
Service-oriented Network Sockets

Umar Saif, Justin Mazzola Paluska
MIT Laboratory for Computer Science

{umar, jmp}@mit.edu

Abstract
This paper presents the design and implementation of

service-oriented network sockets (SoNS) for accessing
services in a dynamically changing networked environment.
A service-oriented network socket takes a high-level
description of a service and opportunistically connects to the
best provider of that service in the changing characteristics
of a mobile system. An application states its high-level
service requirements as a set of constraints on the properties
required in a suitable resource and SoNS continuously
monitors, evaluates and compares the available resources
and (re-)connects to the resource that best satisfies the
specified constraints.

Unlike content-based routing systems, SoNS is an end-
host system, interposed at the session-binding layer, and
offers connection-oriented semantics. SoNS’ interface allows
an application to tailor the planning policy used to establish
and rebind a network session. SoNS is based on an
extensible architecture to leverage the wide-range of
emerging technologies for discovering and locating
resources in a mobile system.

SoNS integrates a service-oriented abstraction with the
traditional operating system interface for accessing network
services, making it simpler to develop pervasive, mobile
applications. We present an implementation for a mobile
handheld device, analyze the performance of our system and
describe an application to demonstrate the utility of our
system.

1 Introduction
Advances in digital electronics over the last decade have

made computers faster, cheaper and smaller. This coupled
with the revolution in communication technology has led to
the development and rapid market growth of embedded
devices equipped with network interfaces. It has also
promoted the development and widespread use of battery-
operated portable computers, allowing users to carry their
computation resources and tasks with them.

These advances have led to the recent activity in
pervasive systems [1][2]. MIT’s project Oxygen [22], and
related pervasive computing projects elsewhere, aim to
define computational environments that would allow users to
carry their mobile handheld devices from one networked
environment to another, possibly disconnected, environment
while providing personalized ubiquitous access to services in
the environment of the user.

Such a system must be able to continuously adapt to
changes in user locations and needs, respond both to
component failures and newly available resources, and
maintain continuity of service as the set of available
resources change. This requires more than service discovery
[3] or simple content-based routing [4]; it necessitates a
certain degree of planning involving continuous reevaluation
of available alternatives, as well as heuristic compromises to
best address the application’s requirement using imperfect
resources in the changing environment of the application [5].

Such opportunistic access to system resources is
contrary to what is offered by traditional mobile systems [6]
that aim to preserve access to a mobile host as the
characteristics of the system change. Such systems do not
cater to context-aware applications [5][1][2] that desire to
access the best provider of a service (henceforth referred to
as a resource) in their environment, rather than maintaining
access to a particular host.

Traditionally, such a context-aware application must
itself provide the planning involved in accessing the best
available service-provider in its environment. Such
applications typically contain a planning component that
continuously reevaluates the available alternatives and
provides access to the best available service-provider. These
planning components often employ a resource discovery
system to find the available alternatives and use the
operating system socket interface to establish and rebind
network connections as better alternatives become available.
Most context-aware and adaptive applications layered on top
of traditional operating systems and network routing
architectures are examples of this model [7].

Where the above-mentioned model has the virtue that
the application is free to use any arbitrarily complex
planning policy befitting its requirements, allowing the
underlying system to be policy-neutral, it requires every
application to be capable of discovering, monitoring,
evaluating and comparing the available alternatives in order
to utilize the best available service-provider in its
environment. In a pervasive computing environment, where
such opportunistic access to service-providers is a norm, it is
clearly desirable to separate this complexity in a re-usable
planning layer that can be employed by different
applications to opportunistically access resources in a
dynamically changing networked environment.

Among the existing systems, the Intentional Naming
System (INS) [4] comes closest to achieving this goal. The
late binding architecture of INS allows an application to send

intentional datagrams that carry a description of the
properties of the required service, instead of the network
address of a host, and an overlay of INS resolvers route these
datagrams to the hosts that match the service description.
Where this scheme of integrating service location and
message routing alleviates an application from the task of
continuously monitoring its environment and rebinding its
network connections when a better alternative becomes
available, INS provides limited planning for choosing the
closest match to application requirements when more than
one resource matches a service description. In this case INS
simply relies on an application-level anycast to all the
matching resources.

Even though it is conceivable that a more elaborate
scheme could lead to more informed routing decisions, this
approach of handling the dynamism of the system at the
routing level inherently suffers from the following problems.
• The planning policy, used to select the best match to

application requirements, is hidden from the application
in the routing infrastructure and, worse, distributed in
the network. Therefore, it cannot be tailored to suit the
requirements of the various different applications found
in a pervasive mobile system.

• Such content-based routing systems [4][8] only provide
connection-less datagram semantics; every datagram
carries the required service description which is resolved
by, often an overlay of, network resolvers to deliver the
message to an appropriate host. Therefore, such systems
lack application-level session semantics, in that there is
no concept of an application-level connection; two
successive datagrams generated by an application can be
routed to two different hosts, transparently to the
application. This coupled with the characteristic
fluctuations in the performance of wireless links and
mobile hosts, means that an application has little control
over which resource gets accessed, precluding
applications with inherently connection-oriented
semantics e.g. multi-media streaming applications.
Such a system is also prone to thrashing between
service-providers in the presence of frequent
performance fluctuations and node failures.

• From a performance point of view, content-based
routing, performed by resolving complex service
descriptions at every hop in an overlay network, is
considerably slower than traditional address-based
network routing [4] since it introduces the cost of
resolving a service description to a network address in
the critical path of message delivery. Furthermore,
including a full service description of the required
service with every network message is wasteful of the
scarce bandwidth available in a wireless network.

• Finally, content-based routing systems introduce a new
API for network communication [4][21], which is often
different from the traditional operating system interface,
for accessing services in the system.

We propose Service-oriented Network Sockets (SoNS)
to access services in a highly dynamic networked
environment. A service-oriented network socket takes a
high-level description of a service and opportunistically
connects to the best provider of that service in the changing
characteristics of a mobile system. An application states its
requirements as a set of constraints on the properties
required in a suitable resource and SoNS continuously
monitors, evaluates and compares the available resources
and (re-)connects to the resource that best satisfies the
specified constraints.

Unlike content-based routing systems, SoNS is an end-
host system, interposed at the session-binding layer, and
offers connection-oriented semantics. Most importantly,
SoNS allows an application to configure, and even replace,
the planning policy used to evaluate and compare available
alternatives and the semantics used for rebinding a network
connection when a better alternative becomes available.
SoNS integrates a service-oriented abstraction with the
traditional operating system interface for accessing network
services, making it simpler to develop pervasive mobile
applications.

We favor this approach over a content-based routing
scheme as it handles the dynamism of a mobile system at the
stage of binding a network connection at an end-host, and
hence 1) offers connection-oriented semantics 2) does not
introduce the overhead of resolving a service description in
the critical path of network communication, 3) does not
require a service description to be carried with every
network message, and 4) does not require any changes to the
network routing architecture.

