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Abstract 
This paper presents the design and implementation of 

service-oriented network sockets (SoNS) for accessing 
services in a dynamically changing networked environment. 
A service-oriented network socket takes a high-level 
description of a service and opportunistically connects to the 
best provider of that service in the changing characteristics 
of a mobile system. An application states its high-level 
service requirements as a set of constraints on the properties 
required in a suitable resource and SoNS continuously 
monitors, evaluates and compares the available resources 
and (re-)connects to the resource that best satisfies the 
specified constraints.  

Unlike content-based routing systems, SoNS is an end-
host system, interposed at the session-binding layer, and 
offers connection-oriented semantics. SoNS’  interface allows 
an application to tailor the planning policy used to establish 
and rebind a network session. SoNS is based on an 
extensible architecture to leverage the wide-range of 
emerging technologies for discovering and locating 
resources in a mobile system.    

SoNS integrates a service-oriented abstraction with the 
traditional operating system interface for accessing network 
services, making it simpler to develop pervasive, mobile 
applications. We present an implementation for a mobile 
handheld device, analyze the performance of our system and 
describe an application to demonstrate the utility of our 
system. 

1 Introduction 
Advances in digital electronics over the last decade have 

made computers faster, cheaper and smaller. This coupled 
with the revolution in communication technology has led to 
the development and rapid market growth of embedded 
devices equipped with network interfaces. It has also 
promoted the development and widespread use of battery-
operated portable computers, allowing users to carry their 
computation resources and tasks with them.  

These advances have led to the recent activity in 
pervasive systems [1][2]. MIT’s project Oxygen [22], and 
related pervasive computing projects elsewhere, aim to 
define computational environments that would allow users to 
carry their mobile handheld devices from one networked 
environment to another, possibly disconnected, environment 
while providing personalized ubiquitous access to services in 
the environment of the user.  

Such a system must be able to continuously adapt to 
changes in user locations and needs, respond both to 
component failures and newly available resources, and 
maintain continuity of service as the set of available 
resources change. This requires more than service discovery 
[3] or simple content-based routing [4]; it necessitates a 
certain degree of planning involving continuous reevaluation 
of available alternatives, as well as heuristic compromises to 
best address the application’s requirement using imperfect 
resources in the changing environment of the application [5]. 

Such opportunistic access to system resources is 
contrary to what is offered by traditional mobile systems [6] 
that aim to preserve access to a mobile host as the 
characteristics of the system change. Such systems do not 
cater to context-aware applications [5][1][2] that desire to 
access the best provider of a service (henceforth referred to 
as a resource) in their environment, rather than maintaining 
access to a particular host. 

Traditionally, such a context-aware application must 
itself provide the planning involved in accessing the best 
available service-provider in its environment. Such 
applications typically contain a planning component that 
continuously reevaluates the available alternatives and 
provides access to the best available service-provider. These 
planning components often employ a resource discovery 
system to find the available alternatives and use the 
operating system socket interface to establish and rebind 
network connections as better alternatives become available.  
Most context-aware and adaptive applications layered on top 
of traditional operating systems and network routing 
architectures are examples of this model [7]. 

Where the above-mentioned model has the virtue that 
the application is free to use any arbitrarily complex 
planning policy befitting its requirements, allowing the 
underlying system to be policy-neutral, it requires every 
application to be capable of discovering, monitoring, 
evaluating and comparing the available alternatives in order 
to utilize the best available service-provider in its 
environment. In a pervasive computing environment, where 
such opportunistic access to service-providers is a norm, it is 
clearly desirable to separate this complexity in a re-usable 
planning layer that can be employed by different 
applications to opportunistically access resources in a 
dynamically changing networked environment.   

Among the existing systems, the Intentional Naming 
System (INS) [4] comes closest to achieving this goal. The 
late binding architecture of INS allows an application to send 



intentional datagrams that carry a description of the 
properties of the required service, instead of the network 
address of a host, and an overlay of INS resolvers route these 
datagrams to the hosts that match the service description. 
Where this scheme of integrating service location and 
message routing alleviates an application from the task of 
continuously monitoring its environment and rebinding its 
network connections when a better alternative becomes 
available, INS provides limited planning for choosing the 
closest match to application requirements when more than 
one resource matches a service description. In this case INS 
simply relies on an application-level anycast to all the 
matching resources.  

Even though it is conceivable that a more elaborate 
scheme could lead to more informed routing decisions, this 
approach of handling the dynamism of the system at the 
routing level inherently suffers from the following problems.  
• The planning policy, used to select the best match to 

application requirements, is hidden from the application 
in the routing infrastructure and, worse, distributed in 
the network. Therefore, it cannot be tailored to suit the 
requirements of the various different applications found 
in a pervasive mobile system.  

• Such content-based routing systems [4][8] only provide 
connection-less datagram semantics; every datagram 
carries the required service description which is resolved 
by, often an overlay of, network resolvers to deliver the 
message to an appropriate host. Therefore, such systems 
lack application-level session semantics, in that there is 
no concept of an application-level connection; two 
successive datagrams generated by an application can be 
routed to two different hosts, transparently to the 
application. This coupled with the characteristic 
fluctuations in the performance of wireless links and 
mobile hosts, means that an application has little control 
over which resource gets accessed, precluding 
applications with inherently connection-oriented 
semantics e.g. multi-media streaming applications.  
Such a system is also prone to thrashing between 
service-providers in the presence of frequent 
performance fluctuations and node failures. 

• From a performance point of view, content-based 
routing, performed by resolving complex service 
descriptions at every hop in an overlay network, is 
considerably slower than traditional address-based 
network routing [4] since it introduces the cost of 
resolving a service description to a network address in 
the critical path of message delivery. Furthermore, 
including a full service description of the required 
service with every network message is wasteful of the 
scarce bandwidth available in a wireless network. 

• Finally, content-based routing systems introduce a new 
API for network communication [4][21], which is often 
different from the traditional operating system interface, 
for accessing services in the system.   

We propose Service-oriented Network Sockets (SoNS) 
to access services in a highly dynamic networked 
environment. A service-oriented network socket takes a 
high-level description of a service and opportunistically 
connects to the best provider of that service in the changing 
characteristics of a mobile system. An application states its 
requirements as a set of constraints on the properties 
required in a suitable resource and SoNS continuously 
monitors, evaluates and compares the available resources 
and (re-)connects to the resource that best satisfies the 
specified constraints.  

Unlike content-based routing systems, SoNS is an end-
host system, interposed at the session-binding layer, and 
offers connection-oriented semantics. Most importantly, 
SoNS allows an application to configure, and even replace, 
the planning policy used to evaluate and compare available 
alternatives and the semantics used for rebinding a network 
connection when a better alternative becomes available.  
SoNS integrates a service-oriented abstraction with the 
traditional operating system interface for accessing network 
services, making it simpler to develop pervasive mobile 
applications. 

We favor this approach over a content-based routing 
scheme as it handles the dynamism of a mobile system at the 
stage of binding a network connection at an end-host, and 
hence 1) offers connection-oriented semantics 2) does not 
introduce the overhead of resolving a service description in 
the critical path of network communication, 3) does not 
require a service description to be carried with every 
network message, and 4) does not require any changes to the 
network routing architecture.  

