furthermore, NT, will continue to be
blocked in the monitor in the same state as NT;.

Another requirement is the need to support multiple platforms. In
particular, to support capturing the execution state on one
platform (such as Win32) and restoring the state on a different
platform (such as Solaris SPARC). The Java bytecode format
ensures that the definitions of the classes are platform independent
so transferring the code is not an issue. For transferring the
execution state, the Aroma VM assumes that the word size is
always 32-bits and that the floating-point representations are the
same. With these assumptions, the only other major issue is
transferring state between little-endian and big-endian systems.
The Aroma VM writes a parameter as part of the state information
indicating whether the source platform was big- or little-endian.
The destination platform is responsible for byte-swapping values
in the execution state if necessary.

One limitation is that if any of the Java threads are executing
native code (for example, by invoking a native method), then the
VM will wait for the threads to finish their native code before
initiating the state capture. This limitation is necessary because
the VM does not have access to the native code execution stack.

3.2 Enforcing Resource Limits

The native code library is responsible for implementing the
enforcement of resource limits. The current version is capable of
enforcing disk and network limits. The limits may be grouped into
three categories: rate limits, quantity limits, and space limits. Rate
limits allow the read and write rates of any program to be limited.
For example, the disk read rate could be limited to 100 KB/s.
Similarly, the network write rate could be limited to 50 KB/s. The
rate limits ensure that a program does not exceed the specified
rate for any input and output operations. For example, if a
network write rate of 50 KB/s was in effect and a thread tried to
write at a higher rate, the thread would be slowed down until it
does not exceed the write rate limit.

Quantity limits allow the total bytes read or written to be limited.
For example, the disk write quantity could be limited to 3 MB.



Similarly, the network read quantity could be limited to 1 MB. If
a program tried to read or write more data than allowed by the
limit, the thread performing the operation would get an
I0Exception.

The last category of limits is the space limit, which applies only to
disk space. Again, if a program tries to use more space than
allowed by the disk space limit, then the VM would throw an
I0Exception. Note that the disk space limit is different from the
disk write quantity limit. If a program has written 10 MB of data,
it need not be the case that the program has used up 10 MB of
disk space because the program could have written over the same
file(s) or erased some of the files that it had written.

To enforce the quantity limits, the native code library maintains four
counters for the number of bytes read and written to the network and
the disk. For every read or write operation, the library checks
whether performing the operation would allow the program to
exceed a limit. If so, the library returns an exception to the program.
Otherwise, the appropriate counter is incremented and the operation
is allowed to proceed. To enforce the disk space limit, the library
performs a similar computation except that seek operations and file
deletions are taken into consideration. Again, if an operation would
allow the program to exceed the disk space limit, the library returns
an exception and does not complete the operation.

To enforce the rate limits, the library maintains four additional
counters for the number of bytes read and written to the network
and the disk and four time variables, which record the time when
the first operation was performed. Before an operation is allowed,
the library divides the number of bytes by the elapsed time to
check if the program is above the rate limit. If so, the library puts
the thread to sleep until such time that the program is within the
rate limit. Then, the library computes how many bytes may be
read or written by the program in a 100ms interval. If the
operation requested by the program is less than what is allowed in
a 100ms interval, the library simply completes the operation and
returns (after updating the counter). Otherwise, the library divides
the operation into sub-operations and performs them in each
interval. After an operation is performed, the library sleeps until
the interval finishes. For example, if a program requested a write
of 10 KB and the write rate limit was 5 KB/s, then the number of
bytes that the program is allowed to write in a 100ms interval is
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Figure 2: Oasis Agent Execution Environment

512 bytes. Therefore, the library would loop 20 times, each time
writing 512 bytes and then sleeping for the remainder of the
100ms interval. One final point to make is that if a rate limit is
changed then the counter and the timer is reset. This reset is
necessary to make sure that the rate limit is an instantaneous limit
as opposed to an average limit.

We are currently evaluating two different implementation schemes
for the CPU resource control. The first approach is to have each
native thread (that represents a Java thread) check the percentage
of CPU used by that thread (by querying the underlying operating
system) and then sleep if necessary. The check would be
performed periodically after executing a certain number of Java
bytecode instructions. The second approach is to have a separate
monitoring thread that checks the CPU utilization of all the Java
threads and then pauses the Java threads as necessary. In this case,
the monitoring thread will be assigned high-priority and will wake
up periodically to perform its monitoring.

Although we have not started implementing the memory resource
control, we expect that it will be fairly straightforward since the
VM handles all object instantiations. The VM can maintain a
counter variable that keeps track of memory usage and throw an
exception (or take other appropriate action) when memory usage
is exceeded.