The rest of the paper is organized as follows. Section 2
identifies the design goals for SoNS and Section 3 describes
the architecture of SoNS. Section 4 describes the operation
of the SoNS constraint parser, section 5 describes the SoNS
resource discovery framework, section 6 describes the
architecture of the module used to evaluate resources and
section 7 presents the support for network connection
migration. In section 8 we describe the API exported by a
service-oriented network socket and present a representative
context-aware application built using SoNS. Section 9
describes the implementation of SoNS for a mobile handheld
device, and section 10 presents performance analysis and
evaluation. Section 11 describes related work and, finally, in
section 12 we conclude the paper and outline future
directions of our research.

2 Design Goals
In order to identify the goals for a system designed to

provide opportunistic access to services in a dynamically
changing system, we consider a simple example application
of such a system.

In our example, a video-stream played by a user’s
handheld device is automatically redirected to the nearest
display as she moves in an environment populated with
displays, possibly from different vendors and conforming to

different standards. In order to provide this follow-me-video
functionality, the application requires opportunistic access to
a display that has 1) the least access latency, 2) a size of
more then 15 inches, for clear viewing from a distance, but
less than 30 inches, due to the resolution limitations of the
video-encoding scheme, and 3) capable of rendering an
MPEG-1 encoded video stream with a certain resolution.
From among the displays that satisfy these constraints, the
application prefers larger displays to smaller ones, and
prefers higher resolution displays to the ones with lower
resolution.

Our follow-me-video is also only interested in the
displays on the same subnet as the user. Furthermore, though
the application requires access to a better display as soon as
one becomes available, it would not like the video-stream to
be switched between displays due to transient fluctuations in
their access latency or when a display device is quickly
carried passed it by another user. Moreover, the application
must be notified before a session is migrated to a new
resource so that, for instance, it can transfer some
application-specific state to the new resource, to resume
access to the service, or to even to decline the rebinding
suggestion all together.

In order to support such applications, our system must
meet the following goals.
• Resource Discovery and Selection: The system must

be able to discover resources based on a high-level
service specification. Additionally, the system must
define a planning framework capable of evaluating and
comparing the properties of available alternatives in
order to find the closest match to application
requirements.

• Expressiveness: An application must be able to state its
requirements such that they can be used for both
discovering and, subsequently, comparing the suitability
of available alternatives. An application must be able to
state the attributes required in a suitable resource, the
range of acceptable values for each attribute, the
preferred values for an attribute and the relative
importance of each attribute to the application.

• Extensibility: In order to support a diverse set of
applications in a variety of network characteristics and
standards, the system must not enforce any fixed
policies that could limit the use or efficacy of the
system. Instead, the system must define an architecture
that may be extended to handle different application
requirements, network characteristics and standards.

• Connection Rebinding Semantics: It must be possible
for an application to configure the semantics of
rebinding a network session when a better alternative
becomes available. Based on our target applications, we
identify the following parameters to provide an
application with the flexibility to configure the
semantics of session rebinding.
o Context It must be possible for an application to

configure the context within which it wants to find

the best resource for its requirements e.g. current
subnet, current room.

o Agility: It must be possible for an application to
configure the agility with which it wants the system
to react to valid changes in its context.

o Hysteresis: It must be possible for an application to
configure the hysteresis of the system, indicating
how long the system should wait before reacting to a
change, in order to avoid reacting to transient
fluctuations that are not of interest to an application,
and to protect against thrashing.

o Application-notification: It must be possible for an
application to register a call-back method, which is
invoked by the system to notify the application about
the availability of a better alternative. This
notification can be used by the application to prepare
for the rebinding of the network session. It must also
be possible for the application to decline the
suggestion of rebinding the session to the new
resource.

• Per formance: Where the system must include a
planning function capable of evaluating and comparing
a set of resources competing against application
requirements, this planning task must be fast enough to
quickly respond to changes in the system. Furthermore,
as our system is interposed at the operating system
socket level, it must be comparable in performance with
the traditional socket-based communication. Finally, it
must not introduce an overhead for applications that do
not require service-oriented communication.

2.1 Service-or iented Network Sockets

Our service-oriented network session layer includes an
attribute-based discovery framework for discovering
resources in the system, as well as an evaluator module for
computing the suitability of available alternatives against
application requirements.

Since a network socket provides a portal between an
application and the network communication support of an
operating system, it presents a natural interface for
incorporating application-level policies for establishing a
service-oriented network connection by discovering and
evaluating the available alternatives.

Service-oriented Network Sockets offer an additional
socket domain that takes a high-level service specification as
the destination name and defines additional socket options to
configure an application call-back, context, agility and
hysteresis for the service-oriented network session. Using
this interface, applications configure a network socket with
an appropriate context, agility and hysteresis, and connect
the socket by providing a service description, instead of a
network address, to open a Service-oriented network session.
Using these application-level semantics, SoNS locates the
most appropriate resource in the given context and
establishes a network connection. If any subsequent changes
in the system render another resource more suitable for

application requirements, in accordance with the agility and
hysteresis semantics of the application, SoNS notifies the
application and migrates the session to the better alternative.

A service description is expressed as a set of constraints
on the properties of an acceptable resource. As opposed to
the resource discovery systems that find a resource by
performing an exact pattern-match on its attribute-value
pairs [3][4], the use of a constraint language in SoNS, for
stating an evaluation criteria, offers the flexibility to evaluate
and compare the alternatives available in a given context in
order to find the closest match to the requirements of an
application.

The design of SoNS handles the heterogeneity of
discovery standards and application requirements by using a
modular and extensible architecture for resource discovery
and evaluation. Protocols for discovering resources and the
policy for evaluating available choices can be tailored
according to the application requirements and discovery
standards used by different resources.

By handling the dynamism of the system at an end-
node, SoNS does not require any changes to the network
routing infrastructure. Therefore, as opposed to systems that
employ application-level content-based routing [4] to
address the dynamism of the system, SoNS architecture does
not introduce extra routing complexity in the participating
nodes, achieves better performance, and leverages the
underlying network support for quality-of-service.

3 System Architecture
Figure 1 shows the architecture of Service-oriented

Network Sockets system. In order to facilitate application-
specific extensibility, portability, accounting and fault-
isolation, Service-oriented Network Sockets are
implemented as a user-space wrapper around a traditional
socket interface, instead of a kernel module.

SoNS architecture has four components: a resource
discovery module, an evaluator module, a connection
migration module, and a socket-wrapper module. Below we
describe these modules in detail.

3.1 SoNS Interpreter

The SoNS Interpreter, shown in figure 2, lies at the heart
of the system and drives the different modules of the SoNS
architecture; it parses the constraints specified by an
application, discovers matching resources by invoking the

resource discovery module, invokes the evaluator module to
evaluate the suitability of any matching resources, and
finally, in the case when a new resource becomes a better
choice for the application, notifies the application and
requests the connection migration module to migrate the
connection to the new resource.

In order to allow this processing to be accounted on a
per-connection basis, SoNS system forks a new Interpreter
for every Service-oriented network socket created by an
application.

3.2 SoNS Inter face

SoNS is designed as an extension of the operating
system socket interface; it implements all the methods and
options of a traditional AF_INET Unix socket, with
additional options for establishing service-oriented network
connections.

A service-oriented network socket extends a traditional
network socket in the following ways:
1) The call to create an operating system socket accepts an

additional domain, AF_SONS, for creating a service-
oriented network socket. AF_SONS extends an AF_INET
socket and allows an application to choose between
(sock_stream) and UDP (sock_datagram) as the transport
protocol for a service-oriented session, including support
for the various options associated with these transport
protocols e.g. TCP_NO_DELAY for TCP.