The rest of the paper is organized as follows. Section 2 
identifies the design goals for SoNS and Section 3 describes 
the architecture of SoNS. Section 4 describes the operation 
of the SoNS constraint  parser, section 5 describes the SoNS 
resource discovery framework, section 6 describes the 
architecture of the module used to evaluate resources and 
section 7 presents the support for network connection 
migration. In section 8 we describe the API exported by a 
service-oriented network socket and present a representative 
context-aware application built using SoNS. Section 9 
describes the implementation of SoNS for a mobile handheld 
device, and section 10 presents performance analysis and 
evaluation. Section 11 describes related work and, finally, in 
section 12 we conclude the paper and outline future 
directions of our research. 

2 Design Goals 
In order to identify the goals for a system designed to 

provide opportunistic access to services in a dynamically 
changing system, we consider a simple example application 
of such a system.  

In our example, a video-stream played by a user’s 
handheld device is automatically redirected to the nearest 
display as she moves in an environment populated with 
displays, possibly from different vendors and conforming to 



different standards. In order to provide this follow-me-video 
functionality, the application requires opportunistic access to 
a display that has 1) the least access latency, 2) a size of 
more then 15 inches, for clear viewing from a distance, but 
less than 30 inches, due to the resolution limitations of the 
video-encoding scheme, and 3) capable of rendering an 
MPEG-1 encoded video stream with a certain resolution. 
From among the displays that satisfy these constraints, the 
application prefers larger displays to smaller ones, and 
prefers higher resolution displays to the ones with lower 
resolution.  

Our follow-me-video is also only interested in the 
displays on the same subnet as the user. Furthermore, though 
the application requires access to a better display as soon as 
one becomes available, it would not like the video-stream to 
be switched between displays due to transient fluctuations in 
their access latency or when a display device is quickly 
carried passed it by another user. Moreover, the application 
must be notified before a session is migrated to a new 
resource so that, for instance, it can transfer some 
application-specific state to the new resource, to resume 
access to the service, or to even to decline the rebinding 
suggestion all together.  

In order to support such applications, our system must 
meet the following goals.  
• Resource Discovery and Selection:  The system must 

be able to discover resources based on a high-level 
service specification. Additionally, the system must 
define a planning framework capable of evaluating and 
comparing the properties of available alternatives in 
order to find the closest match to application 
requirements.    

• Expressiveness: An application must be able to state its 
requirements such that they can be used for both 
discovering and, subsequently, comparing the suitability 
of available alternatives.  An application must be able to 
state the attributes required in a suitable resource, the 
range of acceptable values for each attribute, the 
preferred values for an attribute and the relative 
importance of each attribute to the application.  

• Extensibility: In order to support a diverse set of 
applications in a variety of network characteristics and 
standards, the system must not enforce any fixed 
policies that could limit the use or efficacy of the 
system. Instead, the system must define an architecture 
that may be extended to handle different application 
requirements, network characteristics and standards.   

• Connection Rebinding Semantics: It must be possible 
for an application to configure the semantics of 
rebinding a network session when a better alternative 
becomes available.  Based on our target applications, we 
identify the following parameters to provide an 
application with the flexibility to configure the 
semantics of session rebinding.  
o Context It must be possible for an application to 

configure the context within which it wants to find 

the best resource for its requirements e.g. current 
subnet, current room.  

o Agility: It must be possible for an application to 
configure the agility with which it wants the system 
to react to valid changes in its context.  

o Hysteresis: It must be possible for an application to 
configure the hysteresis of the system, indicating 
how long the system should wait before reacting to a 
change, in order to avoid reacting to transient 
fluctuations that are not of interest to an application, 
and to protect against thrashing.  

o Application-notification: It must be possible for an 
application to register a call-back method, which is 
invoked by the system to notify the application about 
the availability of a better alternative. This 
notification can be used by the application to prepare 
for the rebinding of the network session. It must also 
be possible for the application to decline the 
suggestion of rebinding the session to the new 
resource. 

• Per formance: Where the system must include a 
planning function capable of evaluating and comparing 
a set of resources competing against application 
requirements, this planning task must be fast enough to 
quickly respond to changes in the system.  Furthermore, 
as our system is interposed at the operating system 
socket level, it must be comparable in performance with 
the traditional socket-based communication. Finally, it 
must not introduce an overhead for applications that do 
not require service-oriented communication.  

2.1 Service-or iented Network Sockets 

Our service-oriented network session layer includes an 
attribute-based discovery framework for discovering 
resources in the system, as well as an evaluator module for 
computing the suitability of available alternatives against 
application requirements. 

Since a network socket provides a portal between an 
application and the network communication support of an 
operating system, it presents a natural interface for 
incorporating application-level policies for establishing a 
service-oriented network connection by discovering and 
evaluating the available alternatives.  

Service-oriented Network Sockets offer an additional 
socket domain that takes a high-level service specification as 
the destination name and defines additional socket options to 
configure an application call-back, context, agility and 
hysteresis for the service-oriented network session. Using 
this interface, applications configure a network socket with 
an appropriate context, agility and hysteresis, and connect 
the socket by providing a service description, instead of a 
network address, to open a Service-oriented network session. 
Using these application-level semantics, SoNS locates the 
most appropriate resource in the given context and 
establishes a network connection. If any subsequent changes 
in the system render another resource more suitable for 



application requirements, in accordance with the agility and 
hysteresis semantics of the application, SoNS notifies the 
application and migrates the session to the better alternative.    

A service description is expressed as a set of constraints 
on the properties of an acceptable resource. As opposed to 
the resource discovery systems that find a resource by 
performing an exact pattern-match on its attribute-value 
pairs [3][4], the use of a constraint language in SoNS, for 
stating an evaluation criteria, offers the flexibility to evaluate 
and compare the alternatives available in a given context in 
order to find the closest match to the requirements of an 
application. 

The design of SoNS handles the heterogeneity of 
discovery standards and application requirements by using a 
modular and extensible architecture for resource discovery 
and evaluation. Protocols for discovering resources and the 
policy for evaluating available choices can be tailored 
according to the application requirements and discovery 
standards used by different resources.  

By handling the dynamism of the system at an end-
node, SoNS does not require any changes to the network 
routing infrastructure. Therefore, as opposed to systems that 
employ application-level content-based routing [4] to 
address the dynamism of the system, SoNS architecture does 
not introduce extra routing complexity in the participating 
nodes, achieves better performance, and leverages the 
underlying network support for quality-of-service.    

3 System Architecture 
Figure 1 shows the architecture of Service-oriented 

Network Sockets system. In order to facilitate application-
specific extensibility, portability, accounting and fault-
isolation, Service-oriented Network Sockets are 
implemented as a user-space wrapper around a traditional 
socket interface, instead of a kernel module. 

SoNS architecture has four components: a resource 
discovery module, an evaluator module, a connection 
migration module, and a socket-wrapper module. Below we 
describe these modules in detail.  