4. OASIS EXECUTION ENVIRONMENT
Oasis is an agent execution environment that embeds the Aroma
VM. It is divided into two independent programs: a front-end
interaction and administration program and a back-end execution
environment. Figure 2 shows the major components of Oasis. The
Oasis Console program may be used to interact with agents
running within the execution environment. The console program
is also used to perform administrative tasks such as creating
accounts, establishing resource limits, and so forth. The Oasis
process is the execution environment for agents. Among other
things, it contains instances of the Aroma VM for running agents,
a Policy Manager, and a Dispatcher. Each agent executes in a
separate instance of the Aroma VM. However, all the instances of
the Aroma VM are inside the same Oasis process, which results in
all of the VM code being shared.

Category Attributes
Agent Transfer Maximum agent state size

Maximum agent state transfer duration
Execution Execution Duration

Cloning Limit

Communication Maximum incoming message queue size

Maximum incoming message size

Access Control Standard Java Security Manager Attributes

Resource Usage Disk Data Transfer Rates / Sizes

Network Data Transfer Rates / Sizes

Memory Size

Maximum Thread Count

Maximum CPU Utilization (Percentage)

Table 1 : Parameters Controlled by the Policy Manager




Agents can communicate by sending and receiving messages.
Message transfer is implemented by a simple API that provides a
sendMsg() and a receiveMsg() functions. Agents are addressed via
Universally Unique Identifiers (UUIDs). The messages
themselves can contain any serializable Java object. Oasis
maintains message queues for each agent. The message queues are
maintained outside the Aroma VM instances so that it is easy to
handle situations where a message arrives while a VM’s state is
being captured.

The Policy Manager is a major component of the execution
environment. It is responsible for establishing security policies for
all agents. Policies may be established on an individual account
basis or on a group basis. The policy for each entity (individual or
group) consists of four categories that address agent transfer,
execution control, access control, and resource usage. Table 1
shows the specific attributes that may be specified for each of the
four categories.

Upon startup, the Policy Manager reads a pol i ci es file. The
pol i ci es file specifies resource limits that need to be applied to
accounts. Figure 3 shows the format for the pol i ci es file.

As Figure 2 shows, a user or administrator may interact with the
Oasis environment through a separate administration process that
allows the user to examine and change various resource limits for an
individual agent or a group of agents. The pol i ci es file specifies
the policies for resource limits applied to an agent when the agent is
received by Qasis. Each agent running within Oasis may have most
of these parameters adjusted dynamically by the Policy Manager; in
the case of intelligent agents, we anticipate that this may involve a
process of  negotiation. Some  parameters such as
MaxAgentStateSize and  MaxAgentTransferTime are  not
changeable, since they do not apply once an agent is already
executing.

Controlling so many parameters to set up a secure and foolproof
environment requires a significant level of expertise on behalf of
an administrator. We feel that in the near future, most
administrators or maintainers of agent-systems are not likely to be

[Entry]

Pol i cyNane=<pol i cynanme>

MaxAgent St at eSi ze=<byt es>

MaxAgent Tr ansf er Ti ne=<mi | | i seconds>

d oni ngLi mi t=<count; 0 => no cloning all owed>
MaxTi neToli ve=<seconds>

Max| ncom ngMessageQueueSi ze=<byt es>
Max| ncom ngMessageSi ze=<byt es>
JavaSecurityPolicyFile=<file path>

Di skReadRat eLi m t =<bytes/ni |l i second>
Di skWiteRatelLimt=<bytes/nillisecond>
Di skReadQuanti tyLi m t =<byt es>

Di skWiteQuantityLi mt=<bytes>

Di skSpacelLi m t =<byt es>
Net wor kReadRat eLi mi t =<bytes/ m | | i second>

Net wor kWi t eRat eLi m t =<bytes/mi || i second>
Net wor kReadQuant i t yLi m t =<byt es>

Net wor kWi t eQuantityLi m t =<byt es>

Menor yLi m t =<byt es>

MaxThr eads=<count; nust be 1 or nore>

Figure 3: Format for policies File

security experts but rather experts in some domain of application.
To simplify the task of setting up secure environments, we are
also working on an Agent Management Tool (AMT) that in
addition to offering a convenient interface will also contain
suggested security policies for typical scenarios [5]. Domain
knowledge in the AMT can help agent designers determine what
kinds of policies are appropriate for a given situation.