2) The connect method of a service-oriented network socket
takes a high-level service description, instead of a
network address, to establish a service-oriented network
session. The service description is expressed in a simple
constraint language, described in detail later in the
section.

3) A service-oriented network socket can be configured with
four additional options (as arguments to setsockopt),
context, agility, hysteresis and application-callback, to
tailor the session rebinding semantics according to
application requirements.

4) Finally, when configured with the optional application-
callback, a service-oriented network socket invokes a
callback method to notify (and seek permission of) the
application before rebinding a network connection to a
better alternative.

Discovery
Module

Interpreter

Evaluator
Connection
Migration

1. Query 2. List of
matching
Resources

3. Resource
Descriptions

4. Score s
5. Address

of new
resource

Figure 2: The SoNS Inerpreter drives the different
components in the system

Operating System

Evaluator
Connection migration

module

SoNS
Wrapper/Interpr eter

Socket Structure

Resource
Discovery System

Discovery
Protocol

Scoring
Policy

Figure 1: SoNS System Architecture

3.3 SoNS Constraint Language.

Though previous resource discovery systems offer
varying degrees of sophistication for looking-up resources
based on their attributes [9][4], these systems do not offer
support for evaluating and comparing the suitability of
matching resources against application requirements. SoNS,
on the other hand, allows applications to specify the criteria
for discovering, evaluating and comparing the available
alternatives as a set of constraints expressed in a simple
constraint language.

Though several sophisticated constraint languages have
been proposed in other problem domains [10], the constraint
language used to express a service-requirement in the SoNS
system achieves a delicate balance between the
expressiveness required for evaluating the suitability of
available service-providers and the simplicity of design
necessitated by the paucity of resources available in a mobile
device.

The grammar for the SoNS constraint language is shown
in figure 3. An expression in the SoNS constraint language
lists the attributes that must be present in the selected
resource, along with a range of acceptable values for each
attribute. In order to define an evaluation and comparison
criterion, a constraint also includes an operator, (less-than
“<” , or greater-than “>”), to indicate the preferred extreme
in the range of acceptable values; resources with attribute
values closer to the preferred extreme are favored over the
resources with values further away towards the other
extreme. This approach of allowing an application to express
its requirement as a range of acceptable values, instead of a
single scalar value, has the following merits. 1) It provides
the flexibility to satisfy the requirements of an application

with imperfect resources in its environment 2) It provides the
system with a yardstick to compare and evaluate the
matching resources against application requirements. 3) It
encourages an application to explicitly declare its scale of
tolerance for an attribute value; a change k in a range L

�
is more significant than the same amount of change k in a
larger range, L �������	��

In the case where an application is interested in the least
or the greatest value for an attribute, irrespective of the
specific value of the attribute, the application can leave the
range unspecified. This could be used by an application to,
for example, connect to the least loaded server in its
environment, expressed as “< load” .

SoNS also allows open ended ranges in the case where
the application is interested in having an attribute value to be
greater than (or lower than) a certain threshold, but perceives
no marginal gain as the value of the attribute moves further
away from the specified threshold. SoNS handles this case
by treating the unbounded end of a range as 0 or a large
positive integer, depending on which side of the range is
unspecified.

Not all attributes of a resource required by an
application are of the same importance to the application.
SoNS handles this requirement by allowing an application to
specify the relative importance of the listed attributes by
attaching a (integer) weight with every attribute; an attribute
with a weight of 4 is twice as important to an application as
an attribute with a weight of 2.

Attributes that are allowed to have only a single value,
including the attributes with textual values, use an equality (
“ =”) operator and do not specify a range or attach a weight
to the attribute; a resource description that does not match an
equality constraint is simply rejected. Attributes that must be
present in a matching resource, but whose value is not of
interest to the application, are specified as a don’ t care value,
stated as ANY.

Finally, the constraint language includes two logical
operators, conjunction and disjunction, to allow individual
constraint-expressions to be combined into a composite
constraint specification. A composite constraint specification
can have a hierarchical structure; constraints can be grouped
(associated) and nested using braces, and the logical
operators are distributed over nested constraints when
evaluating a constraint.

ConstSpec = Nested | Cmplx | Smpl
Nested = Cmplx (Cmplx+)
Cmplx = (Logical (Smpl Smpl+))
Smpl = (Relation Attribute) |
 (Relation Attribute Range |
Value) |
 (Relation Attribute Range |
Value) Weight

Logical = AND | OR
Relation = < | > | =
Attribute = String
Weight = Integer
Range = Numeric Numeric
Value = String | Numeric
String = [a-z]+[a-z1-9]*
Numeric = Integer | Float
Integer = [1-9]+
Float = [1-9]+.[1-9]*

Figure 3: Constraints Language for SoNS

(and (= device display)
 (> (size 15 30)
 (= color yes)
 (or (> video-streams 1)
 (= load 0)))

Figure 4: An example constraint specification
expressed in the SoNS constraint language

To illustrate the expressiveness of the SoNS constraint
language, we show how the requirements of a follow-me-
video application, presented in section 2, will be expressed
in our language. Such an application can impose the
following constraints on the display used by it. 1) The
display must be more than 15 inches in size, for clear
viewing, but less than 30 inches, due to the resolution
limitations of the video-encoding scheme, 2) it must be
capable of rendering colors, 3) and should be either capable
of displaying more than one video-stream simultaneously
(e.g. picture in a picture capability) or must not already be
used by another application. These requirements would be
expressed in the SoNS constraint language as shown in
figure 4. It is worth noting that the use of an open-ended
range for the number of video-streams supported by the
display device implies that the application is indifferent to
the number of streams being displayed on the screen. If the
application prefers to use a less cluttered screen, it will
provide a closed range, and will use the “<”operator to
indicate that a display capable of showing fewer streams is
preferable. Therefore, the use of a range to express a
constraint, in fact, encourages an application to be more
precise in defining the, often assumed, precincts of context-
awareness.

3.4 Semantics of Session Rebinding

Besides the constraints specified by an application to
define the criteria for comparing available resources against
application requirements, SoNS also allows an application to
tailor the semantics of rebinding the network session by
controlling the parameters for detecting and reacting to
changes in the system.

In order to detect and react to changes according to
application requirements, the system must be aware of the
scope (context) within which the application is interested to
monitor changes, the frequency with which the application is
interested to monitor changes, and an indication of what the
application considers to be a significant change worthy of
triggering a potential switchover to another resource.

SoNS allows an application to incorporate its policies
for handling the changes in the system as options to a
service-oriented network socket. A service-oriented network
socket takes four additional options as arguments to the
setsockopt library call.

Context: An application can specify its context as a sub-
net address, location of the looked-up resources, number of
network hops traversed by a discovery message or any other
metric meaningful for the discovery protocols part of the
SoNS architecture. For example, the current implementation
adjusts the SCOPE of an SLP [9] network query to limit the
context of the discovery.

Agility: An application can specify the agility with
which it reacts to changes in the system by adjusting the
frequency to probe the system for changes. The agility is
specified as the interval between successive probes, stated in
seconds.