3.1 SoNS Interpreter  

The SoNS Interpreter, shown in figure 2, lies at the heart 
of the system and drives the different modules of the SoNS 
architecture; it parses the constraints specified by an 
application, discovers matching resources by invoking the 

resource discovery module, invokes the evaluator module to 
evaluate the suitability of any matching resources, and 
finally, in the case when a new resource becomes a better 
choice for the application, notifies the application and 
requests the connection migration module to migrate the 
connection to the new resource. 

In order to allow this processing to be accounted on a 
per-connection basis, SoNS system forks a new Interpreter 
for every Service-oriented network socket created by an 
application.  

3.2 SoNS Inter face 

SoNS is designed as an extension of the operating 
system socket interface; it implements all the methods and 
options of a traditional AF_INET Unix socket, with 
additional options for establishing service-oriented network 
connections.  

A service-oriented network socket extends a traditional 
network socket in the following ways: 
1) The call to create an operating system socket accepts an 

additional domain, AF_SONS, for creating a service-
oriented network socket. AF_SONS extends an AF_INET 
socket and allows an application to choose between 
(sock_stream) and UDP (sock_datagram) as the transport 
protocol for a service-oriented session, including support 
for the various options associated with these transport 
protocols e.g. TCP_NO_DELAY for TCP. 

2) The connect method of a service-oriented network socket 
takes a high-level service description, instead of a 
network address, to establish a service-oriented network 
session. The service description is expressed in a simple  
constraint language, described in detail later in the 
section.  

3) A service-oriented network socket can be configured with 
four additional options (as arguments to setsockopt), 
context, agility, hysteresis and application-callback, to 
tailor the session rebinding semantics according to 
application requirements.  

4) Finally, when configured with the optional application-
callback, a service-oriented network socket invokes a 
callback method to notify (and seek permission of) the 
application before rebinding a network connection to a 
better alternative.  
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Figure 1: SoNS System Architecture 



3.3 SoNS Constraint Language. 

Though previous resource discovery systems offer 
varying degrees of sophistication for looking-up resources 
based on their attributes [9][4], these systems do not offer 
support for evaluating and comparing the suitability of 
matching resources against application requirements.  SoNS, 
on the other hand, allows applications to specify the criteria 
for discovering, evaluating and comparing the available 
alternatives as a set of constraints expressed in a simple 
constraint language.  

Though several sophisticated constraint languages have 
been proposed in other problem domains [10], the constraint 
language used to express a service-requirement in the SoNS 
system achieves a delicate balance between the 
expressiveness required for evaluating the suitability of 
available service-providers and the simplicity of design 
necessitated by the paucity of resources available in a mobile 
device.  

The grammar for the SoNS constraint language is shown 
in figure 3. An expression in the SoNS constraint language 
lists the attributes that must be present in the selected 
resource, along with a range of acceptable values for each 
attribute. In order to define an evaluation and comparison 
criterion, a constraint also includes an operator, (less-than 
“<” , or greater-than “>” ), to indicate the preferred extreme 
in the range of acceptable values; resources with attribute 
values closer to the preferred extreme are favored over the 
resources with values further away towards the other 
extreme. This approach of allowing an application to express 
its requirement as a range of acceptable values, instead of a 
single scalar value, has the following merits. 1) It provides 
the flexibility to satisfy the requirements of an application 

with imperfect resources in its environment 2) It provides the 
system with a yardstick to compare and evaluate the 
matching resources against application requirements. 3) It 
encourages an application to explicitly declare its scale of 
tolerance for an attribute value; a change k in a range L 

�
is more significant than the same amount of change k in a 
larger range, L �������	��
  

In the case where an application is interested in the least 
or the greatest value for an attribute, irrespective of the 
specific value of the attribute, the application can leave the 
range unspecified. This could be used by an application to, 
for example, connect to the least loaded server in its 
environment, expressed as “< load” .   

SoNS also allows open ended ranges in the case where 
the application is interested in having an attribute value to be 
greater than (or lower than) a certain threshold, but perceives 
no marginal gain as the value of the attribute moves further 
away from the specified threshold. SoNS handles this case 
by treating the unbounded end of a range as 0 or a large 
positive integer, depending on which side of the range is 
unspecified.                

Not all attributes of a resource required by an 
application are of the same importance to the application. 
SoNS handles this requirement by allowing an application to 
specify the relative importance of the listed attributes by 
attaching a (integer) weight with every attribute; an attribute 
with a weight of 4 is twice as important to an application as 
an attribute with a weight of 2.  

Attributes that are allowed to have only a single value, 
including the attributes with textual values, use an equality ( 
“ =”  ) operator and do not specify a range or attach a weight 
to the attribute; a resource description that does not match an 
equality constraint is simply rejected. Attributes that must be 
present in a matching resource, but whose value is not of 
interest to the application, are specified as a don’ t care value, 
stated as ANY.  

Finally, the constraint language includes two logical 
operators, conjunction and disjunction, to allow individual 
constraint-expressions to be combined into a composite 
constraint specification. A composite constraint specification 
can have a hierarchical structure; constraints can be grouped 
(associated) and nested using braces, and the logical 
operators are distributed over nested constraints when 
evaluating a constraint.  

ConstSpec = Nested | Cmplx | Smpl 
Nested = Cmplx (Cmplx+) 
Cmplx = (Logical (Smpl  Smpl+)) 
Smpl =  (Relation Attribute)  | 
     (Relation Attribute Range | 
Value) | 
     (Relation Attribute Range | 
Value) Weight  
 
Logical = AND | OR 
Relation = < | > | = 
Attribute = String 
Weight = Integer 
Range = Numeric Numeric 
Value = String | Numeric 
String = [a-z]+[a-z1-9]* 
Numeric = Integer | Float 
Integer = [1-9]+  
Float = [1-9]+.[1-9]*  
 

Figure 3: Constraints Language for SoNS 
 

(and (= device display) 
        (> (size 15 30) 
        (= color yes) 
        (or (> video-streams 1) 
        (= load 0))) 
 
Figure 4: An example constraint specification 
expressed in the SoNS constraint language  
 



To illustrate the expressiveness of the SoNS constraint 
language, we show how the requirements of a follow-me-
video application, presented in section 2, will be expressed 
in our language. Such an application can impose the 
following constraints on the display used by it. 1) The 
display must be more than 15 inches in size, for clear 
viewing, but less than 30 inches, due to the resolution 
limitations of the video-encoding scheme, 2) it must be 
capable of rendering colors, 3) and should be either capable 
of displaying more than one video-stream simultaneously 
(e.g. picture in a picture capability) or must not already be 
used by another application. These requirements would be 
expressed in the SoNS constraint language as shown in 
figure 4. It is worth noting that the use of an open-ended 
range for the number of video-streams supported by the 
display device implies that the application is indifferent to 
the number of streams being displayed on the screen. If the 
application prefers to use a less cluttered screen, it will 
provide a closed range, and will use the “<”operator to 
indicate that a display capable of showing fewer streams is 
preferable. Therefore, the use of a range to express a 
constraint, in fact, encourages an application to be more 
precise in defining the, often assumed, precincts of context-
awareness.  