The AMT prototypes we have been building also provide a
graphical interface for the monitoring, visualization, and dynamic
control of resource usage at runtime so that certain agents in an
application can have greater access to resources than others. The
goal of the runtime interface is threefold: to guarantee some
specified level of agent access or quality of service to agents
providing critical functions; to minimize the possibility of
unauthorized access or reduce the impact of denial-of-service
attacks; and to provide the possibility of detailed resource
accounting. In such a configuration, the AMT would
communicate to the Policy Manager inside Oasis to gather
information about executing agents and to control their limits.

The other component within Oasis worth mentioning is the
dispatcher, which is responsible for executing an agent once its
state information has been received. The dispatcher also enforces
some of the execution policies such as the maximum length of
time for an agent to live on the platform (MaxTi meToLi ve). In
the future, the dispatcher will also support the notion of agents
and agent groups executing within separate, isolated processes.

One important design choice was to run each agent within a
separate instance of the Aroma VM. Such a design has both
advantages and disadvantages. The advantage is that resource
accounting and control is simplified. The disadvantage is
increased overhead. We are working on the possibility of sharing
class definitions between multiple Aroma VMs which should
reduce the overhead significantly.

The policy manager is not responsible for enforcing any of the
security policies. Instead, the actual enforcement is carried out by
the agent transfer protocol handler for authentication and agent
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Figure 4: Security enforcement in Oasis



transfer control, the dispatcher for execution control, the Java
security manager for access control, the Aroma execution
environment for messaging control, and the Aroma VM for the
resource usage control. Figure 4 shows the different components
that enforce the various parts of the security policy established by
the policy manager.

Security enforcement usually results in one of two consequences
for agents. When an agent tries to perform an operation that
would result in the agent exceeding a quantity limit (e.g., disk
space, memory), an exception is thrown back to the agent using
the standard Java exception mechanism. On the other hand, when
an agent tries to perform an operation that would result in the
agent exceeding a rate limit (e.g., disk usage rate, network transfer
rate) the agent’s request will be delayed until such time that
processing the request would not result in the rate limit being
exceeded. For example, if the agent’s limit on network transfer
rate is 10 KB/sec and the agent requests that a 100 KB block of
data be transmitted, the Aroma VM will block the agent for 10
seconds while transmitting the data before allowing the agent to
continue execution. Note that a rate limit is not based on
averaging. A write rate limit of 10 KB/s does not imply that if the
agent does not write anything for the first 10 seconds that it can
write at 20 KB/s for the next 10 seconds.

One of the goals of Oasis is to allow dynamic adjustment of
resource limits of agents. This causes a potential problem for
certain kinds of resources when resource limits are lowered below
the threshold already consumed by an agent. For example, an
agent may have already used 10 MB of disk space and the
resource limit might be reduced to 8 MB. The current
implementation does not attempt to reclaim the 2 MB of disk
space back from the agent. Instead, any future requests for disk
space simply fail until the agent’s disk usage drops below 8 MB.
In the future, we would like to explore a mechanism to notify an
agent about the change in resource limits (using a callback
function) and allow the agent a fixed amount of time for the agent
to comply with the changed limits or perhaps to negotiate some
compromise. If the agent does not comply then Oasis has the
option of terminating the agent or transmitting the agent back to
its home or some other designated location.

5. CONCLUSIONS

We have described our motivations for developing a mobile agent
system that provides both strong and safe mobility. We have also
described the initial design and implementation of the Aroma VM
and the Oasis agent execution environment. Initial performance
results are promising. The speed of agent transfer using the current
unoptimized NOMADS code ranges only from 1.27 to 1.71 times
slower than the weak mobility competitors evaluated and we have
several ideas for significantly increasing performance. The overhead
for resource control in our experiment was less than 3%.

To date, both the Aroma VM and Oasis have been ported to
Windows NT, Solaris (on SPARC), and Linux (on x86). The
Aroma VM is currently JDK 1.2 compatible but with several
limitations and missing features, the major omission being support
for AWT. The AWT implementation affords opportunities for
evaluating resource management mechanisms for graphical
resources. Opportunities for further tests of NOMADS
compatibility and performance will come over the next few
months as we evaluate variations of a layered architecture
incorporating different combinations of NOMADS elements in

conjunction with secure agent infrastructure collaborators at
Boeing, Lawrence Berkeley National Laboratories (LBNL), and
the National Institute of Standards and Technology (NIST) [12].
We will layer Boeing’s KAoS framework [3] on top of
NOMADS, providing support for high-level agent conversations,
teamwork, and platform-independent domain and policy
management using languages and tools aimed at users rather than
developers [5]. We will continue to participate in efforts such as
the FIPA architecture committee and the DARPA CoABS agent
grid and mobility experiments [6] to ensure consistency with
evolving standards and to make our work available to the
community at large [5].
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