Hysteresis: An application can keep the system from
reacting to transient changes, not of interest to the
application, by specifying a value for hysteresis. The
hysteresis is stated in terms of the number of probes for
which an application requires the properties of the resources
in its context to be consistent before SoNS (notifies an
application and) switches the connection to a better
alternative. This protects the system against thrashing under
the fluctuating characteristics of a mobile system.

Application-Callback: Finally, an application can
register a callback with the socket, which, if registered, is
used to notify the application when a better alternative
becomes available. This notification, parameterized with the
description (including the network address) of the new
resource, can be used by an application to prepare itself to
switchover to the new resource or to reject the change by
returning a false value from the callback. It is worth noting
that since a connection migration can only happen when the
application returns control from the call-back, the application
can use the call-back to delay the migration to a “migration-
safe” point in its control flow.

 (or

(> (a 1 2)1)

(and

(< (b 0 9)2)
 (= (c 9)1)) int connect(int fd, struct sockaddr * addr)

or

and

<
range:[0 - 9]

attr: b
weight: 2

>
range:[1 - 2]

attr: a
weight: 1

=
range:[0 - 9]

attr: c
weight: 1

Attribute
 Value

 a
 1.5
b
 3
c
 10

or

and

<
range:[0 - 9]

attr: b
weight: 2

>
range:[1 - 2]

attr: a
weight: 1

=
range:[0 - 9]

attr: c
weight: 1

0 .66

0 .5

.5

Figure 5: An illustration of constraint parsing and evaluation by the SoNS Interpreter

4 Constraint Parsing
The constraints specified by an application are used both

for discovering and evaluating resources in the context of an
application. To accomplish this, the constraints are parsed
into a tree data-structure, which serves as an in-core
representation of the application requirements for
discovering and evaluating resource descriptions.

Constraints are read as a plain-text string from the
sockaddr_sons structure passed by the application in a
connect()socket call. The string is then parsed using a
standard GNU Flex/Bison lexer/parser into a constraint tree.
The parser makes a distinction between composite
constraints and simple constraints. A simple constraint
specifies a range over a single attribute and, hence, can be
evaluated independently of other constraints. Composite
constraint specifications, on the other hand, can contain
nested constraints and are composed by using logical
operators, i.e. disjunctions (OR) and conjunctions (AND).

Given a composite constraint specification, the parser
organizes the constraint tree such that the leaves are simple
constraints that can be evaluated in isolation from other
constraints, while intermediate nodes represent conjunctions
or disjunctions of their children nodes (see figure 5).
Therefore, the value of an intermediate node in the tree
depends on the values of its children nodes, while the root of
the tree represents the entire composite constraint
specification stated by an application.

While constructing the constraint tree, the parser also
fills-in any missing bounds, 0 for less than constraints and a
large integer for greater than constraints, as well as missing
weights with a default of 1.

5 Resource Discovery
After constructing a constraint tree, the SoNS interpreter

invokes the discovery module with the list of attributes at the
leaves of the constraint tree. The discovery module invokes
the discovery protocols registered with it and returns the
matching resource descriptions to the interpreter.

The interpreter then passes this list to the evaluator
module, which assigns each resource a score by comparing
the values of its attributes against the constraints stored in
the constraint tree. The evaluator invalidates the resource
descriptions with attribute values outside the range specified
by the application, as well as the resources that fail to meet
an equality constraint.

After the initial setup, this procedure is repeated every
time the probe period specified by the application expires.
An application can also force a probe/evaluate cycle, for
instance on the command of a user. After receiving the score
for each resource, the interpreter removes all the resource
descriptions that were rejected and forms the “n-best-list” for
the probe. If the application forced the probe (by invoking
connect on an already connected socket), then the resource
with the highest score is chosen from the n-best-list and the
socket is migrated to its network address (just like the initial

setup). However, if the probe was a normal periodic probe,
the system enters the hysteresis phase. In the hysteresis
phase the n-best-list from one probe/evaluate cycle is
compared to the n-best-list stored from the previous cycle
and the resources present in both new and old probes have
their hysteresis value increased by one. Resource(s) with a
hysteresis value greater than the hysteresis value specified by
the application are separated and the connection is migrated
to the network address of the resource with the highest score.
In the case where an application has registered a call-back,
SoNS invokes the callback method, with the description of
the chosen resource, before performing the migration, and
migrates only if the application-callback returns a true value
(indicating application’s approval of the connection
migration). Upon migration of the network connection, the
n-best-list is reset and the process is started anew.

5.1 SoNS Resource Discovery Framework

Our target network environment often comprises of
resources conforming to different resource discovery
protocols, e.g. IETF SLP [9], INS [4] and SSDP [11], due to
both commercial and technical reasons. Therefore, a service
discovery framework based on just a single discovery
protocol is not sufficient to discover the various resources
found in a pervasive mobile system.

SoNS handles this heterogeneity by defining an
extensible resource discovery framework, capable of
employing different discovery protocols to discover
resources in the system. A discovery protocol is added to
SoNS by registering a pointer to its look-up method, while
SoNS performs resource discovery by invoking the look-up
methods of all the discovery protocol registered with it.

However, various discovery protocols found in our
target environment offer different degrees of expressiveness
for looking-up resources in the system. Protocols like INS
[4] and SSDP [11] simply take a list of attributes and match
them with the attributes of the resources being looked-up,
whereas more sophisticated protocols like SLP [9] and SSDS
[3] can perform complex queries containing conjunctions
and disjunctions on nested lists of attributes, as well as range
comparisons for attributes with numerical values. In order
to interoperate with such diverse protocols, SoNS translates
a service specification to a very basic query format common
to all discovery protocols.

SoNS resource discovery framework invokes a
constituent discovery protocol with a simple list of ASCII-
encoded attribute names, constructed by taking the attribute
names from the leaves of the constraint tree created by the
SoNS parser. Upon invocation, a discovery protocol finds
the resources containing the specified attributes, and returns
their descriptions in a list of feature-sets: sets of attribute-
value pairs. The matching resource descriptions, encoded as
feature-sets, are passed on to the evaluator module to
evaluate their suitability against the constraints specified by
an application.

It is worth noting that, in order to achieve compatibility
with simpler protocols, this scheme does not require any
filtering involving value comparisons to be performed by a
discovery protocol. Rather, discovery protocols look-up
resources by simply performing a pattern match on the
specified attributes, and the suitability of a resource, based
on the values of the looked-up attributes, is computed in the
SoNS evaluator module.

Passing a query as a simple ASCII-encoded list of
required attributes also has the virtue that it can be easily
converted to a more ornate format, by a simple wrapper
around the lookup interface, if required by a more
sophisticated discovery protocol.

5.2 Context of Discovery

Along with a pointer to a look-up method, a discovery
protocol can also register a pointer to a method for setting
the scope of the network queries generated by the discovery
protocol. This method is invoked by SoNS when an
application specifies a context of interest as an option to a
service-oriented network socket. For example, SLP and
SSDS register a pointer to a method that sets the value of
SCOPE of the discovery agent to configure the context of the
network queries. Though some simpler protocols, e.g. SSDP,
lack support for scoped queries, and hence, do not register
this method, we believe that such support is the key to the
scalability of a pervasive discovery protocol and will soon
find its way in mainstream discovery protocols.