3.4 Semantics of Session Rebinding 

Besides the constraints specified by an application to 
define the criteria for comparing available resources against 
application requirements, SoNS also allows an application to 
tailor the semantics of rebinding the network session by 
controlling the parameters for detecting and reacting to 
changes in the system.  

In order to detect and react to changes according to 
application requirements, the system must be aware of the 
scope (context) within which the application is interested to 
monitor changes, the frequency with which the application is 
interested to monitor changes, and an indication of what the 
application considers to be a significant change worthy of 
triggering a potential switchover to another resource. 

SoNS allows an application to incorporate its policies 
for handling the changes in the system as options to a 
service-oriented network socket. A service-oriented network 
socket takes four additional options as arguments to the 
setsockopt library call.   

Context: An application can specify its context as a sub-
net address, location of the looked-up resources, number of 
network hops traversed by a discovery message or any other 
metric meaningful for the discovery protocols part of the 
SoNS architecture. For example, the current implementation 
adjusts the SCOPE of an SLP [9] network query to limit the 
context of the discovery.   

Agility: An application can specify the agility with 
which it reacts to changes in the system by adjusting the 
frequency to probe the system for changes. The agility is 
specified as the interval between successive probes, stated in 
seconds.  

Hysteresis: An application can keep the system from 
reacting to transient changes, not of interest to the 
application, by specifying a value for hysteresis. The 
hysteresis is stated in terms of the number of probes for 
which an application requires the properties of the resources 
in its context to be consistent before SoNS (notifies an 
application and) switches the connection to a better 
alternative. This protects the system against thrashing under 
the fluctuating characteristics of a mobile system.  

Application-Callback: Finally, an application can 
register a callback with the socket, which, if registered, is 
used to notify the application when a better alternative 
becomes available. This notification, parameterized with the 
description (including the network address) of the new 
resource, can be used by an application to prepare itself to 
switchover to the new resource or to reject the change by 
returning a false value from the callback. It is worth noting 
that since a connection migration can only happen when the 
application returns control from the call-back, the application 
can use the call-back to delay the migration to a “migration-
safe”  point in its control flow.     

  (or 
  

(> (a 1 2)1) 
  

(and 
  

(< (b 0 9)2) 
  (= (c 9)1 ))   int connect(int fd, struct sockaddr * addr)   

or   

and   

<   
range:[0 - 9]   

attr: b   
weight: 2   

>   
range:[1 - 2]   

attr: a   
weight: 1   

=   
range:[0 - 9]   

attr: c   
weight: 1   

Attribute 
  Value 

  a 
  1.5   
b 
  3   
c 
  10   

  

or   

and   

<   
range:[0 - 9]   

attr: b   
weight: 2   

>   
range:[1 - 2]   

attr: a   
weight: 1   

=   
range:[0 - 9]   

attr: c   
weight: 1   

0   .66   

0   .5   

.5   

 

Figure 5: An illustration of constraint parsing and evaluation by the SoNS Interpreter 



4 Constraint Parsing 
The constraints specified by an application are used both 

for discovering and evaluating resources in the context of an 
application. To accomplish this, the constraints are parsed 
into a tree data-structure, which serves as an in-core 
representation of the application requirements for 
discovering and evaluating resource descriptions.   

Constraints are read as a plain-text string from the 
sockaddr_sons structure passed by the application in a 
connect()socket call.  The string is then parsed using a 
standard GNU Flex/Bison lexer/parser into a constraint tree. 
The parser makes a distinction between composite 
constraints and simple constraints.  A simple constraint 
specifies a range over a single attribute and, hence, can be 
evaluated independently of other constraints.  Composite 
constraint specifications, on the other hand, can contain 
nested constraints and are composed by using logical 
operators, i.e. disjunctions (OR) and conjunctions (AND).   

Given a composite constraint specification, the parser 
organizes the constraint tree such that the leaves are simple 
constraints that can be evaluated in isolation from other 
constraints, while intermediate nodes represent conjunctions 
or disjunctions of their children nodes (see figure 5).  
Therefore, the value of an intermediate node in the tree 
depends on the values of its children nodes, while the root of 
the tree represents the entire composite constraint 
specification stated by an application.  

While constructing the constraint tree, the parser also 
fills-in any missing bounds, 0 for less than constraints and a 
large integer for greater than constraints, as well as missing 
weights with a default of 1. 

5 Resource Discovery 
After constructing a constraint tree, the SoNS interpreter 

invokes the discovery module with the list of attributes at the 
leaves of the constraint tree. The discovery module invokes 
the discovery protocols registered with it and returns the 
matching resource descriptions to the interpreter.  

The interpreter then passes this list to the evaluator 
module, which assigns each resource a score by comparing 
the values of its attributes against the constraints stored in 
the constraint tree. The evaluator invalidates the resource 
descriptions with attribute values outside the range specified 
by the application, as well as the resources that fail to meet 
an equality constraint.   

After the initial setup, this procedure is repeated every 
time the probe period specified by the application expires. 
An application can also force a probe/evaluate cycle, for 
instance on the command of a user.  After receiving the score 
for each resource, the interpreter removes all the resource 
descriptions that were rejected and forms the “n-best-list”  for 
the probe.  If the application forced the probe (by invoking 
connect on an already connected socket), then the resource 
with the highest score is chosen from the n-best-list and the 
socket is migrated to its network address (just like the initial 

setup). However, if the probe was a normal periodic probe, 
the system enters the hysteresis phase. In the hysteresis 
phase the n-best-list from one probe/evaluate cycle is 
compared to the n-best-list stored from the previous cycle 
and the resources present in both new and old probes have 
their hysteresis value increased by one. Resource(s) with a 
hysteresis value greater than the hysteresis value specified by 
the application are separated and the connection is migrated 
to the network address of the resource with the highest score. 
In the case where an application has registered a call-back, 
SoNS invokes the callback method, with the description of 
the chosen resource, before performing the migration, and 
migrates only if the application-callback returns a true value 
(indicating application’s approval of the connection 
migration). Upon migration of the network connection, the 
n-best-list is reset and the process is started anew. 

5.1 SoNS Resource Discovery Framework 

Our target network environment often comprises of 
resources conforming to different resource discovery 
protocols, e.g. IETF SLP [9], INS [4] and SSDP [11], due to 
both commercial and technical reasons. Therefore, a service 
discovery framework based on just a single discovery 
protocol is not sufficient to discover the various resources 
found in a pervasive mobile system.  

SoNS handles this heterogeneity by defining an 
extensible resource discovery framework, capable of 
employing different discovery protocols to discover 
resources in the system. A discovery protocol is added to 
SoNS by registering a pointer to its look-up method, while 
SoNS performs resource discovery by invoking the look-up 
methods of all the discovery protocol registered with it.  

However, various discovery protocols found in our 
target environment offer different degrees of expressiveness 
for looking-up resources in the system. Protocols like INS 
[4] and SSDP [11] simply take a list of attributes and match 
them with the attributes of the resources being looked-up, 
whereas more sophisticated protocols like SLP [9] and SSDS 
[3] can perform complex queries containing conjunctions 
and disjunctions on nested lists of attributes, as well as range 
comparisons for attributes with numerical values.   In order 
to interoperate with such diverse protocols, SoNS translates 
a service specification to a very basic query format common 
to all discovery protocols.  