5.3 Probing vs. Adver tising

A mobile device wishing to discover resources in its
environment can either passively listen to advertisements by
other resource in the system or can actively probe the
network with periodic discovery messages.

SoNS uses active probing as it makes it simpler to
support application-level semantics for session-rebinding.
Applications configure the session rebinding semantics by
setting 1) the frequency of probing, to adjust the agility with
which resources are discovered, 2) the scope of a probe
message, to adjust the discovery context and 3) the number
of probes for which the properties of a resource must be
consistent, to set the hysteresis of the system.

We favor probing over advertisements because in an
advertisement based system the scope and frequency of the
messages generated by a resource to advertise itself to the
system cannot be adjusted to suit the requirements of any
single application. Furthermore, with resource
advertisements arriving asynchronously at different
frequencies from various resources, there is no clean way to
specify the hysteresis of the system.

From a design point of view, in an advertisement-based
system, where resources are required to continuously
advertise themselves to the system in the hope that some
application might be interested, introduces a continuous
overhead of network messages and processing of
advertisement messages even when there is no application
listening to the advertisements.

Finally, probing is supported by all the resource
discovery protocols found in our target environment (though
some protocols can also be configured to operate in an
advertisement-based mode).

5.4 Directory-based versus Peer-to-peer Discovery

Resources can either respond to queries directly, in a
peer-to-peer setup, or could register their descriptions with a
directory service which could be searched to locate
resources.

SoNS’ extensible design does not impose a restriction
on which of the two methods is employed by a constituent
discovery protocol to discover resources in the system.
However, we believe that a peer-to-peer model is more
suitable for supporting application-specific session
rebinding.

Though a directory-based setup avoids query broadcasts,
and, hence, presents a more scalable design, it suffers from
the following limitations in a dynamically changing system.
1) A directory-based architecture depends on the availability
of host(s) in the system that is capable and willing to answer
queries on behalf of other resources. 2) A directory-based
scheme introduces the overhead of keeping the directory
state consistent with the (oft-changing) properties of
resources in the system. 3) The directory service can itself
cause a bottleneck in the system. A peer-to-peer model, on
the other hand, does not depend on the availability and
consistency of an external service to access resources in the
system, and is, hence, better suited to the high degree of
dynamism in a mobile system. Furthermore, since in a peer-
to-peer setup resources themselves report their, up-to-date,
properties, the rate of probing provides an accurate mapping
for the rate of adaptation expected by the application; this
can only be guaranteed in a directory based system when the
directory service is always consistent with the changes in
resource properties.

6 SoNS Evaluator Module
The discovery framework returns all the matching

resource descriptions returned by the various discovery
protocol to the interpeter, which passes these resource
descriptions to the evaluator module.

SoNS evaluator module performs the planning required
to select the resource, among the available alternatives, that
comes closest to satisfying the service requirements of an
application.

To motivate the evaluation strategy used by the SoNS
evaluator module, consider a situation where the follow-me-
video application mentioned above moves into an
environment with two displays: one closer to the handheld
device but the other larger in size and with better resolution.
In this situation, there is no clear winner (that is better than
all the other available alternatives in every aspect). A naïve
solution could be to count the number of attributes for which
a resource “beats” other alternatives and pick the resource
with the maximum number of “wins” . However, such a

solution not only leads to a combinatorial explosion but also
requires every sample of attribute values to be kept for later
comparisons according to application’s hysteresis
requirements.

SoNS evaluator is deigned to be simple and
responsiveness to changes and does not require the attribute
values of every resource to be preserved across multiple
probes. SoNS achieves this by using a simple scoring
scheme which sums-up the suitability of a resource in a
single scalar value for efficient comparisons.

SoNS evaluator takes a list of feature-sets, along with
the application’s constraint tree, and returns a corresponding
list of positive integer scores reflecting the suitability of each
resource. A resource with an attribute that fails to meet an
equality constraint or has a numerical value outside the range
specified by an application is assigned a score of zero.

Figure 5 shows the operation of the default SoNS
evaluator. SoNS’ default evaluator performs a depth-first
search of the constraint tree. On reaching a simple constraint
at a leaf node, it extracts the value of the corresponding
attribute from the resource’s feature-set and compares the
value with the range specified in the constraint. If the value
satisfies the constraint, then a score between 0 and 1 is
calculated based on where the value falls in the valid range.
If the constraint specifies that smaller is better, then a value
equal to the lower bound is assigned score 1 and a value
equal to the upper bound is assigned score 0, with all other
values being assigned linearly within that range. The reverse
occurs for constraints indicating that larger values are better.
If the constraint specifies only equality or the ANY keyword,
then any value fitting the constraint is given a score of 1.
Finally, the score is multiplied by the constraint’s weight and
returned as the value of that leaf node.

After assigning scores to the leaf nodes, scores for the
intermediate nodes, containing conjunctions and
disjunctions, are calculated using the following algorithm.
An OR node acquires the score of a child node with the
highest score in its sub-tree, while a score of zero is assigned
if all of its children nodes have a score of zero. An AND
node is evaluated in a complimentary way: the score of an
AND node is calculated by adding the scores assigned to its
child nodes, while any child node with a score of zero causes
the AND node to be assigned a score of zero. The overall
score of a resource is the score calculated for the root of the
constraint tree using the attribute values in the resource’s
feature-set.

We have found this simple evaluation strategy to be
sufficient for our purposes for the following two reasons. 1)
It keeps the design of SoNS simple enough to be hosted in
resource constrained mobile devices and 2) the simplicity of
the algorithm used for evaluating and comparing the
available alternatives incurs minimal penalty in terms of the
responsiveness of the system; where a more elaborate
scheme could be used for comparing the suitability of
available alternatives, it would increase the time spent in
evaluating a resource, resulting in an increased latency

between the time a viable resource become available and
when the system recognizes its superiority.

As described earlier, the scores returned at each probe
are compared by the Interpreter according to the hysteresis
semantics of the application and a winner is chosen if a
resource consistently scores better than other resources.

The extensible design of SoNS also allows the default
evaluation policy to be replaced by more efficient or
specialized algorithms better suited to individual application
requirements. An application can replace the default
evaluation policy by registering a pointer to an application-
specific evaluator with the SoNS evaluation module. This
allows more involved constraint satisfaction engines, for
example as proposed in [12], to be employed for calculating
the relative utility of available resources. Such planning and
constraint satisfaction systems are a topic of our current
research.

7 Connection Migration Module
Once a better resource has been selected, the SoNS

Interpreter requests the connection migration module to
migrate the network connection to the new resource.

The semantics of migrating the network connection
from one resource to another depend on both the stateful-
ness of the service being accessed and the reliability
guarantees offered by the underlying message transport
protocol [13]. Migration of an unreliable network connection
to a stateless service is accomplished by simply closing the
old network connection and opening a fresh connection to
the new resource. However, additional support is required
for migrating reliable connections and for managing stateful
services [13]. Migration of a reliable connection requires
support for preserving the sequence of messages across
migration, while a connection to a stateful service can be
migrated transparently across resources only when the state
accessed at the old resource is also available at the new
resource in the form that the access to the service can be
resumed at the new host from where it left-off at the old
resource.

The former requires a reliable transport protocol with
support for migrating an active connection, while the later
also requires a system for distributing and maintaining
consistent state across replicated instances of a stateful
service.

This paper focuses on enabling a client to utilize the best
provider of a service in its changing context; the subject of
replicating and synchronizing stateful services has been
extensively researched by others [14] and is not covered in
this paper.

SoNS uses the Migrate system [15] for migrating
network connections between resources. We chose the
migrate system as it provides support for securely migrating
both reliable and unreliable network connections, as well as
a lightweight, soft-state based consistency management
system to support connection migration across stateful
servers. Unlike other connection migration systems, like

SCTP[16], that require the network addresses of all the
potential servers to be known at connection setup time,
Migrate allows a connection to be migrated to a newly
available server using the TCP migrate options. Having said
this, the modular design of SoNS allows other connection-
migration systems to be used as well, though we have not
integrated other such systems with SoNS as yet.

8 Applications
This section describes the API of SoNS and a simple,

yet representative, application we have developed to
demonstrate the utility of service-oriented network
connections offered by the SoNS architecture.

An application wishing to open a service-oriented
network connection creates a socket of domain AF_SoNS. To
configure the semantics of session-rebinding, the application
uses the setsockopt call to specify the values for context,
agility and hystersis. Agility is specified as seconds between
successive probes, hysteresis is specified as (an integer)
number of probes for which attribute values should be
consistent, and context, in the current implementation, is
specified as SCOPE of an SLP query. The application can
also register a call-back method, as a pointer to a method,
which, if specified, is invoked by the SoNS Interpreter if a
better alternative becomes available.

After configuring the socket with appropriate values for
session-rebinding, the application calls connect on the socket
with a composite constraint specification describing the
service.

Our test applications were developed for a Compaq
iPAQ, fitted with a backPaQ and running familiar Linux.
Our backPAQ is fitted with an 802.11b wireless card, video-
camera, accelerometer and the Cricket Location detection
system [17].

8.1 Follow-me-video

We have used SoNS to develop a follow-me-video
application. A follow-me-video application running in a
handheld device carried by a user re-directs the video stream
to the display closest to the user as she moves in the system.
In our test environment, all resources (server devices) are
also fixed with Cricket Beacons to measure their distance
relative to other Cricket-enabled devices (including our
handheld device).

The relevant code snippet from our example application
is shown in figure 6.

Our example application generates an MPEG-1 encoded
stream and in interested in displays located only on the 6th
floor of our building with the following properties. 1)
Device: Display, 2) Media-type: MPEG-1, 3) Resolution:
640x800 – 1280x1600 (with preference for displays with
higher resolution), 4) Size: larger than 15 inches to allow
viewing from a distance, but less than 30 inches due to the
limitation of the encoding resolution (with preference for a
larger display) 5) Distance: closest to the handheld device.
The application creates an AF_SONS domain socket, and

specifies the following options: Context: 6th-Floor, Agility: 5
(seconds between probes), Hysteresis: 3 (number of probes),
Call-back: pointer to method that forced a base frame to be
transmitted. The application then connects the socket by
giving it a composite constraint specification for the
properties of the display device.

SoNS sets the SCOPE of the SLP user agent to 6th-
Floor, probes the network for display devices, and connects
to a display that scores the highest points among those
present on the 6th floor. The distance to a display device is
measured by invoking the Cricket location system (added to
the system just like another discovery protocol). After
making the initial connection, the network is probed, using

int main(int argc, char ** argv) {
 int sockfd;
 int intopt;
 char * charopt;
 size_t opt_sz;
 sons_callback_t cbsons;
 struct sockaddr_sons sasons;

 sockfd = socket(AF_SONS, SOCK_STREAM, 0);

 intopt = 5;
 opt_sz = sizeof(int);
 setsockopt(sockfd, SOL_SOCKET,
 SO_PROBE_PERIOD, &intopt, opt_sz);

 intopt = 3;
 opt_sz = sizeof(int);
 setsockopt(sockfd, SOL_SOCKET,
 SO_HYSTERESIS, &intopt, opt_sz);

 charopt = "floor-6";
 opt_sz = strlen(charopt) + 1;
 setsockopt(sockfd, SOL_SOCKET,
 SO_SERVICE_SCOPE, charopt, opt_sz);

 cbsons = force_b_frame();
 opt_sz = sizeof(sons_callback_t);
 setsockopt(sockfd, SOL_SOCKET,
 SO_CALLBACK, &cbsons, opt_sz);

 charopt =
 "(= service display)\n”
 “ (= media mpeg1) \n"
 "(and (> xresolution 800 1600) \n"
 " (> yresolution 640 1280)) \n"
 "(> displaysize 15 30) \n"
 "(< distance)";
 sasons.sin_family = AF_SONS;
 memcpy(sasons.query, charopt,
 strlen(charopt));
 connect(sockfd, (struct sockaddr *) &sasons,
 sizeof(struct sockaddr_sons));

 //...read and write using standard socket
 // calls...

 close(sockfd);

 return 0;
}

Figure 6: Code snippet from the follow-me-video
application developed using SoNS.

SLP and Cricket, every 5 sec and available resources are
compared according to the hysteresis. If a better display
becomes available, SoNS invokes the application callback,
which forces a base MPEG frame to be transmitted upon
migration, so that the playing of video at the new display can
be resumed without jitter.

Our example application also monitors the
accelerometer embedded in the backPAQ to find out if the
device is moving and with what speed. If the application
discovers that the handheld device is mobile, the application
can increase the rate of probing and reduce the hystersis
value, according to the degree of movement reported by the
accelerometer, in order to take advantage of the displays that
become available for a short time when, for example, a user
walks down a hallway.

9 Implementation
SoNS was implemented in GNU C/C++ on GNU/Linux.

The code is divided into four modules: the socket interface
library, SoNS interpreter, wrappers for the resource
discovery protocols, and the evaluator module.

9.1 Socket L ibrary

The socket library code overrides the socket interface to
offer the extended SoNS interface, and spawns an interpreter
daemon to periodically discover and evaluate available
resources.

In order to provide an extended interface, we either
needed to modify the underlying Linux libc or use a package
that captures system calls and redirects them through other
functions. We chose the latter route and specifically chose
to use TESLA [18]. TESLA allows arbitrary handlers to be
inserted between an application’s socket call and the
underlying socket kernel calls, precisely matching our needs.
Furthermore, the Migrate architecture, which we use for
connection migration, also uses TESLA, so the overhead of
using TESLA would be present in our system anyway.

We wrote TESLA handlers to override the calls to
socket(), connect(), getsockopt(), setsockopt(), and close()
functions.

The most interesting overridden call is connect(). The
connect call exercises the entire system since it sends a
message to the interpreter daemon telling it to force a
network probe, then picks the best service, and finally calls
connect on the underlying socket structure. getsockopt() and

setsockopt() simply update socket-related data in the
daemon.

The interpreter daemon itself merely sits in a loop
waiting either for an event from the TESLA handler or an
alarm signal indicating that it should perform a periodic
poll/evaluate cycle.

9.2 Resource Discovery Protocols

The interpreter invokes the run_query method of all the
discovery protocols registered with it. The run query method
takes an array of required attribute names and returns a list
of attribute-value bindings. This method is the sole interface
between the interpreter and the discovery protocols so that
discovery protocols can be easily added/replaced.