SoNS resource discovery framework invokes a 
constituent discovery protocol with a simple list of ASCII-
encoded attribute names, constructed by taking the attribute 
names from the leaves of the constraint tree created by the 
SoNS parser. Upon invocation, a discovery protocol finds 
the resources containing the specified attributes, and returns 
their descriptions in a list of feature-sets: sets of attribute-
value pairs. The matching resource descriptions, encoded as 
feature-sets, are passed on to the evaluator module to 
evaluate their suitability against the constraints specified by 
an application.  



It is worth noting that, in order to achieve compatibility 
with simpler protocols, this scheme does not require any 
filtering involving value comparisons to be performed by a 
discovery protocol. Rather, discovery protocols look-up 
resources by simply performing a pattern match on the 
specified attributes, and the suitability of a resource, based 
on the values of the looked-up attributes, is computed in the 
SoNS evaluator module.   

Passing a query as a simple ASCII-encoded list of 
required attributes also has the virtue that it can be easily 
converted to a more ornate format, by a simple wrapper 
around the lookup interface, if required by a more 
sophisticated discovery protocol.  

5.2 Context of Discovery 

Along with a pointer to a look-up method, a discovery 
protocol can also register a pointer to a method for setting 
the scope of the network queries generated by the discovery 
protocol. This method is invoked by SoNS when an 
application specifies a context of interest as an option to a 
service-oriented network socket. For example, SLP and 
SSDS register a pointer to a method that sets the value of 
SCOPE of the discovery agent to configure the context of the 
network queries. Though some simpler protocols, e.g. SSDP, 
lack support for scoped queries, and hence, do not register 
this method, we believe that such support is the key to the 
scalability of a pervasive discovery protocol and will soon 
find its way in mainstream discovery protocols.   

5.3 Probing vs. Adver tising 

A mobile device wishing to discover resources in its 
environment can either passively listen to advertisements by 
other resource in the system or can actively probe the 
network with periodic discovery messages.  

SoNS uses active probing as it makes it simpler to 
support application-level semantics for session-rebinding. 
Applications configure the session rebinding semantics by 
setting 1) the frequency of probing, to adjust the agility with 
which resources are discovered, 2) the scope of a probe 
message, to adjust the discovery context and 3) the number 
of probes for which the properties of a resource must be 
consistent, to set the hysteresis of the system.  

We favor probing over advertisements because in an 
advertisement based system the scope and frequency of the 
messages generated by a resource to advertise itself to the 
system cannot be adjusted to suit the requirements of any 
single application. Furthermore, with resource 
advertisements arriving asynchronously at different 
frequencies from various resources, there is no clean way to 
specify the hysteresis of the system.  

From a design point of view, in an advertisement-based 
system, where resources are required to continuously 
advertise themselves to the system in the hope that some 
application might be interested, introduces a continuous 
overhead of network messages and processing of 
advertisement messages even when there is no application 
listening to the advertisements.   

Finally, probing is supported by all the resource 
discovery protocols found in our target environment (though 
some protocols can also be configured to operate in an 
advertisement-based mode).  

5.4 Directory-based versus Peer-to-peer  Discovery 

Resources can either respond to queries directly, in a 
peer-to-peer setup, or could register their descriptions with a 
directory service which could be searched to locate 
resources.  

SoNS’ extensible design does not impose a restriction 
on which of the two methods is employed by a constituent 
discovery protocol to discover resources in the system. 
However, we believe that a peer-to-peer model is more 
suitable for supporting application-specific session 
rebinding.  

Though a directory-based setup avoids query broadcasts, 
and, hence, presents a more scalable design, it suffers from 
the following limitations in a dynamically changing system. 
1) A directory-based architecture depends on the availability 
of host(s) in the system that is capable and willing to answer 
queries on behalf of other resources. 2) A directory-based 
scheme introduces the overhead of keeping the directory 
state consistent with the (oft-changing) properties of 
resources in the system. 3) The directory service can itself 
cause a bottleneck in the system. A peer-to-peer model, on 
the other hand, does not depend on the availability and 
consistency of an external service to access resources in the 
system, and is, hence, better suited to the high degree of 
dynamism in a mobile system. Furthermore, since in a peer-
to-peer setup resources themselves report their, up-to-date, 
properties, the rate of probing provides an accurate mapping 
for the rate of adaptation expected by the application; this 
can only be guaranteed in a directory based system when the 
directory service is always consistent with the changes in 
resource properties.    

6 SoNS Evaluator  Module 
The discovery framework returns all the matching 

resource descriptions returned by the various discovery 
protocol to the interpeter, which passes these resource 
descriptions to the evaluator module. 

SoNS evaluator module performs the planning required 
to select the resource, among the available alternatives, that 
comes closest to satisfying the service requirements of an 
application.  

To motivate the evaluation strategy used by the SoNS 
evaluator module, consider a situation where the follow-me-
video application mentioned above moves into an 
environment with two displays: one closer to the handheld 
device but the other larger in size and with better resolution. 
In this situation, there is no clear winner (that is better than 
all the other available alternatives in every aspect).  A naïve 
solution could be to count the number of attributes for which 
a resource “beats”  other alternatives and pick the resource 
with the maximum number of “wins” . However, such a 



solution not only leads to a combinatorial explosion but also 
requires every sample of attribute values to be kept for later 
comparisons according to application’s hysteresis 
requirements.   

SoNS evaluator is deigned to be simple and 
responsiveness to changes and does not require the attribute 
values of every resource to be preserved across multiple 
probes. SoNS achieves this by using a simple scoring 
scheme which sums-up the suitability of a resource in a 
single scalar value for efficient comparisons.  

SoNS evaluator takes a list of feature-sets, along with 
the application’s constraint tree, and returns a corresponding 
list of positive integer scores reflecting the suitability of each 
resource. A resource with an attribute that fails to meet an 
equality constraint or has a numerical value outside the range 
specified by an application is assigned a score of zero.  

Figure 5 shows the operation of the default SoNS 
evaluator. SoNS’ default evaluator performs a depth-first 
search of the constraint tree.  On reaching a simple constraint 
at a leaf node, it extracts the value of the corresponding 
attribute from the resource’s feature-set and compares the 
value with the range specified in the constraint.  If the value 
satisfies the constraint, then a score between 0 and 1 is 
calculated based on where the value falls in the valid range.  
If the constraint specifies that smaller is better, then a value 
equal to the lower bound is assigned score 1 and a value 
equal to the upper bound is assigned score 0, with all other 
values being assigned linearly within that range.  The reverse 
occurs for constraints indicating that larger values are better.  
If the constraint specifies only equality or the ANY keyword, 
then any value fitting the constraint is given a score of 1.  
Finally, the score is multiplied by the constraint’s weight and 
returned as the value of that leaf node. 