The current implementation employs two discovery
protocols to find resources in the system: IETF Service
Location Protocol [9] and the Cricket Location System [17]
(for estimating distance to available resources). We use the
OpenSLP implementation of SLP, with the User Agent
configured to perform discovery in a peer-to-peer fashion, by
multicasting the query on the SLP multicast channel.

10 Performance Analysis and
Evaluation

Unlike content-based routing systems, the session-
oriented approach of SoNS moves the cost of resolving
service descriptions from the critical path of a network
message delivery to the stage of establishing and,
subsequently, rebinding a network session. Therefore, we
evaluate the performance of SoNS by measuring 1) how
quickly it can setup a service-oriented network session and
2) how quickly it can rebind the network session when a
better alternative becomes available.

All tests were performed on a Pentium III with 256MB
of RAM running Linux 2.4. Since we wanted to isolate our
system from network latency, we used an in-memory stub
SLP rather than the OpenSLP SLP. We expect most
constraint specifications to have between 1 and 15 elements
and be a combination of both simple constraint specifications
and composite constraint specifications. Our tests span this
space: we vary the number of attributes in a straight-line set
of simple constraint specifications and also vary the height
of the tree of composite constraint specifications.

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Non-nested Constraints

"conn-simple"

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Nested Constraints

"conn-and"
"conn-or"

Figure 7: The cost of a connect() call (averaged over 100 tests) increases only linearly as the number of constraints is increased.

10.1 Session-setup Latency

The SoNS system adds latency in two places, at a
socket() call where we fork a daemon and initialize all the
discovery protocols installed in the system, and on a
connect() call where we must decide which device is the
best device available.

In all of our tests, the socket call took between 2ms and
5ms. This is fairly high, but represents the cost of forking a
process and all inter-process communication between the
daemon and the SoNS TESLA handler.

Figures 7 summarizes the cost of a connect call as we
varied the number of constraints. The cost of the connect
call increases only linearly as the number of constraints, both
nested and non-nested, are increased. The connect latencies
in our system hover around 1ms, which, though higher than
expected, is acceptable when amortized over the life of the
connection.

10.2 Session-rebinding Latency

Another form of latency shows itself as the time
between the discovery of a resource and signaling the
application that the SoNS system has found a new best
resource. Ideally, this should be zero, but we must evaluate
the services returned, which has a non-zero cost. Figure 8
show the time elapsed from when a call to run_query()
method returns — with matching resources on the network—
and when SoNS invokes the application-callback to notify
the presence of a better alternative (given the hysteresis
semantics). This latency again increases only linearly with
the number of constraints (both for nested and non-nested
constraints), and more importantly, hovers only around 200-
500µs of latency.

In order to achieve compatibility with simpler protocols,
SoNS does not require any filtering involving value
comparisons to be performed by a discovery protocol.
Instead, discovery protocols return all those resources that
contain the required attributes and the evaluator module
performs the value comparisons to compute the suitability of
matching resources. However, since all the value
comparisons in this scheme are performed by the evaluator
module, the evaluator must be able to efficiently compare a
moderately large number of matching resource descriptions.
Figure 9 shows the time spent in the evaluator module as we

increased the number of resource descriptions processed by
the evaluator. This cost increases only linearly and hovered
only between 0.8 – 1.0 msec in our tests.

The simplicity of our system makes it suitable for
mobile handheld device. The memory footprint of our
system varied between 0.8 MB to 1 MB during our
experiments.

10.3 Evaluation

Where our system achieves acceptable performance, we
found that the following implementation choices incurred
unwanted overhead:
• Per-socket interpreter daemon processes,
• Use of standard IPC between the socket wrapper and the

per process interpreter deamon, and
• fixed-point arithmetic.

Our implementation would be faster if we were able to
communicate with the daemon without copying through
interprocess communication channels. This could be
accomplished by using a thread library at the cost of making
our code less portable. Secondly, we maintain a separate
daemon process for each socket to allow for fine-grained
accounting. However, this is inefficient compared to an
implementation in which a single deamon process handles
the discover/evaluate cycles for all the sockets, since such an
implementation would save the cost of spawning a daemon
every time a socket is created, and might allow for
optimizations by batching queries by different applications.

Finally, our system is slowed down by the use of the
fixed-point math system we wrote for computing resource
scores. This is because the iPAQs we include in our target
platforms do not have floating point units and incur an order
of magnitude performance hit on floating point performance.
Since scoring and weighting is an inherently floating-point
process, we were forced to write our own, non-optimized,
implementation of fixed-point arithmetic. We are currently
working on a more efficient implementation in the light of
these observations.

11 Related Work
SoNS integrates a service-oriented abstraction with a

traditional operating system communication interface. Using
SoNS, applications open a network connection with an

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Non-nested Constraints

"hyst-simple"

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Nested Constraints

"hyst-and"
"hyst-or"

Figure 8: Latency (averaged over 50 tests) between the time a better alternative becomes available and the time SoNS realizes its
presence (and signals the application about its presence) for both non-nested and nested constraints.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14 16

C
on

ne
ct

 L
at

en
cy

 (
m

s)

Number of Returned Services

"hyst-match"

Figure 9: The hysteresis latency increases linearly with the
number of services returned by the SoNS discovery
framework.

abstract service specification, instead of a network address,
and the system automatically connects the application to the
most suitable server in its changing environment. SoNS
combines resource discovery and evaluation with a
connection migration system to provide application-specific
opportunistic access to service providers. SoNS’ modular
architecture can be extended with various resource
discovery, location-detection, and connection migration
protocols, and its evaluation policy can be customized to
individual application preferences.

Therefore, SoNS is designed to complement and
leverage recent research in resource discovery, location-
detection and connection migration protocols, not to replace
such systems. In fact, SoNS was motivated by the desire to
combine pervasive mobile computing technologies
developed for MIT’s Project Oxygen, e.g. INS, Migrate and
Cricket, to leverage context-aware applications in a mobile
handheld device.

The recent interest in pervasive computing
environments has given rise to a proliferation of systems that
allow resources to be dynamically discovered based on their
attributes. As opposed to the white-pages style lookup
offered by systems like DNS that simply resolve a resource
name to its network address, such systems do not require a
priori knowledge of some unique identifier of the resource,
like its network address, and hence can be used to
dynamically discover and utilize resources as they become
available in a pervasive system.

Such attribute-based resource discovery systems differ
in the format used by them to describe resource properties,
expressiveness offered by their look-up interfaces, whether
they offer push-based or pull-based discovery and whether
queries are mediated by a directory service or resolved in a
peer-to-peer fashion in the system. In addition to the
classical examples like Grapevine, GNS [19] and X.500
[20], a range of industrial standards like Microsoft’s UPnP
resource discovery protocol (SSDP) [11], IBM’s T-Spaces,

and IETF’s Service Location Protocol [9], and experimental
systems like MIT’s INS [4] and Berkeley’s SSDS [3] have
emerged over the last few years. For example, where SLP
offers a rich LDAP-based [20] query interface, systems like
INS and SSDP define simple attribute-based resolvers that
can be hosted in resource constrained mobile devices.

SoNS is designed such that different discovery protocols
can be added to its resource discovery module, possibly via a
simple wrapper function to covert the SoNS attribute list to
the specific format used by a discovery protocol, e.g. XML
(used by Berkeley’s SSDS).