After assigning scores to the leaf nodes, scores for the 
intermediate nodes, containing conjunctions and 
disjunctions, are calculated using the following algorithm. 
An OR node acquires the score of a child node with the 
highest score in its sub-tree, while a score of zero is assigned 
if all of its children nodes have a score of zero. An AND 
node is evaluated in a complimentary way: the score of an 
AND node is calculated by adding the scores assigned to its 
child nodes, while any child node with a score of zero causes 
the AND node to be assigned a score of zero. The overall 
score of a resource is the score calculated for the root of the 
constraint tree using the attribute values in the resource’s 
feature-set.  

We have found this simple evaluation strategy to be 
sufficient for our purposes for the following two reasons. 1) 
It keeps the design of SoNS simple enough to be hosted in 
resource constrained mobile devices and 2) the simplicity of 
the algorithm used for evaluating and comparing the 
available alternatives incurs minimal penalty in terms of the 
responsiveness of the system; where a more elaborate 
scheme could be used for comparing the suitability of 
available alternatives, it would increase the time spent in 
evaluating a resource, resulting in an increased latency 

between the time a viable resource become available and 
when the system recognizes its superiority.  

As described earlier, the scores returned at each probe 
are compared by the Interpreter according to the hysteresis 
semantics of the application and a winner is chosen if a 
resource consistently scores better than other resources. 

The extensible design of SoNS also allows the default 
evaluation policy to be replaced by more efficient or 
specialized algorithms better suited to individual application 
requirements. An application can replace the default 
evaluation policy by registering a pointer to an application-
specific evaluator with the SoNS evaluation module. This 
allows more involved constraint satisfaction engines, for 
example as proposed in [12], to be employed for calculating 
the relative utility of available resources. Such planning and 
constraint satisfaction systems are a topic of our current 
research.  

7 Connection Migration Module   
Once a better resource has been selected, the SoNS 

Interpreter requests the connection migration module to 
migrate the network connection to the new resource.  

The semantics of migrating the network connection 
from one resource to another depend on both the stateful-
ness of the service being accessed and the reliability 
guarantees offered by the underlying message transport 
protocol [13]. Migration of an unreliable network connection 
to a stateless service is accomplished by simply closing the 
old network connection and opening a fresh connection to 
the new resource. However, additional support is required 
for migrating reliable connections and for managing stateful 
services [13]. Migration of a reliable connection requires 
support for preserving the sequence of messages across 
migration, while a connection to a stateful service can be 
migrated transparently across resources only when the state 
accessed at the old resource is also available at the new 
resource in the form that the access to the service can be 
resumed at the new host from where it left-off at the old 
resource.  

The former requires a reliable transport protocol with 
support for migrating an active connection, while the later 
also requires a system for distributing and maintaining 
consistent state across replicated instances of a stateful 
service.   

This paper focuses on enabling a client to utilize the best 
provider of a service in its changing context; the subject of 
replicating and synchronizing stateful services has been 
extensively researched by others [14] and is not covered in 
this paper.  

SoNS uses the Migrate system [15] for migrating 
network connections between resources. We chose the 
migrate system as it provides support for securely migrating 
both reliable and unreliable network connections, as well as 
a lightweight, soft-state based consistency management 
system to support connection migration across stateful 
servers. Unlike other connection migration systems, like 



SCTP[16], that require the network addresses of all the 
potential servers to be known at connection setup time, 
Migrate allows a connection to be migrated to a newly 
available server using the TCP migrate options. Having said 
this, the modular design of SoNS allows other connection-
migration systems to be used as well, though we have not 
integrated other such systems with SoNS as yet.   

8 Applications 
This section describes the API of SoNS and a simple, 

yet representative, application we have developed to 
demonstrate the utility of service-oriented network 
connections offered by the SoNS architecture.  

An application wishing to open a service-oriented 
network connection creates a socket of domain AF_SoNS. To 
configure the semantics of session-rebinding, the application 
uses the setsockopt call to specify the values for context, 
agility and hystersis. Agility is specified as seconds between 
successive probes, hysteresis is specified as (an integer) 
number of probes for which attribute values should be 
consistent, and context, in the current implementation, is 
specified as SCOPE of an SLP query. The application can 
also register a call-back method, as a pointer to a method, 
which, if specified, is invoked by the SoNS Interpreter if a 
better alternative becomes available.  

After configuring the socket with appropriate values for 
session-rebinding, the application calls connect on the socket 
with a composite constraint specification describing the 
service.  

Our test applications were developed for a Compaq 
iPAQ, fitted with a backPaQ and running familiar Linux. 
Our backPAQ is fitted with an 802.11b wireless card, video-
camera, accelerometer and the Cricket Location detection 
system [17].  

8.1 Follow-me-video 

We have used SoNS to develop a follow-me-video 
application. A follow-me-video application running in a 
handheld device carried by a user re-directs the video stream 
to the display closest to the user as she moves in the system. 
In our test environment, all resources (server devices) are 
also fixed with Cricket Beacons to measure their distance 
relative to other Cricket-enabled devices (including our 
handheld device).  

The relevant code snippet from our example application 
is shown in figure 6.  

Our example application generates an MPEG-1 encoded 
stream and in interested in displays located only on the 6th 
floor of our building with the following properties. 1) 
Device: Display, 2) Media-type: MPEG-1, 3) Resolution: 
640x800 – 1280x1600 (with preference for displays with 
higher resolution), 4) Size: larger than 15 inches to allow 
viewing from a distance, but less than 30 inches due to the 
limitation of the encoding resolution (with preference for a 
larger display) 5) Distance: closest to the handheld device. 
The application creates an AF_SONS domain socket, and 

specifies the following options: Context: 6th-Floor, Agility: 5 
(seconds between probes), Hysteresis: 3 (number of probes), 
Call-back: pointer to method that forced a base frame to be 
transmitted. The application then connects the socket by 
giving it a composite constraint specification for the 
properties of the display device.  

SoNS sets the SCOPE of the SLP user agent to 6th-
Floor, probes the network for display devices, and connects 
to a display that scores the highest points among those 
present on the 6th floor. The distance to a display device is 
measured by invoking the Cricket location system (added to 
the system just like another discovery protocol). After 
making the initial connection, the network is probed, using 

int main(int argc, char ** argv) { 
  int sockfd; 
  int intopt; 
  char * charopt; 
  size_t opt_sz; 
  sons_callback_t cbsons; 
  struct sockaddr_sons sasons; 
 
  sockfd = socket(AF_SONS, SOCK_STREAM, 0); 
 
  intopt = 5; 
  opt_sz = sizeof(int); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_PROBE_PERIOD, &intopt, opt_sz); 
   
  intopt = 3; 
  opt_sz = sizeof(int); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_HYSTERESIS, &intopt, opt_sz); 
 
  charopt = "floor-6"; 
  opt_sz = strlen(charopt) + 1; 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_SERVICE_SCOPE, charopt, opt_sz); 
   
  cbsons = force_b_frame(); 
  opt_sz = sizeof(sons_callback_t); 
  setsockopt(sockfd, SOL_SOCKET,  
             SO_CALLBACK, &cbsons, opt_sz); 
 
  charopt =  
    "(= service display)\n” 
         “  (= media mpeg1) \n" 
    "(and (> xresolution 800 1600) \n" 
    "     (> yresolution 640 1280)) \n" 
    "(> displaysize 15 30) \n" 
    "(< distance)"; 
  sasons.sin_family = AF_SONS; 
  memcpy(sasons.query, charopt,  
         strlen(charopt)); 
  connect(sockfd, (struct sockaddr *) &sasons, 
          sizeof(struct sockaddr_sons)); 
 
  //...read and write using standard socket                
  // calls... 
 
  close(sockfd); 
 
  return 0; 
} 

Figure 6: Code snippet from the follow-me-video 
application developed using SoNS. 



SLP and Cricket, every 5 sec and available resources are 
compared according to the hysteresis. If a better display 
becomes available, SoNS invokes the application callback, 
which forces a base MPEG frame to be transmitted upon 
migration, so that the playing of video at the new display can 
be resumed without jitter.  

Our example application also monitors the 
accelerometer embedded in the backPAQ to find out if the 
device is moving and with what speed. If the application 
discovers that the handheld device is mobile, the application 
can increase the rate of probing and reduce the hystersis 
value, according to the degree of movement reported by the 
accelerometer, in order to take advantage of the displays that 
become available for a short time when, for example, a user 
walks down a hallway.  

9 Implementation 
SoNS was implemented in GNU C/C++ on GNU/Linux. 

The code is divided into four modules: the socket interface 
library, SoNS interpreter, wrappers for the resource 
discovery protocols, and the evaluator module.   

9.1 Socket L ibrary  

The socket library code overrides the socket interface to 
offer the extended SoNS interface, and spawns an interpreter 
daemon to periodically discover and evaluate available 
resources.  

In order to provide an extended interface, we either 
needed to modify the underlying Linux libc or use a package 
that captures system calls and redirects them through other 
functions.  We chose the latter route and specifically chose 
to use TESLA [18].  TESLA allows arbitrary handlers to be 
inserted between an application’s socket call and the 
underlying socket kernel calls, precisely matching our needs.  
Furthermore, the Migrate architecture, which we use for 
connection migration, also uses TESLA, so the overhead of 
using TESLA would be present in our system anyway. 

We wrote TESLA handlers to override the calls to 
socket(), connect(), getsockopt(), setsockopt(), and close() 
functions.  

The most interesting overridden call is connect().  The 
connect call exercises the entire system since it sends a 
message to the interpreter daemon telling it to force a 
network probe, then picks the best service, and finally calls 
connect on the underlying socket structure.  getsockopt() and 

setsockopt() simply update socket-related data in the 
daemon. 

The interpreter daemon itself merely sits in a loop 
waiting either for an event from the TESLA handler or an 
alarm signal indicating that it should perform a periodic 
poll/evaluate cycle. 

9.2 Resource Discovery Protocols 

The interpreter invokes the run_query method of all the 
discovery protocols registered with it. The run query method 
takes an array of required attribute names and returns a list 
of attribute-value bindings. This method is the sole interface 
between the interpreter and the discovery protocols so that 
discovery protocols can be easily added/replaced.   

The current implementation employs two discovery 
protocols to find resources in the system: IETF Service 
Location Protocol [9] and the Cricket Location System [17] 
(for estimating distance to available resources). We use the 
OpenSLP implementation of SLP, with the User Agent 
configured to perform discovery in a peer-to-peer fashion, by 
multicasting the query on the SLP multicast channel.  

10 Performance Analysis and 
Evaluation 

Unlike content-based routing systems, the session-
oriented approach of SoNS moves the cost of resolving 
service descriptions from the critical path of a network 
message delivery to the stage of establishing and, 
subsequently, rebinding a network session. Therefore, we 
evaluate the performance of SoNS by measuring 1) how 
quickly it can setup a service-oriented network session and 
2) how quickly it can rebind the network session when a 
better alternative becomes available.  

All tests were performed on a Pentium III with 256MB 
of RAM running Linux 2.4.  Since we wanted to isolate our 
system from network latency, we used an in-memory stub 
SLP rather than the OpenSLP SLP.  We expect most 
constraint specifications to have between 1 and 15 elements 
and be a combination of both simple constraint specifications 
and composite constraint specifications.  Our tests span this 
space: we vary the number of attributes in a straight-line set 
of simple constraint specifications and also vary the height 
of the tree of composite constraint specifications. 
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Figure 7: The cost of a connect() call (averaged over 100 tests) increases only linearly as the number of constraints is increased. 



10.1 Session-setup Latency 

The SoNS system adds latency in two places, at a 
socket() call where we fork a daemon and initialize all the 
discovery protocols installed in the system, and on a 
connect() call  where we must decide which device is the 
best device available. 

In all of our tests, the socket call took between 2ms and 
5ms.  This is fairly high, but represents the cost of forking a 
process and all inter-process communication between the 
daemon and the SoNS TESLA handler. 

Figures 7 summarizes the cost of a connect call as we 
varied the number of constraints.  The cost of the connect 
call increases only linearly as the number of constraints, both 
nested and non-nested, are increased. The connect latencies 
in our system hover around 1ms, which, though higher than 
expected, is acceptable when amortized over the life of the 
connection. 

10.2 Session-rebinding Latency 

Another form of latency shows itself as the time 
between the discovery of a resource and signaling the 
application that the SoNS system has found a new best 
resource.  Ideally, this should be zero, but we must evaluate 
the services returned, which has a non-zero cost.  Figure 8 
show the time elapsed from when a call to run_query() 
method returns — with matching resources on the network— 
and when SoNS invokes the application-callback to  notify 
the presence of a better alternative (given the hysteresis 
semantics). This latency again increases only linearly with 
the number of constraints (both for nested and non-nested 
constraints), and more importantly, hovers only around 200-
500µs of latency. 

In order to achieve compatibility with simpler protocols, 
SoNS does not require any filtering involving value 
comparisons to be performed by a discovery protocol. 
Instead, discovery protocols return all those resources that 
contain the required attributes and the evaluator module 
performs the value comparisons to compute the suitability of 
matching resources. However, since all the value 
comparisons in this scheme are performed by the evaluator 
module, the evaluator must be able to efficiently compare a 
moderately large number of matching resource descriptions. 
Figure 9 shows the time spent in the evaluator module as we 

increased the number of resource descriptions processed by 
the evaluator. This cost increases only linearly and hovered 
only between 0.8 – 1.0 msec in our tests.  

The simplicity of our system makes it suitable for 
mobile handheld device. The memory footprint of our 
system varied between 0.8 MB to 1 MB during our 
experiments.  

10.3 Evaluation 

Where our system achieves acceptable performance, we 
found that the following implementation choices incurred 
unwanted overhead: 
• Per-socket interpreter daemon processes, 
• Use of standard IPC between the socket wrapper and the 

per process interpreter deamon, and  
• fixed-point arithmetic. 

Our implementation would be faster if we were able to 
communicate with the daemon without copying through 
interprocess communication channels.  This could be 
accomplished by using a thread library at the cost of making 
our code less portable.  Secondly, we maintain a separate 
daemon process for each socket to allow for fine-grained 
accounting. However, this is inefficient compared to an 
implementation in which a single deamon process handles 
the discover/evaluate cycles for all the sockets, since such an 
implementation would save the cost of spawning a daemon 
every time a socket is created, and might allow for 
optimizations by batching queries by different applications.  