Unlike existing resource discovery protocols that simply
match queries against resource descriptions, SoNS uses an
applications-specific evaluation framework that continuously
monitors, evaluates and compares the available alternatives
in order to pick the closest match to application
requirements. Indeed, the problem of satisfying high-level
requirements with imperfect resources has been extensively
researched in the AI domain [12]. However, where systems
like MetaGlue [12] propose to use general-purpose
constraint satisfaction engines over complex utility
functions, SoNS default evaluator is designed to be simple
and responsive to changes in the system.

Content-based routing systems like INS’s late binding
architecture [4] and Information Bus [21], as well as
application-level anycast routing systems like [8], allow
applications to send messages without specifying the
network address of the recipient, and route the messages to
the appropriate server by looking at the content of each
network message and matching that with the properties of
the available servers. Where such systems offer an
alternative to our approach, they inherently lack application-
level session semantics, do not offer a clean interface for
configuring the application-specific policy for resource
comparison and session-rebinding, introduce the overhead of
resolving service descriptions within the critical path of
every message delivery, and, by defining their own routing
framework, do not leverage the support for QoS offered by
the underlying network.

Our architecture is based on our previous research in
context-aware operating systems. An operating system
instrumented with SoNS makes it simpler to develop,
otherwise non-trivial, context-aware applications e.g. follow-
me-media applications, as well as various forms of context-
driven browsers and context-mapped user interfaces.

12 Conclusions and Future Work
This paper establishes the need for service-oriented

network connection, and presents the design and
implementation of the SoNS system. SoNS presents an
application with an extended socket interface to open a
service-oriented network connection by providing a high-
level service-specification. When asked to establish a
connection, SoNS discovers the available resources and
connects the application to the resource that best provides
that service in its context. Once connected, SoNS

continuously monitors, compares, and evaluates available
alternatives, and reconnects the application to a better
alternative if one becomes available.

As opposed to content-routing systems, SoNS moves the
cost of discovering and evaluating resources against
application requirements at the connection set-up time, and
allows the application to exercise control at the level of a
network session. Since the cost of discovery and selection in
SoNS is amortized over the life of the network session, it
allows SoNS to be significantly more sophisticated in terms
of expressiveness, evaluation and selection of available
resources, as compared to systems that perform message-
level service-selection-and-routing.

As SoNS integrates support for context-awareness with
a traditional operating system communication interface, we
have found it much simpler to use than other systems that
require the use of additional, and often several different [7],
APIs to build a context-aware application.

The design of SoNS pays special attention to
extensibility in order to take advantage of the wide range of
emerging technologies for resource discovery, location
detection and network connection migration.

Though we believe that SoNS has the potential to
become an integral part of future operating systems in a
pervasive computing environment, it relies on the wide-
spread deployment of network devices embedded with
service advertisement protocols, as well as the availability of
location detecting mechanisms to estimate the distance of a
user with the devices embedded in her context.

The current design of SoNS does not include a security
framework. Security in such a system is required at several
levels: to protect resources against illegitimate access, to
protect the SoNS system against malicious extensions, and to
protect the connection migration system against connection
hijacking. Though some discovery protocols, like SSDS and
SLP, and connection migration schemes, like Migrate, define
their own security models, we are currently investigating an
extensible security framework that would allow security
policies to be defined independently of the constituent
modules.

SoNS makes it simpler to develop context-aware
applications. Our experience with SoNS has shown us that
unlike message-based routing systems that are better suited
to command-based applications e.g. “sending a document to
the nearest printer” , SoNS is equally useful for connection-
oriented applications as well, e.g. follow-me-video/audio.
We are currently developing more applications to
demonstrate the utility of SoNS in pervasive mobile
environments.

References
1. Christopher K. Hess, Manuel Román, and Roy H. Campbell,

Building Applications for Ubiquitous Computing Environments,
International Conference on Pervasive Computing (Pervasive
2002), pp. 16-29, Zurich, Switzerland, August 26-28, 2002.

2. Esler, M., Hightower, J., Anderson, T., and Borriello, G. Next
Century Challenges: Data-Centric Networking for Invisible

Computing: The Portolano Project at the University of
Washington Mobicom 99

3. S. Czerwinski, B. Y. Zhao, T. Hodes, A.D. Joseph, and R. Katz.
An architecture for a secure service discovery service. In Proc. of
MobiCom-99, pages 24-35, N.Y., August 1999

4. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan,
Jeremy Lilley, The design and implementation of an intentional
naming system, Proc. 17th ACM SOSP, Kiawah Island, SC,
Dec. 1999.

5. David Garlan, Dan Siewiorek, Asim Smailagic, and Peter
Steenkiste, Project Aura: Towards Distraction-Free Pervasive
Computing IEEE Pervasive Computing, special issue on
"Integrated Pervasive Computing Environments", Volume 1,
Number 2, April-June 2002, pages 22-31.

6. C. Perkins and P. Bhagwat, A Mobile Networking System Based
on Internet Protocol, IEEE Personal Communications, Vol. 1, No.
1, pp. 32-41, March 1994.

7. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The
anatomy of a context-aware application., Mobile Computing and
Networking. (1999) 59-68

8. S. Bhattacharjee, M. H. Ammar, E. W. Zegura, N. Shah, and Z.
Fei. Application Layer Anycasting. In Proc. IEEE INFOCOM'97,
1997

9. Erik Guttman. Service Location Protocol: Automatic Discovery of
IP Network Services. IEEE Internet Computing Journal, 3(4),
1999.

10. J. Jaffar and M. J. Maher. Constraint logic programming: A
survey. The Journal of Logic Programming, 19/20:503--582,
May/July 1994.

11. Universal Plug and Play, http://www.upnp.org
12. Krzysztof Gajos. Rascal - a Resource Manager for Multi Agent

Systems in Smart spaces. In Proceedings of CEEMAS 2001.
13. Alex C. Snoeren, David G. Andersen, and Hari Balakrishnan,

Fine-Grained Failover Using Connection Migration, Proc. 3rd
USENIX USITS, March 2001.

14. R. Golding. A Weak-Consistency Architecture for Distributed
Information Services. Computing Systems, 5(4):379--405, 1992.

15. Alex C. Snoeren and Hari Balakrishnan, An End-to-End
Approach to Host Mobility, Proc. 6th ACM MobiCom, August
2000

16. R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and
V. Paxson. Stream Control Transmission Protocol. RFC 2960,
IETF, Oct. 2000.

17. Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, Seth
Teller, The Cricket Compass for Context-Aware Mobile
Applications Proc. ACM MOBICOM Conf., Rome, Italy, July
2001.

18. Jon Salz, SM thesis, MIT. 2002, The Transparent Extensible
Session-Layer Architecture for End-to-End Network Services.

19. A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine:
An exercise in distributed computing. Comm. Of the ACM,
25(4):260–274, April 1982.

20. CCITT. The Directory—Overview of Concepts, Models and
Services, December 1988. X.500 series recommendations,
Geneva, Switzerland.

21. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus
(R) – An Architecture for Extensible Distributed Systems. In Proc.
ACM SOSP, pages 58–78, 1993.

22. MIT Project Oxygen, http://www.oxygen.lcs.mit.edu