Finally, our system is slowed down by the use of the 
fixed-point math system we wrote for computing resource 
scores.  This is because the iPAQs we include in our target 
platforms do not have floating point units and incur an order 
of magnitude performance hit on floating point performance.  
Since scoring and weighting is an inherently floating-point 
process, we were forced to write our own, non-optimized, 
implementation of fixed-point arithmetic.  We are currently 
working on a more efficient implementation in the light of 
these observations.  

11 Related Work 
SoNS integrates a service-oriented abstraction with a 

traditional operating system communication interface. Using 
SoNS, applications open a network connection with an 
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Figure 8: Latency (averaged over 50 tests) between the time a better alternative becomes available and the time SoNS realizes its 
presence (and signals the application about its presence) for both non-nested and nested constraints. 
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Figure 9: The hysteresis latency increases linearly with the 
number of services returned by the SoNS discovery 
framework. 

abstract service specification, instead of a network address, 
and the system automatically connects the application to the 
most suitable server in its changing environment. SoNS 
combines resource discovery and evaluation with a 
connection migration system to provide application-specific 
opportunistic access to service providers. SoNS’ modular 
architecture can be extended with various resource 
discovery, location-detection, and connection migration 
protocols, and its evaluation policy can be customized to 
individual application preferences.  

Therefore, SoNS is designed to complement and 
leverage recent research in resource discovery, location-
detection and connection migration protocols, not to replace 
such systems. In fact, SoNS was motivated by the desire to 
combine pervasive mobile computing technologies 
developed for MIT’s Project Oxygen, e.g. INS, Migrate and 
Cricket, to leverage context-aware applications in a mobile 
handheld device.  

The recent interest in pervasive computing 
environments has given rise to a proliferation of systems that 
allow resources to be dynamically discovered based on their 
attributes. As opposed to the white-pages style lookup 
offered by systems like DNS that simply resolve a resource 
name to its network address, such systems do not require a 
priori knowledge of some unique identifier of the resource, 
like its network address, and hence can be used to 
dynamically discover and utilize resources as they become 
available in a pervasive system.  

Such attribute-based resource discovery systems differ 
in the format used by them to describe resource properties, 
expressiveness offered by their look-up interfaces, whether 
they offer push-based or pull-based discovery and whether 
queries are mediated by a directory service or resolved in a 
peer-to-peer fashion in the system. In addition to the 
classical examples like Grapevine, GNS [19] and X.500 
[20], a range of industrial standards like Microsoft’s UPnP 
resource discovery protocol (SSDP) [11], IBM’s T-Spaces, 

and IETF’s Service Location Protocol [9], and experimental 
systems like MIT’s INS [4] and Berkeley’s SSDS [3] have 
emerged over the last few years. For example, where SLP 
offers a rich LDAP-based [20] query interface, systems like 
INS and SSDP define simple attribute-based resolvers that 
can be hosted in resource constrained mobile devices.  

SoNS is designed such that different discovery protocols 
can be added to its resource discovery module, possibly via a 
simple wrapper function to covert the SoNS attribute list to 
the specific format used by a discovery protocol, e.g. XML 
(used by Berkeley’s SSDS).  

Unlike existing resource discovery protocols that simply 
match queries against resource descriptions, SoNS uses an 
applications-specific evaluation framework that continuously 
monitors, evaluates and compares the available alternatives 
in order to pick the closest match to application 
requirements. Indeed, the problem of satisfying high-level 
requirements with imperfect resources has been extensively 
researched in the AI domain [12]. However, where systems 
like MetaGlue [12] propose to use general-purpose 
constraint satisfaction engines over complex utility 
functions, SoNS default evaluator is designed to be simple 
and responsive to changes in the system.  

Content-based routing systems like INS’s late binding 
architecture [4] and Information Bus [21], as well as 
application-level anycast routing systems like [8], allow 
applications to send messages without specifying the 
network address of the recipient, and route the messages to 
the appropriate server by looking at the content of each 
network message and matching that with the properties of 
the available servers. Where such systems offer an 
alternative to our approach, they inherently lack application-
level session semantics, do not offer a clean interface for 
configuring the application-specific policy for resource 
comparison and session-rebinding, introduce the overhead of 
resolving service descriptions within the critical path of 
every message delivery, and, by defining their own routing 
framework, do not leverage the support for QoS offered by 
the underlying network.     

Our architecture is based on our previous research in 
context-aware operating systems. An operating system 
instrumented with SoNS makes it simpler to develop, 
otherwise non-trivial, context-aware applications e.g. follow-
me-media applications, as well as various forms of context-
driven browsers and context-mapped user interfaces.  

12 Conclusions and Future Work 
This paper establishes the need for service-oriented 

network connection, and presents the design and 
implementation of the SoNS system. SoNS presents an 
application with an extended socket interface to open a 
service-oriented network connection by providing a high-
level service-specification. When asked to establish a 
connection, SoNS discovers the available resources and 
connects the application to the resource that best provides 
that service in its context. Once connected, SoNS 



continuously monitors, compares, and evaluates available 
alternatives, and reconnects the application to a better 
alternative if one becomes available.  

As opposed to content-routing systems, SoNS moves the 
cost of discovering and evaluating resources against 
application requirements at the connection set-up time, and 
allows the application to exercise control at the level of a 
network session. Since the cost of discovery and selection in 
SoNS is amortized over the life of the network session, it 
allows SoNS to be significantly more sophisticated in terms 
of expressiveness, evaluation and selection of available 
resources, as compared to systems that perform message-
level service-selection-and-routing.   

As SoNS integrates support for context-awareness with 
a traditional operating system communication interface, we 
have found it much simpler to use than other systems that 
require the use of additional, and often several different [7], 
APIs to build a context-aware application.  

The design of SoNS pays special attention to 
extensibility in order to take advantage of the wide range of 
emerging technologies for resource discovery, location 
detection and network connection migration.  

Though we believe that SoNS has the potential to 
become an integral part of future operating systems in a 
pervasive computing environment, it relies on the wide-
spread deployment of network devices embedded with 
service advertisement protocols, as well as the availability of 
location detecting mechanisms to estimate the distance of a 
user with the devices embedded in her context.    

The current design of SoNS does not include a security 
framework. Security in such a system is required at several 
levels: to protect resources against illegitimate access, to 
protect the SoNS system against malicious extensions, and to 
protect the connection migration system against connection 
hijacking. Though some discovery protocols, like SSDS and 
SLP, and connection migration schemes, like Migrate, define 
their own security models, we are currently investigating an 
extensible security framework that would allow security 
policies to be defined independently of the constituent 
modules.  

SoNS makes it simpler to develop context-aware 
applications. Our experience with SoNS has shown us that 
unlike message-based routing systems that are better suited 
to command-based applications e.g. “sending a document to 
the nearest printer” , SoNS is equally useful for connection-
oriented applications as well, e.g. follow-me-video/audio. 
We are currently developing more applications to 
demonstrate the utility of SoNS in pervasive mobile 
environments.  
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